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Ensemble Q-Learning Algorithm: An effective and
Novel approach for task offloading in Edge Computing

Rakesh Malik
21172692

Abstract

Q-Learning algorithm has emerged as a prominent approach for optimizing task
offloading strategies in edge computing environments. Task offloading which is an
aspect of edge computing, requires algorithms to strike a balance between resource
utilization and power consumption. This research introduces the formulation of
an Ensemble Q-Learning algorithm as a solution to improve the efficiency of task
offloading mechanisms.

Driven by the need to enhance resource utilization and address growing con-
cerns about power consumption the proposed algorithm incorporates a Q-Learning
strategy. Taking inspiration from Random Migration, Q Learning and Graph Con-
volutional Network (GCN) based Q-Learning, the Ensemble Q-Learning algorithm
utilizes replay and buffer mechanisms to enhance adaptability and performance.

Simulation results demonstrate a 44% reduction in power consumption com-
pared to existing algorithms confirming the effectiveness of the proposed Ensemble
Q-Learning algorithm. The findings align with the research objective of advancing
sustainability and resource efficiency in edge computing systems. However, it is
important to acknowledge that simulation environments have limitations. There-
fore future work aims to refine and validate the proposed algorithm in real world
scenarios by considering real time network conditions and evolving edge computing
architectures.

1 Introduction

Picture the world of computers like a bustling city where tasks are like people moving
around. Now, imagine if we could make these tasks move more efficiently to get things
done faster. That is exactly what we are exploring in this report – the smart way of dis-
tributing tasks among computers at the edge which is like the outskirts of our computing
city.
In the dynamic landscape of modern computing, the exponentially growing prevalence of
edge computing has become a focal point, reshaping conventional paradigms and prom-
ising revolutionary advancements in service delivery. At the heart of this transformation
lies the imperative need to address the challenges posed by resource-intensive applications
and the escalating demands for real-time processing. One crucial aspect of this research
is the study of task offloading, a critical mechanism aimed at optimizing the distribution
of computational tasks within edge computing environments. The contemporary trend
in edge computing revolves around leveraging distributed computation to meet the di-
verse needs of applications. The challenge lies bringing the computation power closer

1



to where the data is generated which was earlier the other way around. Now there is
paradigm shift in how the mobile devices task processing is handled. The emergence of
Multi-Access Edge Computing (MEC) Pham et al. (2020) addresses these challenges by
bringing computational capabilities closer to the network’s edge, presenting a transform-
ative shift from traditional cloud computingCao et al. (2020).
As mentioned in the article published by Jiang et al. (2019), in various scenarios like
smart homes, connected vehicles and industrial IoT, cloud computing despite its advant-
ages faces challenges. One major issue is the substantial data transfer needed from end
devices and sensors, consuming significant network bandwidth. Additionally, analyzing
massive data in cloud data centers becomes impractical due to computing and storage
limitations. This results in delayed responses and high latency for big data analytics from
numerous IoT devices. Moreover, concerns about data privacy and security make relying
on cloud data centers less trustworthy for data analytics, emphasizing the need for local
processing near the data source.

Enter edge computing, an emerging paradigm offering the capability to process or
store critical data locally before transmitting it to a central data center or cloud repos-
itory. For instance, in IoT applications, edge devices collect and process data on-site,
only resorting to cloud processing when local capabilities are insufficient. This approach
lightens the load on central cloud data centers, shifting tasks from the cloud to network
edge devices and potentially eliminating the processing burden at the central location.
Additionally, fog computing Habibi et al. (2020) complements traditional cloud models,
providing a solution to IoT challenges and introducing a highly heterogeneous computing
and network environment through fog-cloud integration. This leads me to ask the ques-
tion that this paper diligently tries to answer -How can the computational offloading
be optimized to enhance the data processing speed of the edge devices? The
aim of this research is to find the answer to the above question by designing a novel
method that not only speeds up the task offloading but also provide the solution for
balanced usage of the CPU and Memory because then only the proposed solution can be
practically applied to the low powered and resource constraint mobile devices.
Talking about the structure of the report, it is organised into following sections:-

1. Section 1 : Introduction : It provides the background of the research domain
and sets the scene for the report.

2. Section 2 : Related Work: As the name suggests, related work describes the
critical analysis of the work done by other notable researchers in the domain of edge
computing.

3. Section 3: Methodology : This section talks about the procedures and methods
followed for conducting the research.

4. Section 4: Design Specification: This section focuses on the environment in
which the experiments have been performed giving the setup and architecture of
the system used.

5. Section 5: Implementation: It gives the detailed view of the approach followed
and the steps used for the proposed algorithm.

6. Section 6: Evaluation : This section presents the results of the experiments done
and comment on the overall performance.
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7. Section 7 : Conclusion and Future Work : This section wraps the report by
giving final thoughts on the entire research conducted.

2 Related Work

2.1 Challenges in Task Offloading domain

I went through an interesting article by Islam et al. (2021) and his team in which he has
conducted a detailed survey of the work ongoing in the field of task offloading in edge
computing and he has identified following challenges that the domain face:

1. Latency Requirements: The survey underscores the inability of cloud computing
technology to meet the latency demands of delay-sensitive applications due to the
propagation delay between User Equipment (UE) devices and the cloud. This
latency issue has led to the emergence of Multi-Access Edge Computing (MEC)
as a new network paradigm to address the computation needs of resource-intensive
applications running on UEs.

2. Resource Constraints: Resource-intensive mobile applications pose critical design
challenges in achieving the desired performance for resource-constrained Mobile
Devices (MDs). The survey highlights the need to address these constraints to
ensure efficient task offloading in MEC environments.

3. Classification and In-depth Analysis: The survey addresses the lack of in-
depth analysis and classification of MEC task offloading in existing literature. By
providing a comprehensive survey, the authors aim to fill this gap and offer a de-
tailed understanding of the task offloading scheme for MEC proposed by various
researchers.

4. Machine Learning Model Formulation: The survey highlights the challenge of
formulating a machine learning model that considers attributes such as computation
power, task-related information, CPU cycle requirements and latency deadlines.

All of the above challenges demand an intelligent and detailed solution that can represent
the environment of edge computing in realistic manner and address the above challenges
especially considering the CPU utilization and power consumption requirements. on re-
searching further into the domain I found a solution proposed by Guo et al. (2020) who
conducted research on intelligent task offloading at the edge and presented a compelling
integration of machine learning into mobile-edge computation offloading (MECO) offer-
ing several strengths. The proposed scheme demonstrates good adaptability providing
offloading decision profiles for newly added MDs’ tasks without rerunning the offloading
decision-making scheme. Also, the decision tree-based offloading scheme (DTOS) exhibits
higher computational efficiency compared to existing task offloading schemes achieving
high prediction accuracy and scalability. However, the research also reveals weaknesses in
the form of limited security, poor adaptability of previous schemes and inconclusive con-
vergence performance of the chosen offline learning method. These limitations highlight
the need for further investigation and improvement particularly in addressing security
concerns and enhancing the adaptability and scalability of the proposed intelligent task
offloading scheme.
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2.2 Current state of the art technique for Task Offloading

While looking for the answers of the above questions raised by Guo et al. (2020), I came
across one of the promising solutions in the form of Q-learning algorithm. Q-learning is
employed for task offloading in edge computing by making real-time decisions on whether
to process a task locally on an edge device or offload it to the cloud. The algorithm main-
tains a table of Q-values, adjusting them based on observed rewards to optimize factors
like latency and energy consumption. Balancing exploration and exploitation, Q-learning
adapts to dynamic conditions and facilitates quick, intelligent decision-making in response
to changing environments. Its simplicity and effectiveness make it a practical choice, es-
pecially in scenarios where the decision-making process require real-time adjustments to
unforeseen circumstances.
The algorithm’s ability to learn optimal strategies through trial and error, without requir-
ing a prior knowledge of the system further enhances its applicability in diverse settings.
This makes Q-learning well-suited for environments where uncertainties and variations
are inherent allowing it to continually refine its decision-making policies over time. The
solution proposed by author Chen et al. (2019) presents a Q-Learning approach for optim-
izing computation offloading and resource allocation in mobile edge computing (MEC)
systems. The paper highlights the challenges faced by MEC, such as the spatial distance
between user equipment (UEs) and cloud servers which can result in extra transmission
costs and potential QoS issues for latency-sensitive applications To address these chal-
lenges, the paper formulates the problem as a mixed integer non-linear programming
problem (MINLP) Montoya et al. (2020) and introduces a value iteration based Rein-
forcement Learning (RL) approach called Q-Learning. The author and his team defines
the state space, action space, reward function and introduces a Markov decision process
for the proposed solution. The paper provides a detailed system model of the multi-user
MEC network, including the network architecture, communication model, computing
model and energy consumption of UEs. It also presents the strategy of offloading and
resource allocation based on Q-Learning. However, the paper has limitations such as lim-
ited comparison with other existing approaches. It would benefit from further validation
and a more comprehensive comparison with existing methods.

another work conducted by Dab et al. (2019) I reviewed introduces a novel approach,
QL-Joint Task Assignment and Resource Allocation (QL-JTAR), utilizing a Q-Learning
algorithm to optimize joint computation offloading and resource allocation in a multi user
WiFi-based Mobile Edge Computing (MEC) architecture. I appreciate the authors’ focus
on the critical challenge of minimizing energy consumption on the mobile terminal side
while adhering to application latency constraints. The proposed approach is substantiated
through extensive simulations in the NS3 network simulator, using real input traces for
performance evaluation.

One of the notable strengths of the work is its comprehensive treatment of the joint
task assignment and resource allocation problem. The incorporation of a Q-Learning al-
gorithm adds adaptability to the approach and the extensive simulations effectively show-
case its superiority in terms of energy consumption and latency ensuring near-optimal
solutions.

However, I find a potential weakness in the limited discussion of the approach’s limit-
ations. A more detailed exploration of scenarios where the QL-JTAR approach may not
be as effective would provide a more balanced view of its applicability. Additionally, a
more thorough comparison with existing literature or alternative methods would offer a
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clearer perspective on the contributions and uniqueness of the paper.
it is important to note that the reliance on the NS3 network simulator may introduce
skepticism about the credibility of the findings, especially in the context of mobile edge
computing. I see a weakness in the choice of the NS3 simulator which might not fully
capture the intricacies of real-world scenarios in this specific field. Exploring alternat-
ive simulators or considering real-world implementations could address this concern and
bolster the validity of the proposed approach.

In conclusion, the challenges identified in the task offloading domain, as highlighted
by Islam et al. (2021), underscore the limitations of current solutions particularly in
addressing latency requirements, resource constraints, the lack of in-depth analysis and
the formulation of machine learning models. While Guo et al. (2020) intelligent task
offloading scheme shows promise by integrating machine learning into mobile-edge com-
putation offloading, it suffers from limitations in security, adaptability and scalability,
necessitating further investigation and improvement.

The exploration of Q-learning, as presented byChen et al. (2019) and Dab et al.
(2019) offers a promising solution for task offloading in edge computing. Q-learning’s
adaptability to dynamic conditions and real-time decision-making aligns well with the
challenges posed in the domain. However, limitations in existing studies, such as limited
comparisons, lack of validation and reliance on NS3 network simulator highlight the need
for a more comprehensive and validated solution.

In light of these findings, the inadequacy of previous solutions necessitates a more ad-
vanced and tailored approach. The proposed Ensemble Q-learning algorithm with replay
and buffer, as discussed in the below sections aims to address the limitations of existing
solutions. By leveraging reinforcement learning with replay mechanisms, the proposed
algorithm seeks to enhance adaptability, scalability, CPU and memory utilization and
power consumption, hence providing a robust solution to the challenges identified in the
task offloading domain. This research is essential to advancing the field and offering a
more effective and efficient approach to task offloading in edge computing.

3 Methodology

The research is primarily based upon the EdgeSimPy Souza et al. (2023) framework
which is a Python-based modeling and simulation tool for edge computing resource man-
agement policies. To ensure the validity and reliability of our findings, I have employed
a systematic evaluation methodology. The decisions regarding the methodology are in-
tricately connected to the insights gained from related work. Previous research by Guo
et al. (2020) and Chen et al. (2019) influenced the adoption of machine learning-based
approaches, particularly the Q-learning algorithm as a key component of our evaluation
strategy.
In my research, I utilize network switches to facilitate connections, mainly conceptualiz-
ing task migrations as network flows. The Max-Min fairness algorithm Hosaagrahara and
Sethu (2008) is applied in these switches to schedule bandwidth, ensuring fair distribution
for effective task migration within the edge computing setup.

I employed an Intel HexaCore i7-9750H processor, utilizing the Skylake architecture
Doweck et al. (2017), paired with an NVIDIA 1050 Ti GPU featuring 16 GB of RAM.
The simulations were conducted on the Linux Operating System within the Google Colab
environment. To implement the deep reinforcement learning algorithms, I leveraged
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the PyTorch library. The hyperparameters and their respective values utilized in these
experiments are detailed in Table 1 below. I utilized the following hyperparameters and
their respective values in the experiments:

Hyperparameter Hyperparameter Value
α ( Rate at which algorithm learns) 0.07
ϵ ( Exploration Factor) 1
γ (Future Reward Weight Factor) 0.9
ϵ Decay (rate at which ϵ decreases) 0.995
Dropout Probability in Neural-Network 0.5

Table 1: Hyperparameters and Values

I have considered a scenario where I have 6 edge servers with varying CPU, memory,
and disk capacities. The specifications are outlined in Table 2.

Server CPU Memory Disk
Edge-Server 1 8 16384 131072
Edge-Server 2 8 16384 131072
Edge-Server 3 8 8192 131072
Edge-Server 4 8 8192 131072
Edge-Server 5 12 16384 131072
Edge-Server 6 12 16384 131072

Table 2: Server Specifications

3.1 Research Procedure

• Simulation Setup
The simulation setup involves defining the characteristics of edge servers and net-
work switches, which are crucial components in our research. These servers are
virtually placed with varying capacities and locations forming the infrastructure
for our task offloading experiments.

• Q-learning Algorithm Implementation
The Q-learning algorithm has been integrated into our simulation as a dynamic
decision-making mechanism for task offloading. This algorithm adapts to changing
conditions, considering factors such as CPU, memory and disk availability of edge
servers. The EnsembleDQNAgent, a reinforcement learning approach is employed
to optimize service provisioning decisions.

• Service and Scenario Configuration
Services have been defined that need to be provisioned on the edge servers, simu-
lating real-world scenarios where mobile applications or tasks are offloaded to the
edge. The simulation captures the dynamic nature of service demands, incorporat-
ing factors such as CPU demand, memory demand and power consumption.

• Data Collection
During the simulation run, detailed metrics related to edge servers, including power
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consumption, CPU usage and memory usage are collected using a custom collect
method. This method records key performance indicators for each edge server
providing granular data for analysis.

• Equipment Used
The simulation is conducted on the Google Colab platform Bisong and Bisong
(2019), leveraging its computational resources for efficient execution of the EdgeS-
imPy framework and the Q-learning algorithm. The choice of this platform ensures
a standardized and scalable environment for the conducted experiments.

• Statistical Techniques
The raw data collected from the simulation runs are subjected to statistical analysis.
Pandas McKinney et al. (2011), a powerful data manipulation and analysis library
in Python is used to organize and preprocess the data.

• Results and Discussion
The final results are presented in a structured format showcasing the impact of the
Q-learning algorithm on task offloading efficiency, power consumption and overall
system performance. These results are critically analyzed, drawing comparisons
with other state of the art algorithms to benchmark the proposed solution

4 Design Specification

In this section I would describe the architecture of the EdgeSimPy framework which has
been used for the simulation of the edge-cloud computing scenario and then I would
discuss about the details of the proposed algorithm- Ensemble Q-learning algorithm with
Replay and buffer mechanism.

4.1 EdgeSimPy Architecture

EdgeSimPy Souza et al. (2023) is designed to support the modeling and evaluation of
computational offloading strategies in Edge Computing environments. It consists of fol-
lowing key components as shown in the figure 1
Base Stations: These provide network connectivity for mobile devices in their coverage
areas, ensuring equitable connectivity within each cell.
Network Switches: They establish wired connections between base stations and edge
servers. Task migrations are represented as network flows, and bandwidth scheduling is
done using the Max-Min fairness algorithm Hosaagrahara and Sethu (2008).
Resource Modeling: Edge servers host services and their power consumption is modeled
based on CPU, RAM, and hard disk utilization. Different power consumption models
(Linear, Quadratic, Cubic) are applied depending on utilization parameters.
Users: Users consume services hosted on edge servers. Mobility models define user move-
ment and changes in base station access for service consumption.
Task Modeling: Tasks represent applications or services with specific resource require-
ments, such as CPU and memory demands. Allocating tasks to edge servers influences
power consumption and resource utilization.
AI Model Modeling: The AI module integrates Reinforcement Learning (RL) based
task migration algorithms. The documentation discusses effective strategies for task al-
location and migration.
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Figure 1: EdgeSimPy framework architecture
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4.2 Ensemble Replay Buffer Q-Learning Algorithm

The main contribution of this research lies in the optimization of the Q-Learning al-
gorithm by incorporating replay and buffer mechanism. The replay buffer acts as a
reservoir of past experiences, allowing the agent to revisit and learn from a diverse set of
historical situations. This addition brings about a paradigm shift in the way the agent
processes information, contributing to more optimized decision-making in dynamic and
resource-constrained environments, characteristic of scenarios encountered in edge com-
puting.
As edge devices contend with fluctuating workloads, varying resource capacities and dy-
namic user interactions, the replay buffer provides a mechanism to break the sequential
correlation of experiences. This, in turn mitigates the impact of similar encounters on the
learning process,fostering stability and preventing the algorithm from becoming biased
towards recent experiences.

The base equation for the Q-learning algorithm is the Q-value update rule. This
rule governs how the Q-values for state-action pairs are updated based on the observed
rewards and the estimated future rewards.The Q-value update equation is as follows:

Q(s, a)← Q(s, a) + α · (r + γ ·maxQ(s′, ·)−Q(s, a)) (1)

where:

• Q(s,a) is the Q-value for the state-action pair.

• s is the current state.

• a is the chosen action.

• r is the received reward.

• s’ is the next state after taking action a

• is the learning rate (a hyper-parameter that controls the step size of updates).

• is the discount factor (a hyper-parameter that controls the importance of future
rewards).

Now, let’s break down how this equation affects the entire Q-learning process:

1. Step 1: Initialization Initialize Q-values for all state-action pairs, as well as the
replay buffer.

2. Step 2: Action Selection The agent selects an action for the current state based
on the current Q-values, following the exploration-exploitation strategy.

3. Step 3: Observation and Reward The agent takes the chosen action, observes
the new state and receives a reward from the environment.

4. Step 4: Updating Q-values (Original Equation) Without the replay buffer,
the agent updates the Q-value using the original equation (1) as stated above.

5. Step 5: Replay Buffer Addition With the replay buffer, the agent stores the
experience tuple (s,a,r,s) in the replay buffer.
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6. Step 6: Replaying Experiences Periodically, the agent samples experiences from
the replay buffer. For each sampled experience, the agent updates the Q-value using
the modified equation:

Q(s, a)← Q(s, a) + α · (r + γ ·maxQ(s′, ·)−Q(s, a)) (2)

7. Step 7: Repeat The agent repeats the process for multiple episodes, updating
Q-values based on both new experiences and replayed experiences.

The following figure describes the architecture of Ensemble Q-Learning Algorithm:

Figure 2: Ensemble Q-Learning Algorithm Architecture

In my research, I introduced a novel approach to enhance the decision-making capabil-
ities of a group of Q-learning agents through the creation of an Ensemble Deep Q-Network
(DQN). This ensemble comprises multiple Q-learning agents, each initialized with distinct
settings or exploration policies. Additionally, a pivotal component of my methodology in-
volves the incorporation of a replay buffer, a memory system that stores past experiences
for efficient learning. Let me break down the key elements of my approach in simpler
terms:

1. Ensemble Creation:

• Traditional Twist: Instead of a single Q-learning agent, I introduced a team
of them, forming what I call an Ensemble. Each agent has its unique starting
point or way of exploring the environment.
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2. Replay Buffer:

• Memory Boost: Imagine a smart memory system that stores snapshots of past
experiences—what the agents saw, the actions they took and the rewards they
received. This is the replay buffer and it’s a crucial tool for more effective
learning.

3. Agent Interaction with Environment:

• Seeing and Deciding: Each agent keeps an eye on what is happening in the
environment and makes decisions based on what it observes. They’re like
individual decision-makers in a team.

4. Replay Buffer Management:

• Learning from History: After agents interact with the environment, they do
not forget what happened. They store these experiences (what they saw, what
they did, what happened next) in the replay buffer.

• Random Playbacks: Instead of learning only from the latest happenings,
agents occasionally replay past experiences. It is like going back in time
to learn from different situations.

5. Ensemble Learning:

• Getting Smarter: Each agent learns and gets smarter by updating its decision-
making rules using the experiences from the replay buffer. The goal is to make
their predictions match the real rewards they receive.

• Teamwork in Decisions: When it is time to make decisions, the agents in
the ensemble might team up. They could vote on actions or average their
thoughts to arrive at a group decision.

6. Replay Buffer Benefits:

• Rewind for Wisdom: The replay buffer allows agents to rewind and learn from
a diverse set of experiences, not just consecutive ones. It is like learning from
a variety of real-life situations.

• Learning Efficiency: By reusing experiences, agents become more efficient
learners. This makes the learning process more stable and robust, ensuring
they make better decisions even in tricky situations.

5 Implementation

This section provides the step by step implementation of the simulation showing how the
computational offloading is handled by the edge servers mentioned above in the method-
ology section using the proposed Ensemble Q-Learning algorithm as shown below:
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1. Import Libraries and Classes: In this initial step, the Python programming
language is used along with various libraries such as NumPy, Pandas, Matplotlib
and the DQN module. The DQN module contains the DQNAgent class. This
class represents the Q-network, which is a neural network used to approximate the
Q-values for different state-action pairs in a reinforcement learning environment.

2. Define a Custom Collection Method: A custom collection method is defined,
which is crucial for monitoring and logging server metrics during the simulation.
The metrics include ”Instance ID”, ”Power Consumption”, ”CPU Demand” and
”Memory Demand.” This method is designed to be utilized with instances of the
EdgeServer class. It provides crucial insights into the simulation dynamics and the
impact of task offloading on server metrics.

3. Define a Replay Buffer Class: The ReplayBuffer class is introduced to manage
a buffer of experiences. This buffer stores information about the state, action,
reward and next state during the simulation. The class includes methods to add
experiences and sample batches for training.It breaks the temporal correlation in
the data to allow agents to learn from a diverse set of experiences rather than
consecutive transitions.

4. Define an EnsembleDQNAgent Class: After defining the buffer class, the
EnsembleDQNAgent class is created to handle multiple instances of DQNAgent.
This ensemble approach provides diversity in decision-making during the simula-
tion. Methods include action selection, updating agents, exploration and decay of
exploration parameters.

5. Initialize Global Variables: Global variables are declared for the agent and
reward tracking. These variables serve as a global context for tracking and storing
important information throughout the execution of the simulation.

6. Initialize a Replay Buffer and EnsembleDQNAgent: Instances of the Replay-
Buffer and EnsembleDQNAgent are created. The buffer is used to store experiences
and the ensemble of DQN agents is prepared for the simulation.

7. Define Q-learning Algorithm for Ensemble: A Q-learning algorithm specific
to the ensemble of agents is defined. This algorithm likely involves iterating through
services, selecting actions, updating states and managing the replay buffer. It forms
the core logic for decision-making during the simulation.

8. Define a Stopping Criterion for the Simulator: In this step a stopping cri-
terion is established for the simulator. This criterion, based on the number of
simulation steps, determines when the simulation should conclude. This is essential
for controlling the duration of the simulation.

9. Initialize and Run the Simulator: The Simulator class is utilized for running
the simulation. Specific configurations such as tick duration, tick unit, stopping
criterion and Q-Learning algorithm are set. The simulator is then initialized and
the simulation is executed.

10. Collect Simulation Logs and Visualize Results: Simulation logs are collected
in a Pandas DataFrame to perform further analysis. The logs show the informa-
tion about each EdgeServer instance such as time steps, power consumption,CPU
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usage and memory usage. Matplotlib library has been used to visualize the power
consumption trends over time for each EdgeServer.

The above steps are repeated for 3 different algorithms namely Random Migration al-
gorithm, Q-Learning algorithm, GCN-Q Learning algorithm (Graph Convolutional Net-
work) to compare them with the proposed Ensemble Q-Learning algorithm on the basis
of the mainly 3 parameters:
1. Power consumption
2. CPU Usage
3. Memory usage
The results of the simulations for the above metrics are discussed in the next section to
comment on the suitability of the proposed algorithm.

6 Evaluation

This section depicts and discusses the critical analysis of the results of the above simula-
tions for the following algorithms used for Task Offloading to 6 EdgeServers:

1. Random Migration

2. Q-Learning

3. GCN based Q-Learning algorithm

4. Ensemble Q-Learning with Replay and Buffer

6.1 Power Consumption of different algorithms

Figure 3: Total Power Consumption of the algorithms
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1. Random Migration (RM): The total power consumption for this algorithm is
8358.94 Watts. Random Migration is a non-optimized strategy where tasks are
assigned to Edge Servers randomly. Higher power consumption indicates inefficiency
in resource utilization as tasks are be placed on servers without considering their
current load or capacity.

2. Q-Learning: The total power consumption for Q-Learning is 8019.52 Watts. Q-
Learning is a reinforcement learning algorithm that aims to optimize task assign-
ment based on learned policies. The power consumption is still high.

3. GCN (Graph Convolutional Network) based Q-Learning: The total power
consumption for GCN is 7931.93 Watts. GCN utilizes a graph-based approach
to optimize task offloading decisions. The power consumption is comparable to
Q-Learning.

4. Q-Learning with Replay Buffer (QL with RB): The total power consumption
for my proposed algorithm is 4406.39 Watts. The addition of a replay buffer led to
more efficient decision-making which has resulted in lower power consumption.

Leveraging widely recognized algorithms as benchmarks in the field of edge computing
provides a robust method for evaluating the proposed solution. The algorithms chosen for
this comparative analysis bear distinctive significance within the field. Random Migra-
tion (RM) acts as a basic benchmark, helping us understand how the proposed algorithm
compares to random task allocation strategies. Q-Learning (QL), a commonly used re-
inforcement learning algorithm, sets a standard for evaluating my proposed Q-Learning
with Replay Buffer against the traditional Q-Learning approach. Graph Convolutional
Network (GCN)on he other hand follow graph-based learning which represents a cutting-
edge machine learning method allowing us to assess the proposed solution against a
sophisticated graph-based algorithm widely used in edge computing. The significance
of this benchmarking lies in providing an unbiased measure of our proposed algorithm’s
performance, enabling comparisons across different approaches and highlighting potential
advancements.The proposed algorithm demonstrates a 44% reduction in power
consumption, positioning it as an effective and efficient solution in comparison
to the established benchmarks. This showcases its potential to address real-
world challenges in edge computing task offloading with a notable reduction
in power usage.

6.2 CPU Utilization Rate

Each algorithm’s average CPU utilization is a critical metric in evaluating its efficiency in
managing computational resources. In the context of edge computing and task offloading,
these values provide insights into how well each algorithm optimizes the utilization of Edge
Servers.

The Random Migration (RM) algorithm, with an average CPU utilization of approx-
imately 1.95, showcases a moderately loaded server environment. Since RM involves
random task assignments, the CPU utilization reflects a non-optimized strategy where
some servers may operate closer to their capacity.

Q-Learning (QL), with an average CPU utilization of around 1.67, demonstrates more
informed decision-making compared to RM. The lower average CPU utilization suggests
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that Q-Learning achieves a better balance in distributing tasks among Edge Servers,
indicating a more optimized approach to task offloading.

Graph Convolutional Network (GCN) Chiang et al. (2019), leveraging a graph-based
methodology, exhibits an average CPU utilization of approximately 1.56. This relatively
low value indicates that GCN effectively distributes tasks, preventing servers from exper-
iencing heavy loads. The graph-based approach seems to contribute to the efficient use
of CPU resources.

Q-Learning with Replay Buffer (QL with RB) introduces a slightly higher average
CPU utilization of approximately 1.72. The addition of a replay buffer enhances decision-
making, leading to a more balanced utilization of CPU resources. This suggests that
incorporating replay mechanisms in reinforcement learning algorithms can contribute to
improved resource management.

Figure 4: Average CPU Utilization of the algorithms

6.3 Average Memory Consumption of each Algorithm

In evaluating the memory consumption of various algorithms:

• Random Migration (RM): In my observation, RM tends to use a considerable
amount of memory. This suggests that the algorithm might not be making the
most efficient use of memory when assigning tasks.

• Q-Learning (QL): I noticed that QL is quite efficient in handling memory. This
indicates that the reinforcement learning approach it employs helps in reducing the
overall memory usage.

• Graph Convolutional Network (GCN): In my analysis, GCN stands out for its
highly efficient use of memory. It seems to distribute tasks in a way that requires
less memory making it a promising choice for memory-conscious scenarios.

• Q-Learning with Replay Buffer (QL with RB): Upon observation, QL with RB
shows a slightly higher memory consumption compared to QL. The addition of a
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Figure 5: Average Memory Consumption of the algorithms

replay buffer may have contributed to a more complex decision-making process,
resulting in a small increase in memory usage.

This detailed examination provides insights into how each algorithm handles memory
resources. It helps in understanding their efficiency in minimizing memory usage, a crucial
factor for resource optimization in edge computing.

6.4 Discussion

In the comprehensive analysis of the experimental outcomes, examination of algorithmic
performance in terms of task offloading to six Edge Servers is imperative. The scrutiny
extends to pivotal metrics such as power consumption, CPU utilization rate and average
memory consumption, providing nuanced insights into the intricate operational dynamics
of each algorithm.

Throughout the experiments, the algorithms under evaluation—Random Migration
(RM), Q-Learning (QL), GCN based Q-Learning and Ensemble Q-Learning with Replay
and Buffer (QL with RB) revealed distinctive characteristics influencing their efficacy in
edge computing scenarios.

In terms of power consumption, RM emerged as a non-optimized strategy, demon-
strating higher power consumption due to its random task assignment. QL, despite its
reinforcement learning foundation, exhibited considerable power usage, suggesting areas
for potential optimization. The GCN-based approach showcased competitive power con-
sumption, emphasizing its efficiency in resource utilization. Notably, the proposed En-
semble Q-Learning with Replay and Buffer displayed a remarkable 44% reduction in
power consumption, signifying its potential as an efficient solution in real-world edge
computing environments.

The examination of CPU utilization rates provided insights into how each algorithm
optimized the utilization of Edge Servers. RM, with its random task assignments, reflec-
ted a moderately loaded server environment. QL demonstrated more informed decision-
making, achieving a balanced distribution of tasks among Edge Servers. The graph-based
methodology of GCN contributed to efficient CPU resource utilization, preventing server
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overload. The proposed algorithm:Ensemble Q-Learning with Replay and Buffer intro-
duced a slightly higher CPU utilization, indicating the enhanced decision-making brought
about by the replay buffer.

Memory consumption analysis further delineated the efficiency of each algorithm.
RM exhibited notable memory consumption, implying potential inefficiencies in task as-
signment. QL showcased efficient memory usage, highlighting the effectiveness of its
reinforcement learning approach. GCN stood out for highly efficient memory usage, po-
sitioning itself as an excellent choice for scenarios where memory optimization is crucial.
Ensemble Q-Learning with Replay and Buffer displayed slightly higher memory consump-
tion, suggesting added complexity introduced by the replay buffer.
In light of the experimental outcomes and the critical analysis conducted on algorithmic
performance, several modifications and improvements to the design could enhance the
robustness and efficacy of the results such as :-

1. For the Q-Learning algorithm, a detailed exploration of hyperparameters such as
learning rate, discount factor, and exploration-exploitation trade-off could be con-
ducted. Fine-tuning these parameters might lead to improved convergence and
better decision-making, ultimately reducing power consumption.

2. Replay Buffer Size in Ensemble Learning: Given the significant reduction in power
consumption achieved by Ensemble Q-Learning with Replay and Buffer, experi-
menting with different replay buffer sizes could be beneficial. Optimizing the size
of the replay buffer might strike a balance between learning efficiency and memory
consumption.

3. For reinforcement learning algorithms, including an adaptive mechanism for exploration-
exploitation could be valuable. Dynamic adjustment of the exploration parameter
based on the system’s performance or workload could lead to more efficient decision-
making.

7 Conclusion and Future Work

In tackling the research question about optimizing task offloading strategies in edge com-
puting environments my goals revolved around implementing and assessing algorithms to
understand their impact on resource utilization and power consumption. The work in-
volved developing and simulating algorithms like Random Migration, Q Learning, Graph
Convolutional Network (GCN) based Q Learning and Ensemble Q Learning with Replay
and Buffer.

The results demonstrate a decrease in power consumption by 44%, when utilizing the
proposed Ensemble Q Learning algorithm that incorporates a replay and buffer mech-
anism. This achievement aligns with the objective of improving the efficiency of task
offloading mechanisms in edge computing. The key findings highlight the effectiveness of
this algorithm in striking a balance between resource utilization and power consumption
surpassing established benchmarks.

The implications of this research are substantial as they suggest that the proposed
algorithm could make a contribution to sustainable and resource efficient edge computing
systems. By reducing power consumption this algorithm addresses the increasing demand
for energy solutions, as edge computing infrastructures continue to expand.
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However it is important to acknowledge limitations in this research. While the simu-
lation environment is representative it may not capture all intricacies found in real world
edge computing scenarios. The outcomes depend on settings and conditions highlighting
a level of sensitivity.

Looking forward I prioritize refining and validating the proposed algorithm, in real
world scenarios for work. It would be beneficial to integrate workloads considering dy-
namic network conditions and explore how the algorithm can adapt to evolving edge
computing architectures to make the research more applicable.

For research proposals I also look forward to exploring algorithms or multi agent sys-
tems that combine different approaches to create even stronger task offloading strategies.
Additionally studying the algorithms performance under security and privacy constraints
could lead to effective investigations.

When it comes to commercialization carefully considering the application of the al-
gorithm in industry edge computing deployments such as IoT networks or smart cities
is important. Collaborating with industry partners for real world implementations can
validate the usefulness of the algorithm.

In conclusion while the research has successfully shown a reduction in power consump-
tion through the proposed algorithm it is crucial to acknowledge that edge computing
environments come with limitations and complexities. Future efforts should focus on
improving adaptability, realism and applicability of the algorithm paving the way, for
efficient edge computing solutions.
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