~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc Cloud Computing

Deva Loknathan Marri
Student ID: x21231346

School of Computing
National College of Ireland

Supervisor: Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Deva Loknathan Marri
Student ID: x21231346
Programme: MSc Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Ahmed Makki
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 708
Page Count: p|

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Deva Loknathan Marri
x21231346

1 Introduction

This guidebook tells you in great detail how to set up all the tools and software you’ll
need to build a whole system from scratch. With the help of the setup instructions, the
study can be repeated in a more useful way. We are going to look at how the system works
as a whole along with its user interface. In other words, how a person or a user will use
the system user interface to connect with our system. This paper lists the steps that can
be taken to replicate the implementation of the “ML model and Partial Homomorphic
Encryption”.

The Configuration Manual will be segmented into the following parts.

e Environmental Setup

e Code Implementation

2 Environmental Setup

2.1 Hardware Requirements:

e 8GB RAM.
e 250 GB HDD.

e 2.6 GHz Intel. Core i5

2.2 Software Requirements:

e Windows 10

e Python 3.11.7

2.3 Programming Requirements:

e Python(Version 3.11.7)
e Jupyter Notebook
e Visual Studio Code

Library Usage

pandas Data manipulation and analysis. Used for
reading and processing CSV files, as well as
handling dataframes.

numpy Numerical operations. Used for numerical
computations and operations on arrays, such
as converting data to arrays for machine
learning models.

sklearn Machine learning library. Used for lin-
ear regression modeling, data preprocessing
(LabelEncoder), and splitting data into
training and testing sets.

phe Paillier homomorphic encryption library.
Used for generating Paillier public and
private keys, encrypting and decrypting
data, and performing homomorphic compu-
tations.

json JSON encoding and decoding. Used for seri-
alizing and deserializing data to and from
JSON format, particularly for storing and
loading keys and encrypted data.
matplotlib.pyplot | Plotting library for creating visualizations.

seaborn Statistical data visualization library based on
Matplotlib.

ipywidget Interactive HTML widgets for Jupyter note-
books.

Table 1: Libraries and Their Usage

3 Libraries required:

The necessary libraries for constructing this research project are listed in
table 1, along with their respective applications.

4 Coding Implementation:

This section presents the implementation of a Partial homomorphic encryption system.
The whole system has been divided into fundamental functions, including Machine learn-
ing predictionModel, key generation, encryption, decryption, and evaluation. To execute
the program, we must access the folder that contains the code in Visual Studio Code.

”Partial Homomorphic Encryption” Data encryption in classical cryptography relies
on a public key. The two parties then trade private keys in order to decode it. For data
processing to take place in the cloud, the secret key must be accessible to the cloud server.
With homomorphic encryption, the cloud may securely conduct calculations on encrypted
data or ciphertext, simplifying the process. Afterwards, provide the data owner with the
encrypted findings. Therefore, data remains completely private regardless of its storage
location as it is never decrypted.

Partially Homomorphic Encryption is a kind of encryption that requires two conditions

to be satisfied: 1) The product of D and E, where D is the Decrypt function and E is the
Encrypt function, and A and B are the ciphertexts, is equal to A+B. 2) D(E(A)*scaler)
= A*scaler, where scaler is a constant number (the value’s exponent according to this
project).

1)I have included Pascal Paillier Homomorphic Encryption in the given code. This
section of the code is structured as follows: first, linmodel.py: Using characteristics like
N, P, K, temperature, humidity, ph, and rainfall, this website uses linear regression on
the crop recommendation csv dataset to forecast results for certain conditions. Second,
log.py: Using characteristics like N, P, K, temperature, humidity, ph, and rainfall, this
website uses logistic regression on the crop recommendation csv dataset to forecast results
for certain conditions.

2) cust.py: On the client side, this page uses Paillier Homomorphic encryption to
generate public and private keys. It then uses the encrypt() function to serialize the
data, producing an encrypted number that can be saved on the cloud. Finally, it creates
a json file to be sent to the server or the cloud. Additionally, the answer.json file that
the client gets from the server is loaded using the load Answer() method.

3) The third page, servercalc.py, is responsible for decrypting the data given by the
customer. It does this by using the EncryptedNumber() function, which generates the
client-side EncryptedNumber using the public key and ciphertext. The server-side seri-
alization process continues by multiplying the encrypted number by the coefficients pro-
duced by linear regression on the data. This produces the expected outcomes for the
related data. Last but not least, updating the answer.json file with the serialized forecast
data.

predicition=model.predict((np.array([[2%0,
? 40,
40,
20,
80,
7,
200]])))

print("the cr ven climatic condition is :", predicition)

/" 0.0s

warnings.warn(
the crop good for given climatic condition is : ['rice’]

Figure 1: ML output

References

[—— from sklearn.model selectio

import train_test_split
skl e

error, r2,
mize Run and

inModel :
init_(:

prepr

y = df[" catogar
X = df.drop(

ecomm

X, y = self.preprocess_data(d

LinearRegression().fit(x
= reg.predict(X_test)
RMSE = pow(mean_squared_error(y_pr
- (y_pred, y_t

RMSE. R
TERMINAL
 BREAKPOINTS

4
W Raised Exceptic
v

. [-0.02944578 -0.08846787 -0.00931931
aught

[powershell
18 Python Deb.
0018283]

W User Uncaught E.

Figure 2: linear regression

RUN AND DEBU

RUN

import pan

from sklearn. train_test_split
from sklearn. LogisticRegression

To customize Run an from s

Debug create

Run and Debug import

re, confusion_matrix, classification_report

mmendation

TERMINAL

1.00 1.00
1.00 1
1.00

o an x
[&] powershell
1 Python Deb.

mango
mothbeans

mungbean
muskmelon

pigeonpeas
ponegranate
BREAKPOINTS

Figure 3: logistic regression

main.py

t.storeKeys()
pub_key, priv_key
df = pd.read _csv(

TERMINAL P

674185256411571089974910963821596586442979894281058184851268525528898289398817322986483344166092340684936887067438926203226935937411218728124315229956648637412]
631888563958024337106477119315843672712926458878502412753606648271371770865980267055586808669503771999526213097799993256957467 734831221811728543756156456375532,
533709936253851195079733645442333386357423515725629749109784696545757168228758592827893967275271650352985316620537508859845498 3264496473506 75030084 379268425006
413389261115845712495838614916385917494303112852997213588585548734630817768093113044744696868788305069191932766944921678644152839971988890575244946 511719783469
1727945703848413224617739142837034052872047096663121729438116429743815486222392635258833307458241519984222771417106347580942474540899966249022215 3814492308253 34
562941235220902148167794965439929035161 5491 6407610605666177191659340763846247481363890682258892939078935417186321449103247672275254122671318749313254258610)
36534832084847876823680795951166495170516511812760568827028846146 3782710401 6686164964168855252415127978822328108055988037294853008419256718984606 34798499753699)
5 55685676977109038758466445572944873048320414206387823499546609933907861 225361419203031149318280567731893654954011879167641042116404195253107652449576236-
448185328000190633121845963933608741737931387808877228437840276776761434913461291831515532313015695483345668382036898035648758880400934363142925153197717101275]
486833367732981844967067543452376655393169217173364341618490041907385468200519882549124073369761716055430214853218502250289532691824976394862567422248286420400)
05944741241089432567357914452535789568267685923282847982157/007552036253181350571951643200380963169872315878298165876079775531956868350492336660804685899870133 7
417926415511318354102275960775178185706318366365289193238046883468147906342441844732255", -15]}

Adjusting lengths.

-6.653013733133422

Adjusting lengths.

-7.896957710520645

Adjusting lengths.

Adjusting lengths.
-6.299345061664978

Figure 4: main.py

	Introduction
	Environmental Setup
	Hardware Requirements:
	Software Requirements:
	Programming Requirements:

	Libraries required:
	Coding Implementation:

