
Evaluating Distance Based Pareto Genetic
Algorithm for Task-Offloading in

Edge-Fog-Cloud Systems

MSc Research Project

Cloud Computing

Muralikrishnan Vijayan Nambiar
Student ID: 21195757

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Muralikrishnan Vijayan Nambiar

Student ID: 21195757

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 14/12/2023

Project Title: Evaluating Distance Based Pareto Genetic Algorithm for
Task-Offloading in Edge-Fog-Cloud Systems

Word Count: 4492

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 20203

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Evaluating Distance Based Pareto Genetic Algorithm
for Task-Offloading in Edge-Fog-Cloud Systems

Muralikrishnan Vijayan Nambiar
21195757

Abstract

In the ever-changing world of the Internet of Things (IoT), effectively handling
resource-constrained Edge-Fog-Cloud (EFC) systems is critical. This research in-
vestigates the use of the Distance-Based Pareto Genetic Algorithm (DBPGA) for
task-offloading in such situations, tackling a difficult NP-complete problem that has
largely remained unaddressed in existing literature. The significance of this study
comes in its investigation of a novel technique to improve task-offloading efficiency,
a vital feature in the performance of IoT systems. The research results show that
the DBPGA outperforms the traditional Genetic Algorithm (GA) in optimising
task offloading in smaller datasets across many workflows. The discovery is essen-
tial because it presents an effective technique for controlling IoT applications in fog
computing, which is particularly valuable in enhancing task-offloading efficiency.
However, the research reveals challenges with processing larger datasets, indicating
the critical need for further improvements in the DBPGA’s scalability and adapt-
ability. This research not only contributes to the field by addressing a previously
unexplored area, but it also establishes a new avenue for future research to improve
computing efficiency in varied EFC systems, an important issue in the IoT domain.

1 Introduction

The expansion of the Internet of Things (IoT) in the modern digital world has ushered in
a new era of data-driven devices, profoundly embedding them in our daily lives Martinez
et al. (2021). This rise in data collection and transmission, while invaluable, creates new
obstacles, particularly when real-time processing and low latency become critical. Fog
computing emerges as a possible solution, bridging the gap between IoT devices and
remote cloud data centres by relocating computation closer to the data source Bonomi
et al. (2012).

1.1 Background and Motivation

The fast growth of Internet of Things devices has resulted in an exponential growth in
data generation. While traditional cloud computing models are effective for large-scale
data processing, they frequently suffer from latency concerns, especially when real-time
answers are required Karamoozian et al. (2019). This is where fog computing comes
in, with its decentralised computing structure that puts computation closer to the data
source, lowering latency Yousefpour et al. (2019).

1



However, integrating fog computing into the IoT ecosystem is not without challenges.
One of the most serious concerns is task scheduling, which entails deciding the order,
timing, and location for completing tasks in a dynamic environment Hosseinzadeh et al.
(2023). Task scheduling is a challenging issue to resolve because of the unexpected nature
of IoT devices, the variety of processing demands of jobs, and the dynamic availability of
fog nodes Taneja and Davy (2017).

The fundamental impetus for this research is the complexity of the problem and the
pressing need for efficient solutions. A promising solution to these problems is provided
by genetic algorithms, which are motivated by the ideas of natural selection Madhura
et al. (2021). Their adaptability and capacity to identify optimal or near-optimal solu-
tions in difficult contexts make them particularly suitable to the dynamic world of IoT
and fog computing. While a variety of algorithms have been proposed to address these is-
sues, the potential of distance-based Pareto genetic algorithms (DBPGA) remains largely
unexplored for task scheduling in EFC Guerrero et al. (2022).

1.2 Research Question

The central research question of this study is:
”How effectively does the Distance-Based Pareto Genetic Algorithm optimize task

offloading in resource-constrained Edge-Fog-Cloud environments?”

1.3 Document Structure

This research is organized systematically to ensure a thorough comprehension of the sub-
ject. The literature review in Section 2: Related Work highlights the present state of
research in the Edge-Fog-Cloud paradigm. Section 3: Methodology describes the re-
search methods and experimental design. Section 4: Design Specification describes the
structure of the algorithm, whereas Section 5: Implementation addresses its practical
implementation. Section 6: Evaluation analyses the findings and their consequences,
and Section 7: offers concluding thoughts and prospective options for further investig-
ation.

2 Related Work

In the present digital era, the IoT has integrated itself into every aspect of our everyday
lives, resulting in a new growth of data-generating and data-transmitting devices. While
this large sea of data is invaluable, it also presents new obstacles, particularly when real-
time processing and minimal latency are required. Fog computing is a concept that aims
to connect IoT devices to remote cloud data centres by moving computation to the edge
and closer to the source of the data.

The survey by Martinez et al. (2021) provides a fascinating examination of the com-
plexities of resource design in the context of the IoT ecosystem. While it’s easy to dismiss
resource allocation as a logistical issue, the study emphasises its strategic significance. In
the dynamic and ever-changing world of IoT, where devices can be as unpredictable as
they are many, having a robust and flexible resource allocation strategy is critical.

Fog Computing, as discussed in Bonomi et al. (2012), isn’t just a trendy term, it’s a
radical new way of thinking about data processing in a future where IoT dominates. Fog
Computing solves the pressing issues of latency and real-time processing by acting as an

2



interconnect between IoT devices and cloud data centres. But it comes with its own set
of difficulties, just like any paradigm change.

The FOGPLAN framework by Yousefpour et al. (2019) is proof that creative solutions
are being created in the industry. Allocating resources is important, but it’s also import-
ant to do so in a way that simultaneously balances user needs with system constraints.
This balance is essential, especially in light of the many and frequently conflicting re-
quirements of various IoT applications.

However, there are several challenges involved in integrating fog computing into IoT.
As pointed out by Karamoozian et al. (2019), while the potential benefits are numer-
ous, including improved system performance and greater user experiences, the challenges
are equally daunting. The road to complete integration is filled with challenges, from
establishing seamless communication between devices to maintaining data integrity.

Even though it sounds simple, resource allocation is the key to solving these prob-
lems. Taneja and Davy (2017) examines this topic in-depth and emphasises the need
for a resource-aware strategy. In a world where resources are limited but needs are
unlimited, techniques that prioritise both system restrictions and user expectations are
necessary. The Priced Timed Petri Nets (PTPNs) approach by Ni et al. (2017) offers a
novel viewpoint on this problem. It emphasises a basic fact in the field of Fog Computing
by allowing users to autonomously select resources based on a variety of characteristics
such as cost, time, and credibility.

The following sections will explore more into task offloading, recognising its signific-
ance and the difficulties it creates in the EFC.

2.1 Task Scheduling in the Edge-Fog-Cloud Continuum

The complex environment of task scheduling in fog computing becomes clear as one
builds upon the fundamental knowledge of resource allocation. The vast complexity and
amount of jobs in the IoT ecosystem need an in-depth approach to scheduling. It involves
carefully choosing the order, time, and location of job execution in a dynamic and unpre-
dictable environment, in addition to allocating resources. The task scheduling issue in
fog computing is intrinsically complex because of the varied computational requirements
of IoT tasks and the dynamic availability of fog nodes, as mentioned in Hosseinzadeh
et al. (2023).

Traditional scheduling systems, while effective to some level, frequently struggle to
address these diverse difficulties. While priority-based mechanisms, as discussed in Alad-
wani (2019), have been useful in scenarios where tasks have varying levels of urgency,
the dynamic nature of IoT applications frequently renders static priority assignments
insufficient. Xu et al. (2021) on the other hand, introduces ways that focus on the cap-
abilities and availability of fog nodes, providing adaptability but potentially confined by
the limited processing resources at the edge.

Another critical component is balancing cost and performance. Because fog computing
is frequently used in conjunction with cloud resources, algorithms that can skillfully
combine the reduced latency given by edge processing with the computational prowess of
the cloud are in high demand. Movahedi et al. (2021) research explores hybrid techniques,
aiming for a harmonious task distribution that harnesses the capabilities of both the fog
and cloud paradigms.

The limitations of conventional heuristic approaches become clear. Although system-
atic, these solutions frequently lack the adaptability required to effectively deal with the

3



ever-changing and unexpected landscape of IoT and fog computing. Madhura et al. (2021)
emphasises this realisation and ushers in the investigation of meta-heuristic techniques,
most notably genetic algorithms. Adaptability and evolution are introduced to the work
scheduling problem by genetic algorithms, which are motivated by natural selection and
genetic principles. They can evolve to discover optimal or nearly optimal solutions in
complicated, dynamic environments because they are not constrained by the rigidity of
conventional algorithms.

2.2 Task Scheduling with Genetic Algorithms

The survey paper by Guerrero et al. (2022) highlights the potential of GA’s in tackling
the issues provided by the dynamic nature of IoT systems. GA’s iterative and adaptive
nature enables them to navigate the challenges of the IoT ecosystem, where jobs have
varying processing requirements and fog nodes have dynamic availability.

Recent research has focused on improving service quality in fog computing. For ex-
ample, Akintoye and Bagula (2019) to improve the quality of service in fog computing,
evolutionary algorithms were used to strike a compromise between real-time processing
demands and fog node constraints. But this balance isn’t just about effectiveness. As
the complexities of fog computing environments expand, so do the cost consequences of
task scheduling. Nikoui et al. (2020) looked into a cost-aware approach to work schedul-
ing and emphasised the ability of genetic algorithms to manage the trade-offs between
performance and economic viability.

This domain has a wide range of issues. Given the unpredictable behaviour of IoT
devices, as well as the complex nature of jobs, novel solutions are required. These diffi-
culties are explored Nguyen et al. (2019), which offers an evolutionary approach to task
scheduling. The research highlights the potential of genetic algorithms in tackling the
dynamic nature of IoT systems, emphasising the necessity for a scheduling mechanism
that can adjust in real time to the changing demands of IoT devices and workloads.

Building on this, Skarlat et al. (2017) focuses on the optimised scheduling of IoT tasks
under fog computing. The research demonstrates the ability of evolutionary algorithms
to provide solutions adapted to the unique challenges posed by IoT contexts. It presents
a framework that not only ensures effective task execution but also dynamically adjusts
to changing computing requirements and resource availability in fog nodes.

The versatility of evolutionary algorithms is further demonstrated by considering their
implementation in various computing contexts. Genetic algorithms were crucial in identi-
fying the best task-offloading solution in the setting of bus networks, where Ye et al.
(2016) developed a scalable fog computing paradigm. Vorobyev (2019) investigated the
combination of mathematical models and evolutionary algorithms, providing a robust
mechanism to optimise distributed systems based on cloud and fog technologies.

While genetic algorithms provide a strong mechanism for optimising job allocation,
their emphasis on a single goal can sometimes be a constraint. This is especially apparent
while handling the multifaceted problems of modern computing configurations. Such
difficulties highlight the approaching need for a more holistic approach, one that can
address various, often conflicting, goals.

4



2.3 Multi-objective Genetic Algorithms for Enhanced Task Schedul-
ing

The need for algorithms that can simultaneously optimise numerous objectives becomes
more and more obvious as the complexities of task scheduling in the IoT and fog comput-
ing landscape continue to develop. Multi-objective genetic algorithms (MOGAs) stand
out as a viable answer to this complicated problem.

The hybrid heuristic technique by Hussain and Begh (2022) exhibits MOGA adapt-
ability. The study proposes a revised strategy to optimise service composition in cloud
environments by integrating a local search technique with a MOGA. This strategy, which
takes into account several objectives such as cost, time, and reliability, demonstrates MO-
GAs’ capacity to create Pareto-optimal solutions that respond to diverse criteria while
maintaining efficient service delivery.

The ”MOTORS” system, described byShukla and Pandey (2023), uses MOGA to
optimise both risk and time constraints in the context of mobile edge computing. This
dual-objective strategy not only ensures that offloading decisions are made on time but
also reduces the chance of task execution failure, addressing the dynamic and unpredict-
able nature of mobile edge computing.

Mokni et al. (2023) emphasises the adaptability of MOGAs in cloud computing even
further. The study highlights the capacity of MOGAs to find a wide collection of Pareto-
optimal solutions while adjusting to the dynamic demands of cloud settings by focusing
on minimising both makespan and total cost.

When it comes to real-time systems, Agarwal et al. (2023) emphasises the problem of
minimising task-blocking time. The research adds a new dimension to the discussion by
introducing two unique multiprocessor real-time locking methods. However, the flexibility
of these protocols to change task priorities and workloads requires more investigation.

Aoudia et al. (2020) deftly explores the complex link between QoS and Fog-IoT com-
puting. The research proposes a sophisticated approach to service composition by com-
bining a 5-layered fog computing architecture with a multi-population genetic algorithm.
However, the real-world applicability of this 5-layered architecture and the effectiveness
of the genetic algorithm across varied IoT contexts remain subjects of interest.

While the works described have shed light on MOGAs’ capabilities in task schedul-
ing, one important path remains unexplored: distance-based Pareto genetic algorithms
(DBPGA). DBPGA provides a more diversified and flexible optimization strategy as in-
troduced in Ghosh and Dehuri (2004) by prioritising solutions based on their physical
proximity in the solution space, which is especially important in the unpredictable set-
tings of IoT and fog computing. The current literature’s limited examination of DBPGA
highlights the necessity for this research, which aims to fill this gap and provide a more
detailed view of the issues of task offloading in EFC.

3 Methodology

3.1 Simulation Environment

The simulation environment was created with the help of the FogWorkflowSim toolkit
Liu et al. (2019), which is well-known for its ability to simulate and analyse workflow
performance in the fog computing ecosystem. This toolkit represents fog computing
behaviour effectively by allowing the configuration of diverse computational resources

5



across the edge, fog, and cloud levels. The resources of each layer were thoroughly
established, with specific processing and storage capacities to effectively imitate real-world
conditions. The environment was calibrated for studies to mimic a variety of operational
situations, such as changing network latencies and resource availability, mirroring the
difficulties encountered in true fog computing deployments. The DBPGA was integrated
within this virtualized environment, allowing for careful comparison of its performance
to that of the GA under equivalent and repeatable settings, ensuring the dependability
of the comparison study.

3.2 Development and Implementation of DBPGA

The DBPGA algorithm has been developed in Java and implemented in the FogWork-
flowSim environment for comparison with the traditional GA. The goal of the comparative
research was to evaluate the efficiency of DBPGA in a controlled simulated environment
while providing consistent settings to validate the algorithms’ performance.

3.3 Workflow Datasets

The simulation used five standardised scientific workflows to test the systems’ resource
allocation capabilities Shukla and Pandey (2023):

Figure 1: Structure of scientific workflows: (a) Montage, (b) CyberShake, (c) Epigenom-
ics, (d) Inspiral, (e) SIPHT

• Montage: An astronomical image mosaic workflow, varying from 20 to 300 tasks.

• CyberShake: Earthquake hazard modelling workflow, ranging from 30 to 1000
tasks.

6



• Epigenomics: Genome sequence analysis workflow, with task counts from 24 to
997.

• Inspiral: Gravitational wave detection workflow, involving 30 to 1000 tasks.

• Sipht: RNA sequence annotation workflow, consisting of 29 to 968 tasks.

These workflows were chosen to cover a wide range of computing and data processing
needs, from light to intensive.

3.4 QoS Metrics and Performance Evaluation

The performance of the DBPGA was thoroughly evaluated in a fog computing envir-
onment by applying a QoS metrics model that captures multiple aspects of workflow
execution. These criteria were used to guarantee that the algorithm achieves a balance
between computing efficiency and resource management, both of which are important in
resource-constrained systems as mentioned by Shukla and Pandey (2023).

3.4.1 Makespan

Makespan is defined as the amount of time required to complete all tasks in a workflow.
It is an important indicator of a scheduling algorithm’s temporal efficiency. Makespan’s
mathematical model for a workflow G is given by:

M = max(DF (Ti))

where Ti denotes the ith task in the workflow and DF (Ti) represents the execution
finish time of task Ti.

3.4.2 Cost

The total cost measure reflects the whole cost of completing a workflow. This covers both
the computational cost and the cost of data transfer between machines. The cost C is
determined as follows:

C =
n∑

i=0

n∑
j=0

(DF (Ti) · Uj) +
n∑

i=1

n∑
j=1

(Cwij · CTRij)

Here, DF (Ti) is the execution completion time of task Ti, Uj is the cost per unit time
of the VM j processing task Ti, Cwij is the connection weight between tasks Ti and Tj,
and CTRij is the cost of data transfer between machines where Ti and Tj are mapped.

3.4.3 Energy Consumption

The energy consumption is made up of active and idle energy components, which are
indicated by Eactive and Eidle, respectively. The active energy component, which refers
to the energy expended while executing a task, is represented by:

Eactive =
n∑

i=1

αf 2
i (vi − vmini

)

7



where α is a constant, fi represents the frequency, and vi and vmini
represent the

supply voltage for the resource on which task i is being performed. The idle energy
component, which accounts for energy consumed by idle resources, is calculated using:

Eidle =
n∑

j=1

∑
k∈IDLEjk

αf 2
minj

Ljk

with IDLEjk being the set of all idle slots of resource j, fminj
and vminj

as the lowest
supply voltage and frequency of resource j, and Ljk as the amount of idle time for idlejk.
The total energy consumption (E) during the execution of tasks is the sum of active and
idle energy components:

E = Eactive + Eidle

3.4.4 Resource Utilization Factor

RUF is a metric that measures how effectively a scheduling strategy utilises virtual ma-
chines (VMs) by giving the maximum workload to each while remaining within the re-
source utilisation threshold. It is defined as follows:

RUF =
Workload

Resource Utilization Threshold

The most effective scheduling technique employs the fewest amount of VMs, increasing
the RUF value and enhancing the system’s energy efficiency.

4 Design Specification

4.1 Algorithm Overview

Over the EFC continuum, DBPGA is designed to optimise task offloading solutions with
an emphasis on three key performance metrics: cost, energy, and time. DBPGA was
introduced by Ghosh and Dehuri (2004).

4.2 Algorithmic Steps

1. Initialization:

• Generate an initial population of solutions randomly or based on heuristic
information.

• Each solution encodes a potential task offloading strategy within the EFC
system.

2. Fitness Evaluation:

• Evaluate each solution using the FogWorkflowSim’s integrated metrics for
time, energy, and cost.

• Assign a fitness score based on how well each solution meets the objectives,
with lower scores indicating better performance.

8



Figure 2: Flowchart of Distance Based Pareto Genetic Algorithm (DBPGA)

3. Distance-Based Pareto Sorting:

• Sort the population into different levels of Pareto fronts. The first front con-
tains non-dominated solutions, while subsequent fronts are formed by removing
the previous fronts and repeating the process.

• Calculate the distance between solutions within the same front to maintain
diversity, typically using the Euclidean distance in the objective space.

4. Selection:

• Select solutions for reproduction based on their ranking and distance. Solu-
tions that are non-dominated and have greater distances from others are pre-
ferred.

9



5. Crossover:

• Pair selected solutions and perform crossover to produce offspring. The cros-
sover can be single-point, multi-point, or uniform, depending on the chosen
strategy.

• Offspring inherit characteristics from both parents, which promotes the com-
bination of effective strategies from different solutions.

6. Mutation:

• Apply mutation to the offspring at a predetermined probability rate. This
introduces random changes and helps explore new areas of the solution space.

• Mutation can adjust individual task offloading decisions within a solution,
allowing the algorithm to escape local optima.

7. Termination:

• Check for the termination condition, which could be a set number of genera-
tions, a convergence criterion, or a satisfactory fitness level.

• Once the termination condition is met, the algorithm concludes, presenting
the final set of Pareto-optimal solutions.

4.3 Algorithm Pseudocode

Input:

• A workflow of tasks T = {t1, t2, . . . , tn} represented as a Directed Acyclic Graph
(DAG)

• A set of resources R = {r1, r2, . . . , rm} in the EFC system

• The number of generations G

• The population size P

Output:

• A set of Pareto-optimal offloading decisions

1. Initialization:

• For each task ti in T , assign it to the resource rmin that minimizes the finish
time of the task:

– For each resource rj in R, calculate the finish time FTij of task ti if it is
assigned to resource rj:

FTij = max(FTlast(rj), STi) + ETij

– Find the resource rmin that minimizes the finish time of task ti:

rmin = argmin(FTij) for all rj ∈ R

10



– Assign task ti to resource rmin:

di = rmin

• Repeat the above process P times to create an initial population of offloading
decisions D = {D1, D2, . . . , DP}

2. Fitness Evaluation:

• For each decision Di in D, calculate its fitness Fi based on the objectives:

Fi = w1 ·MSnorm(Di) + w2 · TCnorm(Di) + w3 · TEnorm(Di)

• Determine the set of elite decisions E from D that are non-dominated

• Calculate the maximum fitness value Fmax among the elite decisions:

Fmax = max(Fi for all Di ∈ E)

3. Selection, Crossover, and Mutation:

• Perform selection, crossover, and mutation operations on the population to
generate a new population:

– Selection: Use the crowded tournament selection operator to select de-
cisions for the next generation

– Crossover: Combine two decisions to generate two new decisions

– Mutation: Alter one or more elements of a decision to generate a new
decision

4. Elitism:

• Assign the maximum fitness value Fmax to all elite decisions:

Fi = Fmax for all Di ∈ E

5. Termination:

• If the maximum number of generations G is reached, stop the algorithm and
return the set of elite decisions E as the set of Pareto-optimal offloading de-
cisions

• Otherwise, go back to the fitness evaluation step

5 Implementation

5.1 Integration of DBPGA into FogWorkflowSim

The successful integration of the DBPGA into the FogWorkflowSim simulation tools
marked the start of the implementation phase. The DBPGA, written in Java, was de-
signed to expand FogWorkflowSim’s existing capabilities by allowing a detailed compar-
ison with its in-built GA under a range of task-offloading strategies.

11



5.2 Core Functionalities

The basic capabilities of the DBPGA were managing a set of elite decisions, each captur-
ing the best-found solutions in terms of time, energy, and cost, as well as an associated
fitness value. These elite decisions are critical in leading the algorithm to optimal offload-
ing solutions across various workflows and scenarios.

5.3 Adaptive Optimization Process

The programme contains an adaptive optimisation approach that alters the fitness eval-
uation of possible solutions dynamically based on their proximity to previously selected
elite decisions. This mechanism enables a continual learning approach, which improves
the algorithm’s capacity to navigate the complicated optimisation of fog computing.

5.4 Outputs of the DBPGA

The implementation of the DBPGA produced numerous key outputs required for per-
formance evaluation. These outputs include workflow makespan, the total energy utilised
by the data centres, and the overall cost of performing the operation. The programme
also produced a breakdown of task offloading distribution, indicating the number of tasks
offloaded to the cloud, fog, and mobile devices. These results were critical in determining
the DBPGA’s multi-objective optimisation capabilities.

5.5 Performance Metrics

• Workflow Makespan: The total time taken to complete the entire set of tasks
within the workflow.

• Energy Consumption: The total energy consumed by the computing resources,
particularly within the data centers during task execution.

• Cost Efficiency: The total cost incurred from executing the workflow, which
includes computational and data transmission expenses.

5.6 Development Environment

The DBPGA was developed in Java in an integrated development environment fogwork-
flowsim that allowed for thorough testing and iterative refining. The environment allowed
for the modelling of multiple task offloading schemes, allowing the DBPGA to be com-
pared to specified performance benchmarks.

6 Evaluation

6.1 Overview

The evaluation phase compared the performance of the DBPGA to the standard GA
across diverse scientific workflows. The focus was on comparing average algorithm execu-
tion time while maintaining consistency in other parameters such as Workflow Makespan,

12



Energy Consumed, and Total Cost. The insights gained from this analysis will be crit-
ical for determining the DBPGA’s efficacy in optimising task execution in fog computing
environments.

The comparative analysis used statistical methods to determine the significance of
the differences discovered between the DBPGA and GA. This evaluation ranged from 20
to 1000 rows, representing varied complexities within the Montage, Cybershake, Epigen-
omics, Inspiral, and Sipht workflows.

Figure 3: DBPGA vs GA for Montage

Figure 4: DBPGA vs GA for Cybershake

13



Figure 5: DBPGA vs GA for Epigenomics

Figure 6: DBPGA vs GA for Inspiral

14



Figure 7: DBPGA vs GA for Sipht

Figure 8: DBPGA vs GA plotted for all datasets

15



6.2 Montage Workflow

In the Montage workflow, the DBPGA significantly reduced the average algorithm exe-
cution time when compared to the GA. This efficiency is especially notable for smaller
datasets, where the DBPGA outscored the GA by up to 29%, implying an improved
optimisation process for less complex task executions. Figure 3 shows the number of
dataset rows to the algorithm execution time graph.

6.3 Cybershake Workflow

For the Cybershake workflow, the DBPGA provided improved time efficiency, but less
noticeable as the dataset size increased as seen in figure 4. This pattern could reflect
the DBPGA’s ability to manage energy-intensive operations, which is important for fog
computing applications that prioritise energy conservation.

6.4 Epigenomics Workflow

In the context of the Epigenomics workflow, the DBPGA consistently outperformed the
GA, with the difference in execution time increasing as the dataset size increased as
seen in figure 5. This signifies the DBPGA’s better scalability and capacity to handle
large-scale genomic data processing.

6.5 Inspiral Workflow

As per figure 6 the findings were similar for the Inspiral workflow, with the DBPGA
exhibiting small gains in execution time. This implies that, while the DBPGA is optim-
ised for time-critical processes, its advantages are nuanced and vary depending on the
computational demands of the activities.

6.6 Sipht Workflow

The Sipht workflow, which is distinguished by complex data dependencies, highlighted
the DBPGA’s time efficiency. Despite the complexities required, the DBPGA successfully
reduced execution time, demonstrating its robustness in addressing complicated data
processing tasks which is evident in figure 7.

6.7 Discussion

The experimental research, the DBPGA, demonstrated varying performance across di-
verse processes, offering insights into its efficiency and scalability. The DBPGA performed
well in the Montage workflow, particularly in smaller datasets (20 and 40 rows), where it
displayed a considerable reduction in average algorithm execution time. This efficiency
demonstrates the DBPGA’s ability to handle jobs with low computational complexity.
However, as the complexity of larger datasets, such as the 300-row Montage, the perform-
ance benefits became less noticeable, implying a possible loss in efficiency as complexity
increased.

A similar pattern was observed in the Cybershake workflow, where the DBPGA im-
proved in smaller datasets but lagged behind the GA in the 1000-row dataset. This raises

16



concerns about the DBPGA’s ability to scale efficiently for large and computationally in-
tensive tasks. In the Epigenomics workflow, on the other hand, the DBPGA consistently
outperformed the GA across all dataset sizes, including the largest dataset of 997 rows.
This consistency indicates that the DBPGA is well-suited for data-intensive procedures
like those encountered in genomic studies.

The Inspiral and Sipht workflow, on the other hand, provided a mixed picture. While
the DBPGA’s performance advantage reduced as dataset sizes grew larger, it still out-
performed the GA in certain large-scale cases, most notably the Sipht workflow. These
findings imply that the efficiency of the DBPGA may vary depending on the type and
complexity of the workflow. Figure 8 shows the plot for DBPGA and GA for all the
datasets.

In short, the DBPGA excels at optimising execution time for less complex jobs but
struggles to maintain this efficiency when dealing with larger, more complex datasets. Its
performance in genomic data processing is a particular strength, although its scalability
in handling very big datasets in certain workflows needs additional investigation and
improvement.

7 Conclusion and Future Work

The research effectively showed that the DBPGA may be used to optimise task scheduling
in EFC systems. In smaller datasets across diverse workflows, the DBPGA consistently
outperformed the traditional GA, demonstrating its potential to improve computational
efficiency in less complex environments. Its performance in these situations proves its
importance and use in fog computing, particularly for applications requiring speedy and
efficient processing. While the DBPGA’s performance advantage was less apparent in
larger datasets, it nonetheless retained a competitive advantage, indicating its adaptab-
ility and potential for optimisation in a wide range of computational workloads. These
findings validate the DBPGA’s position as a helpful tool in task scheduling, providing
significant improvements in execution time efficiency.

Future research will focus on improving the adaptability and scalability of the DBPGA,
particularly for larger and more complicated workflows. This entails improving the al-
gorithm so that it can dynamically modify its strategies based on the size and type of
the work, assuring optimal performance over a wider range of scenarios. Efforts can be
made to incorporate complex heuristic algorithms or adaptive learning processes, which
could allow the DBPGA to manage the diverse needs of large-scale EFC environments
more effectively. The DBPGA’s potential in this work establishes a solid platform for its
development and implementation in more challenging computing environments.

References

Agarwal, G., Gupta, S., Ahuja, R. and Rai, A. K. (2023). Multiprocessor task scheduling
using multi-objective hybrid genetic algorithm in fog–cloud computing, Knowledge-
Based Systems 272: 110563.

Akintoye, S. B. and Bagula, A. (2019). Improving quality-of-service in cloud/fog com-
puting through efficient resource allocation, Sensors 19(6): 1267.

17



Aladwani, T. (2019). Scheduling iot healthcare tasks in fog computing based on their
importance, Procedia Computer Science 163: 560–569. 16th Learning and Technology
Conference 2019Artificial Intelligence and Machine Learning: Embedding the Intelli-
gence.
URL: https://www.sciencedirect.com/science/article/pii/S1877050919321775

Aoudia, I., Benharzallah, S., Kahloul, L. and Kazar, O. (2020). Qos-aware service com-
position in fog-iot computing using multi-population genetic algorithm, 2020 21st In-
ternational Arab Conference on Information Technology (ACIT), IEEE, pp. 1–9.

Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012). Fog computing and its role in
the internet of things, Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, pp. 13–16.

Ghosh, A. and Dehuri, S. (2004). Evolutionary algorithms for multi-criterion optimiza-
tion: A survey, International Journal of Computing and Information Sciences 2.

Guerrero, C., Lera, I. and Juiz, C. (2022). Genetic-based optimization in fog comput-
ing: Current trends and research opportunities, Swarm and Evolutionary Computation
72: 101094.

Hosseinzadeh, M., Azhir, E., Lansky, J., Mildeova, S., Ahmed, O. H., Malik, M. H. and
Khan, F. (2023). Task scheduling mechanisms for fog computing: A systematic survey,
IEEE Access 11: 50994–51017.

Hussain, S. M. and Begh, G. R. (2022). Hybrid heuristic algorithm for cost-efficient qos
aware task scheduling in fog–cloud environment, Journal of Computational Science
64: 101828.

Karamoozian, A., Hafid, A. and Aboulhamid, E. M. (2019). On the fog-cloud coopera-
tion: How fog computing can address latency concerns of iot applications, 2019 Fourth
International Conference on Fog and Mobile Edge Computing (FMEC), pp. 166–172.

Liu, X., Fan, L., Xu, J., Li, X., Gong, L., Grundy, J. and Yang, Y. (2019). Fogwork-
flowsim: An automated simulation toolkit for workflow performance evaluation in fog
computing, 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1114–1117.

Madhura, R., Elizabeth, B. L. and Uthariaraj, V. R. (2021). An improved list-based task
scheduling algorithm for fog computing environment, Computing 103: 1353–1389.

Martinez, I., Hafid, A. S. and Jarray, A. (2021). Design, resource management, and evalu-
ation of fog computing systems: A survey, IEEE Internet of Things Journal 8(4): 2494–
2516.

Mokni, M., Yassa, S., Hajlaoui, J. E., Omri, M. N. and Chelouah, R. (2023). Multi-
objective fuzzy approach to scheduling and offloading workflow tasks in fog–cloud
computing, Simulation Modelling Practice and Theory 123: 102687.

Movahedi, Z., Defude, B. et al. (2021). An efficient population-based multi-objective task
scheduling approach in fog computing systems, Journal of Cloud Computing 10(1): 1–
31.

18



Nguyen, B. M., Thi Thanh Binh, H., The Anh, T. and Bao Son, D. (2019). Evolutionary
algorithms to optimize task scheduling problem for the iot based bag-of-tasks applica-
tion in cloud–fog computing environment, Applied Sciences 9(9).
URL: https://www.mdpi.com/2076-3417/9/9/1730

Ni, L., Zhang, J., Jiang, C., Yan, C. and Yu, K. (2017). Resource allocation strategy
in fog computing based on priced timed petri nets, IEEE Internet of Things Journal
4(5): 1216–1228.

Nikoui, T. S., Balador, A., Rahmani, A. M. and Bakhshi, Z. (2020). Cost-aware task
scheduling in fog-cloud environment, 2020 CSI/CPSSI International Symposium on
Real-Time and Embedded Systems and Technologies (RTEST), pp. 1–8.

Shukla, P. and Pandey, S. (2023). Motors: Multi-objective task offloading and resource
scheduling algorithm for heterogeneous fog-cloud computing scenario.

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M. and Leitner, P. (2017). Optimized
iot service placement in the fog, Serv. Oriented Comput. Appl. 11(4): 427–443.
URL: https://doi.org/10.1007/s11761-017-0219-8

Taneja, M. and Davy, A. (2017). Resource aware placement of iot application modules
in fog-cloud computing paradigm, 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), pp. 1222–1228.

Vorobyev, S. (2019). Mathematical model of the architecture of a distributed information-
measuring system based on cloud and fog technologies, Journal of Physics: Conference
Series 1352: 012059.

Xu, F., Yin, Z., Gu, A., Li, Y., Yu, H. and Zhang, F. (2021). Adaptive scheduling strategy
of fog computing tasks with different priority for intelligent production lines, Procedia
Computer Science 183: 311–317.

Ye, D., Wu, M., Tang, S. and Yu, R. (2016). Scalable fog computing with service offloading
in bus networks, 2016 IEEE 3rd International Conference on Cyber Security and Cloud
Computing (CSCloud), pp. 247–251.

Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H. C., Zhang, Q.,
Xie, W. and Jue, J. P. (2019). Fogplan: A lightweight qos-aware dynamic fog service
provisioning framework, IEEE Internet of Things Journal 6(3): 5080–5096.

19


	Introduction
	Background and Motivation
	Research Question
	Document Structure

	Related Work
	Task Scheduling in the Edge-Fog-Cloud Continuum
	Task Scheduling with Genetic Algorithms
	Multi-objective Genetic Algorithms for Enhanced Task Scheduling

	Methodology
	Simulation Environment
	Development and Implementation of DBPGA
	Workflow Datasets
	QoS Metrics and Performance Evaluation
	Makespan
	Cost
	Energy Consumption
	Resource Utilization Factor


	Design Specification
	Algorithm Overview
	Algorithmic Steps
	Algorithm Pseudocode

	Implementation
	Integration of DBPGA into FogWorkflowSim
	Core Functionalities
	Adaptive Optimization Process
	Outputs of the DBPGA
	Performance Metrics
	Development Environment

	Evaluation
	Overview
	Montage Workflow
	Cybershake Workflow
	Epigenomics Workflow
	Inspiral Workflow
	Sipht Workflow
	Discussion

	Conclusion and Future Work

