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Enhanced Scheduling for KubeEdge nodes in Edge
Computing using EdgeMesh

Rahul Dhanapal Narawade
22144943

Abstract

Edge Computing processes data at the edge to reduce latency and deliver faster
responses by reducing data that has to be synced with the cloud. Strategic load bal-
ancing plays a crucial role in maximizing IoT efficiency and reliability. KubeEdge
commendably orchestrates containerized applications on edge nodes by extending
Kubernetes and maintaining cloud-edge node networks. This facilitates the seam-
less load balancing and discovery of services on edge nodes through EdgeMesh.
However, this approach could decrease KubeEdge cluster throughput and delay
services due to the need to forward traffic between edge nodes in different loca-
tions. Therefore, a better scheduling algorithm is required than the current default
algorithem.

This paper presents a solution that uses EdgeMesh to strategically enhance load
balancing to improve the KubeEdge cluster throughput. This solution utilizes the
best possible nodes in the cluster to serve the user requests efficiently. The out-
come of the study shows that the enhanced custom scheduling outperforms the
default scheduling algorithms. The average response time was improved by ap-
proximately 33% and requests per second increased by approxmatly 94%. Overall,
cluster throughput is enhanced by 63.5%.

Keywords- Kubernetes, KubeEdge, Cluster throughput, EdgeMesh, Schedul-
ing, Edge Computing, IOT.

1 Introduction

The field of computing is experiencing a notable transformation, especially in the world
of the Internet of Things. The change in perspective in consideration involves connecting
billions of devices, which creates huge amounts of data at speeds that have never been
seen before. This ecosystem of devices and apps must work with very little to no latency
to meet the need for quick responses as articulated by Pan and McElhannon (2018).
Internet of Things (IoT) devices are made up of many different sensors made by different
vendors that can do various things. The rise of smart houses, transportation networks,
healthcare facilities, and metropolitan areas depends on these electronic devices.

Despite the success and wide adoption of large-scale data centers by many organiz-
ations, IoT has new challenges. The large volume, variation in data, and the latency
between edge and cloud are major concerns. Local processing is essential for IoT devices,
and edge computing can efficiently do that. Processing raw data at the edge and de-
livering only aggregate data to the cloud addresses IoT devices’ large data processing
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burden. According to Pan and McElhannon (2018), edge clouds enable IoT devices to
transfer data processing tasks. Edge computing optimizes the framework, improving IoT
application efficiency while addressing data size, variety, and latency.

Previously, there was no standard approach to limit application resources on a physical
server. Virtualization converts physical servers into virtual servers aiming to lessen the
expense of managing numerous physical servers. The virtualization proved cost-effective
because it allows several virtual instances on a single physical server, distributing re-
sources efficiently.

The introduction of containerization advances over virtualization, containers share the
OS kernel on a particular machine. This goal was achieved by implementing containers
as distinct and independent processes within the user space. Thus, one physical machine
may efficiently run more programs, requiring fewer virtual machines and operating sys-
tems. Kubernetes orchestrates containerized microservice deployment and coordination.
B et al. (2023) states that Kubernetes effectively manages deployment size, adapts to
variation, and autonomously addresses new issues, enabling dynamic application scaling.

KubeEdge acts as an expansion of Kubernetes for edge computing, enabling effect-
ive management of edge nodes and deploying applications at the edge. In particular,
KubeEdge effortlessly provides this functionality without necessitating any changes to
the core Kubernetes API. The system comprises critical components, specifically special-
ized edge controllers responsible for managing nodes and their workloads, an exclusive
network protocol and the distributed metadata storage system. According to Pan and
McElhannon (2018) KubeEdge has been intentionally designed with robustness in mind
by enabling it to efficiently manage system failures and cloud-edge offline conditions. This
is especially important in cases where edge nodes are disconnected from the cloud.

The load balance optimization topic has gotten a lot of attention which has led many
academics to study it to find better ways to use resources. Load balancing is still an
essential technique for optimizing resources in which the workload is evenly distributed
among worker nodes. This distribution helps to decrease task response times and improve
the usage of resources. For the KubeEdge advance configurations EdgeMesh is used for
service discovery along with load balancing, but this system faces challenges when these
worked nodes are spread across multiple locations, potentially causing delays. The current
EdgeMesh load balancing mechanism is inadequate for the full adoption of KubeEdge’s
dynamics.

It is known that load distribution strategies have an effect on the general performance
of the KubeEdge cluster. Thus, additional research was needed to find optimal solutions.
In their paper from Kim and Kim (2023), they propose a local schedule method that
focuses on assigning work to a single node instead of spreading it out among all nodes.
This approach helps to reduce the delays that can happen because of nodes that are
far away, but it’s also possible to overload a single local node, which would make job
execution take longer.

In this study, the researcher looked into the feasibility of using a different method
of task scheduling. In this research, the prospect of delegating work to a small set of
nodes physically adjacent to the local node where the request was made was explored.
The goal of this approach was to achieve a balance by reducing the potential for delays
caused by remote nodes and preventing the overloading of any one local node. Work was
distributed across the nodes based on how close they were to the local node processing
the request and how much capacity they had to process the request. At runtime, these
parameters are considered, and the decision of scheduling is made.
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1.1 Research Question

RQ1: To what extent does the proposed enhancement in scheduling improve the through-
put of the KubeEdge cluster containing geographically distributed edge nodes?
RQ2: How can the delays due to traffic distribution on widely separated edge nodes
and the computation capabilities of nodes be considered to enhance the performance of
a KubeEdge cluster?

1.2 Structure of the Paper

This study report is structured as follows. Section 1 briefly introduces the research area
and topic background, and section 2 uncovers the related work along with the research
niche. Section 3 explains the investigation methods utilized to address the research ob-
jectives. Section 4 discusses the design specifications with a quick summary of KubeEdge
and EdgeMesh, existing default scheduling, and solutions to the study objectives. Sec-
tion 5 uncovers the implementation approach of the solution, and section 6 reveals the
study outcome by comparing previous and newly implemented solutions along with the
discussion on the overall outcome. The report concludes with section 7, which presents
findings and suggestions for future work.

2 Related Work

This section explores a range of studies dedicated to Kubernetes, KubeEdge, and the im-
plementation of load balancing techniques aimed at enhancing the throughput of clusters
within edge computing.

2.1 Kubernetes - Dynamic Load Balancing

The paper Liu et al. (2020) proposes load balancing algorithm for Kubernetes that dynam-
ically distributes load based on real-time data. The MLB algorithm considers including
CPU utilization, memory usage, and network IO, to calculate the load of each service.
Iptables are utilized for resource management, and the iptables size increases gradually
as the number of rules grows which degrades efficiency. The Khalel et al. (2022) proposes
the method for deploying load-balanced Kubernetes cluster using Minikube. Service was
created for deployment and to distribute requests to the pods in the deployment using
a round-robin algorithm. System was evaluated by deploying the MongoDB and Mongo
Express service. The paper does not cover with other load balancing technique than the
default round-robin in detail.

High-performance cloud-native software load balancer to replace commercial physical
load balancers was proposed by Lee et al. (2021). The load balancer implemented as
container on Linux server that utilizes eBPF/XDP to manage packets at the data path
layer. This allows the load balancer to achieve high performance and scalability. The
system evaluated using the RFC2544 performance standard and IMIX traffic. Proposed
load balancer results in achieving throughput close to the loopback interface and outper-
forms Iptables DNAT by up to 27 times. As this was on simulated environment it will
be interesting to see in actual environment.

The study Nguyen and Kim (2020) examines the leader election algorithm and its
effects on stateful applications with the aim of scalable load balancing. The Kuber-
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netes leader election process fails to achieve optimal leader distribution, and a significant
number of leaders are assigned to a node. The study demonstrated that Kubernetes’
leader election mechanism could maximize leader distribution and increase performance
for stateful applications with numerous replicas. The drawback of this method is potential
data inconsistency in stateful applications.

The study Takahashi et al. (2018) proposes a portable load balancer for Kubernetes
cluster systems. Using the Linux kernel’s IPVS, a containerized software-based load
balancer was built and set up to run as part of a container cluster. The efficiency of load
balancer compared to existing iptables DNAT and Nginx load balancers. The proposed
container based IPVS load balancer improves Kubernetes cluster system portability while
maintaining performance levels like the iptables DNAT load balancer. Weight-based load
balancing approach for canary deployments in Kubernetes using AWS was proposed in
B et al. (2023). The authors use Kubernetes, Linkerd, Flagger, load generator, and
AWS to measure success rate, latency, and throughput to evaluate the proposal. The
proposed approach achieved a 100% success rate, with a P99 latency of 4 ms for the
primary app and 9 ms for the canary app. Study lack in comparison of the proposed
approach to other load balancing.

2.2 Kubernetes Load balancing - Optimization for Edge Com-
puting

The Phuc, Phan and Kim (2022) aims to improve the performance of IoT applications
with Traffic Aware Horizontal Pod Autoscaler. The THPA assigns pods to worker nodes
using pod scheduling method which considers the network traffic. The Kubernetes cluster
with three worker nodes along with simple web application used to test the proposed
THPA. THPA succeeded in improving the throughput and response time of IoT apps
by 150% than default autoscaler. A two-stage scheduling hybrid workflows on edge
cloud computing systems presented in Alsurdeh et al. (2021). Resource estimate be-
gins with gradient descent search and second cluster-based hybrid workflow provisioning
and scheduling on heterogeneous edge cloud resources. The solution optimises execution
time and cost within deadline and throughput limitations. It would be interesting to
test solution with a bigger cluster with more complicated programs like in production
environment.

The authors of Ogbuachi et al. (2020) proposes scheduler which considers the physical,
operational, and network characteristics of edge devices while assigning the pods. The
scheduler uses weighted score to evenly distribute the workload among the nodes,tested
on Raspberry Pi cluster. The outcome shows that custom scheduler outperformed than
default K8 scheduler in terms of speed and efficiency in scheduling pods. The paper
Nguyen et al. (2022) proposes a Resource Adaptive Proxy (RAP) algorithm for Load
balancing in K8-based edge computing. The algorithm prioritizes local request and for-
wards to the optimal remote node when local nodes are overloaded. The authors assessed
RAP with a synthetic benchmark under varied conditions. The results shows that RAP
improved throughput by up to 400% and reduced latency by approximately 90% com-
pared to the default kube-proxy. It would be interesting to see how RAP performs with
real-world traffic.

The paper Wang et al. (2022) proposes A Dynamic algorithm DWRR in Kubernetes
clusters with heterogeneous CPUs. DWRR calculates the weight of each pod based on the
CPU usage of the node. The algorithm then updates the traffic routing rules, considering
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their weights. DWRR significantly outperforms the default load balancing algorithms in
Kubernetes in terms of throughput, average response time, and CPU utilization. But
this method only works well above a certain level. It might be helpful to use this method
in KubeEdge. The author of Furusawa et al. (2022) proposes a co-op load balancing for
adjacent edge resources using a service mesh. Service mesh controller used to dynamically
set the load balancing destination and weight values for each edge server. The controller
monitors the rps of requests to apps on each edge server and calculates weight to forward
excess requests to neighbouring nodes. Proposed method significantly reduces response
time and prevent edge servers from being overloaded. This algorithm may not be suitable
for environments with very low latency requirements.

Authors of Yang et al. (2022) emphasize the necessity of integrating AI and network
considerations to deal with edge computing challenges. The objective of the proposed
architecture was to optimize the allocation of resources and migration of services. Signi-
ficant contributions have been made through the integrating AI into network design and
for the prioritization of dynamic service provisioning. Shen et al. (2023) proposes learning
based scheduling for k8s oriented edge-cloud networks called KaiS. This scheduler uses
synchronized multi-agent and actor critic algorithm to distribute request and another
GNN-based policy gradient algorithm for service orchestration. KaiS was evaluated on
edge-cloud network with 10 k3s primary nodes and 100 k3s edge nodes. The results shown
that KaiS achieved 14.3% higher throughput rate and 34.7% lower scheduling cost. The
proposed solution was complex, it may not work for all edge-cloud networks.

2.3 KubeEdge Integration for Edge Computing

The study Kim and Kim (2023) proposes a local scheduling approach to deal the per-
formance drop caused by traffic routing between edge nodes. Authors created KubeEdge
setup on a cluster of three edge nodes and examined its throughput and response time
under varied traffic loads and pods. The authors found that round-robin load-balancing
reduces system performance and response time due to edge node traffic. But the newly
proposed system, regardless of traffic patterns, the local scheduling method exceeds the
performance than the round-robin load-balancing. The research could have explored
dynamic load distribution instead of overwhelming a single local node.

Authors of Vilaça et al. (n.d.) presents Geolocate scheduler for kubeedge which con-
siders producer and consumer nodes geographic locations. The proposed scheduler first
filters the available nodes to find those that fulfil workload resource requirements and are
in a suitable geographic region based on latency. Geolocate scheduler was tested using a
POC application. The Geolocate scheduler increased response times by 62% when nodes
were in the same region. According to the report Xiong et al. (2018) KubeEdge provides
unified architecture that seamlessly connects and coordinates cloud-edge resources to en-
hance the performance. KubeEdge supports RPC between the edge and cloud which
creates a unified containers runtime and the means to sync and store metadata. This
study uses the Raspberry Pi 3 Model B, and AWS cloud. Evolution measured network
latency between the edge and the cloud, but study could have been more comprehensive
by exploring a range of scenarios.

The research Ermolenko et al. (2021) explores utilizing microservices to implement
distributed edge services for IOT systems. The method uses Kubernetes for orchestration
and applications of edge computing. Docker containers along the Container Network
Interface (CNI) for networking are used for implementation. The study compares the
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latency Apache server as a standalone instance and as part of a Kubernetes cluster. This
study revealed that load balancing in the Kubernetes cluster improves response time. The
study focuses on response time but lacks scalability, resource usage, and fault tolerance.

The research Wang et al. (2021) uses the KubeEdge for of spectrum recognition,
which allows collaborative recognition of objects by effectively managing the integration
of cloud servers and edge spectrum recognition nodes. Algorithm undergoes training
on the cloud, at the edge node spectrum recognition and categorization takes place.
KubeEdge uses Docker to encapsulate the spectrum intelligent detection algorithm in
container images which improves distribution efficiency. The study addresses spectrum
recognition terminal edge node storage and computational resource restrictions. The
scalability and performance implications of this system on edge nodes vs the cloud have
not been examined.

Heterogeneity, complicated ecosystems, and inconsistent standards of edge computing
are addressed by study Tong et al. (2022). Study proposes KubeEdge for Cloud-Edge
device integration and management which unifies resource management. The KubeEdge
adds node-level metadata persistence to recover from faults and maintain service readi-
ness in the case of a node offline. Research evaluates performance, resource utilization,
and comparison with other edge computing environment. However, the study lacks to
address the challenges in large-scale node management and distributed computing. The
Le and Yoo (2021) addresses the difficulties associated with the deployment of KubeEdge.
Paper presents a practicable lightweight tool solution. KubeEdge installation process and
architecture overview highlighted by authors. The paper lacks comprehensive information
regarding research design.

The Phuc, Kundroo, Park, Kim and Kim (2022) suggests a node-oriented horizontal
pod autoscaler (NHPA) for improving KubeEdge application performance. NHPA was
beneficial in edge computing contexts having unstable communication links. NHPA ad-
justs edge node pod counts based on workload. Pods are scaled up or down based on node
CPU usage. The article compares NHPA’s throughput and response time to KubeEdge’s
built-in load balancer. NHPA surpasses KubeEdge’s built-in load balancer in throughput
and response time, especially in imbalanced traffic. Exploring the impact of delays due
to edge node distribution and weak cloud-edge connections would be interesting.

2.4 Diverse Approaches using EdgeMesh and ServiceMesh

Sahni et al. (2017) proposes Edge Mesh that focuses on distributed intellect in IoT.
EdgeMesh uses genetic algorithm and has three levels corresponding to End devices,
Cloud and Edge Mesh. A random task graph and varying network devices were used to
test their job allocation technique. The suggested genetic algorithm minimized energy
usage significantly. Apart from energy consumption objective, the latency was not con-
sidered. Also, the authors noted that more extensive experiments are needed to test in
real-world scenarios.

Shitole (2022) study addresses load balancing, and latency issues across microservices.
This solution offers integrating ISTIO with service mesh to include side car proxies to
services. These proxies direct tasks to appropriate services via control plane. Employing
mTLS encryption for security was considered. The response rate exhibited consistency
and stability using ISTIO compared to default. Although the request increases, fewer
resources are consumed. This suggests an approach to latency of applications that might
be considered for the ongoing study.
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Author Platform Research Basis of Solution
Liu et al.
(2020)

Kubernetes Multimetric Load balancing
for Kubernetes using real-
time data

CPU utilization, memory
usage, network IO

Khalel
et al.
(2022)

Kubernetes
(Minikube)

Load-balanced Kubernetes
cluster by Minikube

Minikube, round-robin al-
gorithm

Lee et al.
(2021)

Linux-
Kubernetes
container

Cloud-native software load
balancer

Software balancer with ipt-
ables DNAT

Takahashi
et al.
(2018)

Kubernetes Portable load balancer for
Kubernetes cluster

Linux kernel’s IPVS

B et al.
(2023)

Kubernetes,
Linkerd,
Flagger

Weight-based load balan-
cing for canary deployments

Weight assigned to service,
traffic split

Nguyen
et al.
(2022)

K8-based
edge com-
puting

Resource Adaptive load bal-
ancing

Resource (CPU, RAM) and
network status of pods

Wang et al.
(2022)

K8-based
edge com-
puting

Dynamic adjustable al-
gorithm in Kubernetes
clusters with CPU

The CPU usage of all pods
and nodes

Furusawa
et al.
(2022)

Edge Com-
puting ser-
vice mesh

Co-op load balancing using
a service mesh

Based on monitored RPS,
requests forwarded to neigh-
boring servers

Kim
and Kim
(2023)

KubeEdge Local scheduling approach
for traffic routing between
edge nodes

All requests to local only

Vilaça
et al.
(n.d.)

KubeEdge Geolocate scheduler for
KubeEdge considering
geographic locations

Preferred geographic loca-
tions considered

Table 1: Summary of previous research and the basis for solution

2.5 Research Niche

Most of the research on Kubernetes and edge computing focuses on the utilization of re-
sources, load balancing, and scheduling. Despite being a crucial edge computing platform,
KubeEdge has yet to be extensively investigated for performance. There are few research
articles on KubeEdge for load balancing as shown in Table 1. The lack of research on
scheduling to enhance cluster performance for distributed edge nodes in KubeEdge util-
izing EdgeMesh appears in most studies discussing wider concerns. Previous approaches
include restricted alternatives like configuring request processing locally or given location
preferences. The goal of this research was to improve the throughput of the cluster using
EdgeMesh and a customized algorithm. Therefore, workload could be assigned to nodes
while considering latency due to node remote locations and weights considering resources.
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3 Methodology

This section outlines the research approach utilized to investigate the enhanced scheduling
of user requests to geographically scattered KubeEdge nodes.

Preliminary research on the enhancements of KubeEdge cluster has emphasized the
importance of scheduling all requests locally to avoid the delay due to traffic forwarding
to remote edge nodes Kim and Kim (2023). Though the local scheduling approach may
be beneficial in reducing delay due to traffic however may lead to underutilization of
remote nodes and overloading of local nodes. It is therefore crucial to consider more
than just local node and less than all remote nodes for processing to get efficient cluster
performance.

This research focuses on the significance of EdgeMesh in the data plane of the Ku-
beEdge cluster. EdgeMesh enables service discovery and traffic proxy functionalities and
assists in the management of intricate networks in edge computing. Sahni et al. (2017)
states that edge devices utilizing EdgeMesh coordinate with other nodes at the edge to
distribute the workload across all the nodes in the network. As depicted in Figure 1, an
EdgeMesh agent will be coupled to every node in the cluster, resulting in the formation
of a mesh network composed of geographically dispersed nodes.

Figure 1: EdgeMesh Agents on KubeEdge nodes

KubeEdge facilitates load balancing via EdgeMesh Kim and Kim (2023). Requests are
directed to the EdgeMesh agent followed by agent distributes the load to various nodes
by following the load balancing policies that are configured. Under the standard default
policy, the requests are evenly distributed among nodes that exist in the cluster. In the
case of random policy assigns requests to all nodes randomly. As the KubeEdge cluster
could contain the nodes at multiple locations, the inbuilt load balance policy neglects
the delays arising from traffic to these long-distance nodes, which negatively impacts the
cluster’s overall performance.

To address the potential drawbacks associated with default load balancing policies in
a KubeEdge cluster, it becomes necessary to improve and deploy a new load balancing
policy that considers factors such as latency and the computational capabilities of edge
nodes. The enhancement in load distribution can be achieved by using the available
metrics related to delay due to location and node utilization. To determine the appro-
priate destination for the user request, the load balancer necessitated the inclusion of
these required supplementary parametersNguyen et al. (2022). In this research, static
values of latency and weight are assigned to each available pod. The values mentioned
are utilized in the development of novel load-balancing policies. The rationale behind
assigning static values has its foundation in the understanding that latency increases for
nodes that are located further away, while nodes with higher processing capacity carry
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more weight. The proposed algorithm in this study uses these values for decision making
of load distribution.

The cluster performance of the experimental setup was evaluated using two key met-
rics: throughput and response time. Throughput refers to the rate at which a cluster
can process a certain number of tasks or requests processed within a given time frame.
Throughput provides insights into the cluster’s overall processing capacity and efficiency.
On the other hand, response time quantifies the time taken by the cluster to respond
to a specific task or request. It reflects the measurement of throughput involved in de-
termining the quantity of requests that were successfully processed within a one-second
timeframe. Meanwhile, the response time was assessed by calculating the average dur-
ation it took for individual requests executed by the edge node, considering the latency
incurred during forwarding.

HTTP traffic was generated by using the HEY tool, a widely recognized traffic gen-
erator and benchmarking tool 1. The proposed solution was evaluated by comparing
the throughput and response time metrics of the default architecture of KubeEdge and
EdgeMesh with the throughput and response time metrics of the enhanced solution.

4 Design Specification

The specifications and underlying architecture of the implementation are covered in this
section.

4.1 KubeEdge and EdgeMesh Architecture

KubeEdge has firmly established its place as a Kubernetes Native Edge Computing
Framework inside the CNCF ecosystem by achieving an Incubating maturity level.2 Ku-
beEdge architecture enables efficient edge computing by reducing transmission costs,
minimizing latency, and improving quality of service. Developers could construct applic-
ations using either HTTP or MQTT protocols and package them into containers for easy
deployment in both Edge and Cloud environments. KubeEdge seamlessly integrates with
Kubernetes. It allows users to orchestrate applications, manage devices, and monitor the
status of Edge nodes, like how they would do with traditional Cloud-based Kubernetes
clusters. KubeEdge enables seamless access to broad array of applications, which includes
complex machine learning, image recognition, and event processing. These applications
can be easily deployed and operated at the Edge.3

The two main modules of KubeEdge Edge and Cloud Core vary from the traditional
master-worker architecture of Kubernetes. This architecture manages network connec-
tions between edge nodes and the cloud and maintains sessions during breakdown periods.
Figure 2 illustrates the architectural framework of KubeEdge.

In addition to standard Kubernetes master node at cloud core, the Cloud Hub a web
socket server that communicates with EdgeHub, caches data and monitors changes in
the cloud. The Edge Controller, a Kubernetes controller that oversees the management
of edge nodes and the metadata of pods. This makes it possible to send data to specific
edge nodes. IoT devices data gets synchronised with the cloud via the device controller.

1Hey GitHub Repository: https://github.com/rakyll/hey
2CNCF KubeEdge Project: https://www.cncf.io/projects/kubeedge/
3Kubeedge: https://kubeedge.io/
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Figure 2: KubeEdge with Edgemesh Kim and Kim (2023)

EdgeD runs containerized applications on edge nodes and supports pod and event li-
fecycle management, authentication, CRI-container runtime support, and seamless work-
load deployment. EdgeD works with EdgeHub and manages Docker, containerd, and
CRI-O through the Container Runtime Interface on edge nodes. EdgeD supports several
container runtimes and allows resource-constrained edge nodes to install containerized
workloads for simple telemetry data processing to complicated analytics and ML. The
kubectl command line interface lets cloud users easily launch workloads. The edge hub
facilitates communication between the cloud and the edge, with a specific emphasis on
ensuring that updates made on the cloud side are synchronized with the edge. Addition-
ally, it serves to notify the cloud of changes that occur in the state of hosts as well as
devices located at the edge.

DeviceTwin facilitates the storage and synchronization of device status with the cloud,
while also offering query functionalities. EventBus functions as a MQTT client, providing
components and devices with the ability to publish and subscribe to events. MetaManager
acts as a mediator between edged and edgehub, facilitating the storage and retrieval of
metadata using a local lightweight database (SQLite). ServiceBus functions as a client
for HTTP that facilitates the connection between edge servers and the cloud.

EdgeMesh, an essential component of the cluster, acts as the data plane. It simpli-
fies service identification and enables traffic proxy functions for deployed applications.
The main purpose of edge mesh involves protecting applications from the complicated
network structures found in edge computing. In the KubeEdge cluster, edge nodes in
different areas often disconnect, and seamless communication between applications ex-
pected for critical business requirement. EdgeMesh provides a solution to this challenge
with lightweight, high availability & reliability capabilities Sahni et al. (2017).

EdgeMesh component proxier configures kernel iptables rules and intercepts request
to the EdgeMesh process.Edgemesh agent has built-in DNS resolver that translates DNS
requests on the node into service cluster IP. The LoadBalancer forwards requests to
backend instances using default load-balancing strategies. Metadata (e.g., Service, End-
points, Pod) obtained by accessing the Kubernetes or KubeEdge apiserver through con-
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troller. Tunnel helps utilization of automatic relay, MDNS, and hole punching to enable
communication across subnets.4

4.2 EdgeMesh Gateway

The Edge Gateway enables access to the internal services within the cluster via the gate-
way. It acts as an ingress gateway a traffic entry point that indirect incoming request to
the appropriate services within the cluster. The gateway handles traffic routing, load bal-
ancing, and SSL termination ensuring seamless and secure access to applications deployed
on the KubeEdge cluster. 5

4.3 Default Load balancing in KubeEdge

Load balancing evenly distributes the workload throughout the available resources. Pre-
cisely, it ensures uninterrupted operation in case of a resource downtime by efficiently
allocating resources and service instances. Load distribution reduces costs and directly
enhances system performance by decreasing task response time and increasing resource
utilization.

KubeEdge balances the load through EdgeMesh by allocating user requests to avail-
able pods. The node receives the request and forwards it to the edge mesh agent, that, in
accordance with the configured load balancing policy, eventually transmits the informa-
tion to the remote edge mesh agent. Round Robin and Random distribution are the two
policies are used in EdgeMesh as shown in below Figure 3.

Figure 3: KubeEdge default scheduling policies

Round-robin: In this policy user requests are distributed evenly among all pods. As
shown in Figure 3 - A, six pods of applications are deployed among three nodes 1, 2, and
3. Considering six user requests, all six requests distributed equally to each pod. First
and second to node 1, third and fourth to node 2 and fifth and sixth transmitted to node
3.

Random Distribution: The user requests are randomly distributed to any pod. As
presented in Figure 3 - B, the requests are transmitted to pods in random sequence. This

4EdgeMesh Docs: http://github.com/kubeedge/edgemesh
5EdgeMesh Gateway Docs: https://edgemesh.netlify.app/guide/edge-gateway.html
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algorithm generates a random number among a total available number of pods and the
requests get assigned to that pod.

4.4 Enhancement to default scheduling

The default load distribution policies reduce KubeEdge cluster performance due to the
delay due to forwarding user requests to geographically distributed edge nodes Kim and
Kim (2023). This delay exists due to latency in between the nodes. Also, the resources
may vary for the nodes. Therefore, enhanced scheduling necessary to improve the Ku-
beEdge cluster.

In this study, the researcher proposed a technique in which the latency, weight, and
number of previously assigned request count of nodes are considered. Also, the proposed
solution does not consider the all the pods available in cluster instead it selects the few
best pods in terms of latency and capacity to process the user requests.

Figure 4: selection of most suitable nodes

The latency of a node signifies the duration required to communicate with each en-
dpoint, whereas weights indicate the relative capability of each endpoint to process re-
quests. In determining which pods are optimal, the solution considers a few factors.
Initially, it determines top three pods that has the lowest latency, this ensures faster
communication. In situations where multiple pods are available with low latency, it con-
siders the weights and then lower request counters to determine the final endpoint for
routing the incoming request. The Figure 4 demonstrates the proposed solution.

The algorithm in Figure 5 aims to proportionally distribute requests in consideration
of latency, weights, and historical request counts. This mechanism assures a balanced
distribution of requests among the accessible endpoints. This mitigates the risk of in-
dividual nodes becoming overloaded and excludes those with higher latency that hinder
performance.

5 Implementation

This section provides a detailed description of the implementation process for the pro-
posed solution, which utilises EdgeMesh to improve the cluster efficacy of KubeEdge.
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Figure 5: Enhanced Algorithm

Starting with the setting up of a KubeEdge and EdgeMesh cluster was undertaken. Sub-
sequently, modules that require modification are identified and the necessary modifica-
tions are implemented to the EdgeMesh Agent and EdgeMesh Gateway. At the very end,
the performance evaluation was conducted by sending HTTP requests.

5.1 Experimental cluster

The implementation started with setting up the KubeEdge cluster to study the default
behavior and identify how it works. The researcher established the starting point for this
study by creating a KubeEdge cluster comprising three edge nodes and one master node
on a local system using virtual instances. Master node was deployed with Kubernetes
(K8) ecosystem that includes docker (v24.0.6), kubelet(v1.21.1-00), kubeadm (v1.21.1-00
) and kubectl (v1.21.1-00). K8 initialized at master node using kubeadm init and then
the latest KubeEdge (v1.11.3) was installed 6. The keadm (KubeEdge) initialized with
advertising local IP. The token was generated at master node which was used to connect
the edge nodes.

At edge nodes, like master node, docker (v24.0.6) and latest KubeEdge (v1.11.3)
installed. The edge node was connected to master node by using keadm join along with
the advertised master node IP and token to connect generated at master node.

For EdgeMesh, cloned the latest repo of EdgeMesh 7 and applied the crds and re-
sources from build for EdgeMesh agent and gateway both. The sample web application
was installed on master with the six instances. The configurations were made to make

6KubeEdge: https://kubeedge.io/
7EdgeMesh: https://edgemesh.netlify.app/
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the sample application URL accessible outside of VMs. For the purpose of evolution, the
hey tool was installed on the local system.

5.2 Enhanced Scheduling

EdgeMesh performs load balancing, Utilising an Istio DestinationRule within the service.
Kim and Kim (2023) The default load balancer implementation and implemented policies
exist in edgmesh/pkg. For this research, the implementation of a random load balancer
was modified. The method called ‘pick’ from ‘policy.go’, which gives the endpoint from
the available endpoint was modified with enhanced code with two additional methods
that gives the lowest latency endpoints, and out of those lowest latency endpoints, the
highest weight with the lowest request counter endpoint was returned.

The MakeFile was updated with the personal docker repo name to make a docker
build. The docker build was made once the load balancer code was modified. The
docker file of build/agent/docker file and build/gateway/docker file are updated to include
the pkg/loadbalancer changes. The deployment.yaml of agent and daemonset.yaml of
gateway updated with an image of personal docker hub locations. After these changes
the researcher made the images locally and pushed to the docker hub.

To apply these custom changes at master node, from the cloned repo of EdgeMesh
deployment.yaml of agent and daemonset.yaml of gateway at build/resources are updated
with the personal docker hub locations and so that the newly modified changes are de-
ployed to master node. Once these changes are modified the yaml files build/agent/resources/
and build/gateway/resources/ are applied. The sample http application was installed
with the six pods, and the response to curl was the pod from where the request was
served. The test application URL was used with the Hey tool for evaluation.

6 Evaluation

This section evaluates the KubeEdge experimental setup and solution described above.
The performance of KubeEdge was measured by the average response time and the re-
quests per second processed with increasing concurrent requests. The system was evalu-
ated by comparing the default (random) and enhanced load-balancing strategies.

The researcher evaluated the setup containing one master node and three edge nodes
with six pods deployed between three nodes. The sample application URL was given
to HeyTool 8, which sends HTTP requests to the URL and provides results. The result
contains a response time histogram, latency distribution, and summary. The average
response time and Request/sec are the only two results considered for the evaluation
from the summary section.

The requests are gradually increased, from 100 requests with 50 concurrent to 800 re-
quests with 400 concurrent. Below are the details of the default and enhanced scheduling
evaluation.

6.1 Default (Random) Load Balancing Strategy

The random distribution Figure 6 shows the positive relation between the number of
requests and average response time. As the number of requests increases, the average

8Hey Tool: https://github.com/rakyll/hey
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Figure 6: Random-Avg Response time Figure 7: Random-Requests Per Second

response time increases, which results in more time to finish the tasks when the system
receives more requests. The system’s performance may degrade under a higher load, pos-
sibly due to various reasons, such as resource limitations and traffic distribution between
all nodes, resulting in network congestion. The random distribution Figure 7 shows the
negative relation between the number of requests and requests processed per second. As
the number of requests increases, the throughput decreases, which results in more time
to finish the requests. The system’s performance slowly degrades under a higher load. A
downward trend in the number of requests processed per second indicates that the system
could not effectively handle large requests.

6.2 Enhanced Load Balancing Strategy

Figure 8: Enhanced-Avg Response time Figure 9: Enhanced-Requests Per Second

Though Figure 8 demonstrates the positive relation between the number of requests
and average response time, but it shows the sudden rise in average response time for
requests after 400. The average response time gradually increased for 100 to 400 requests.
After 400 requests, the average response time starts to increase more rapidly. Similarly,
for Figure 9, demonstrates that after a gradual increase in requests processed per second
for 100 to 400, the sudden drop in number of requests per second was noticed for 400 to
800.

The possible reason for the sudden increase in response time and sudden decrease
in requests per second was that only the top three (50% of total) low-latency nodes
were shortlisted for transferring the request. This threshold could be used to adapt the
performance based on system requirements.
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6.3 Default VS Enhanced

As indicated in Figure 10, the average response time for both the default and enhanced
systems increases with the number of requests. The enhanced system displays a reduced
average response time in all request counts compared to the default system. The results
indicate that the enhanced system surpassed the default regarding request processing
speed. The difference in average response time between the two systems becomes more
noticeable as the volume of requests escalates, indicating that the scalability of the new
system excels that of the default system.

Figure 10: Random v/s Enhanced Avg Re-
sponse Time

Figure 11: Random v/s Enhanced Request
Per Second

Additionally, the enhanced system outperformed the default system in terms of effi-
ciency by utilizing fewer pods to process requests. The default system could only process
800 requests in an average of 4.5983 seconds of response time, whereas the enhanced
system could process 800 requests in 1.5209 seconds of average response time. Results
indicate that even though requests are processed on limited pods, the enhanced system
could process requests three times faster than the default system.

As shown in Figure 11, as the number of requests increases and the response time
for both systems increase. However, the enhanced system consistently outperforms the
default system regarding requests per second (RPS). At the beginning, for 100 requests,
the enhanced system processes 201.4433 requests per second, while the default system
processes 205.1604 requests per second, with a difference of 1.84% improvement. The
RPS gap becomes even more evident when more requests are processed. The requests
per second for the enhanced system was 352.3394 when handling 400 requests, whereas
the default system processed 96.0869 requests per second, resulting in a 267.98% enhance-
ment.

However, the RPS of the enhanced system stands at 123.2200 seconds when 800
requests are processed, whereas the response time of the previous system is 65.3675
seconds. The results showed 88.46% better performance. The result of 800 requests was
decreased as compared to 400 requests. This drop might be because the requests are not
processed on each pod on the cluster; those are processed on limited pods that are the
most suitable as expected.
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6.4 Discussion

The cluster throughput has an impact on geographically distributed edge nodes. Utilizing
all the nodes to complete all the requests results in a delay in processing all requests. The
scheduling of requests can be adjusted to improve this delay. The existing system uses all
the nodes by default, and the previous studies show that using all the nodes downgrades
cluster performance.

Utilizing a single node was an option to execute all the requests, but this could result
in over-utilizing a single node and under-utilizing other nodes. The waiting for task
execution may be more than the actual latency of executing the tasks on remote nodes.
This study has attempted to utilize the most suitable nodes based on certain factors,
resulting in better performance than the default mechanisms. Certain factors are used
as static values; however, these values could be dynamically assessed in the future.

7 Conclusion and Future Work

This study investigated the effects of improved scheduling on cluster throughput in the
KubeEdge cluster that are affected because of traffic distribution across geographically
distributed edge nodes. Scheduling algorithm requires prioritizing low-latency nodes and
higher weights for optimal performance. The main objective was to evaluate how new
scheduling improves cluster performance compared to default. This study suggests an
enhanced scheduling strategy for KubeEdge which prioritizes low-latency nodes and op-
timizes request distribution with weights. The results of the evaluation demonstrated that
enhanced scheduling surpassed default scheduling in throughput based on response time,
and requests per second. The average response time had an improvement of approxim-
ately 33%, while the number of requests processed per second increased by approximately
94%. As a result, the overall cluster throughput improved by nearly 63.5%. This im-
provement was achieved by strategically selecting nodes based on factors such as latency,
weight, and historical request counts.

The study uncovered that selecting a small number of optimal nodes can improve
performance up to a certain threshold. However, for subsequent requests, the performance
may be slightly degraded. Nevertheless, this approach was still better than using the
default scheduling method. The proposed solution has potential usefulness in IoT device
management solutions that employ custom scheduling to efficiently distribute requests
among edge nodes, thereby ensuring the reliability and responsiveness of IoT applications.

A potential future research includes the use of dynamic parameters that consider the
changing network conditions to determine the latency of nodes and adjust weights to
nodes based on their previous performance. Traffic patterns can be incorporated into the
scheduling algorithms to optimize the distribution of requests and reduce the congestion
in specific nodes.
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