
Autonomous Cloud Resource Allocation: A
Hybrid Machine Learning Ensemble

Approach

MSc Research Project

MSc Cloud Computing

Abhishek Malik
Student ID: x22165843

School of Computing

National College of Ireland

Supervisor: Ahmed Makki

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhishek Malik

Student ID: x22165843

Programme: MSc Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Ahmed Makki

Submission Due Date: 14/12/2023

Project Title: Autonomous Cloud Resource Allocation: A Hybrid Machine
Learning Ensemble Approach

Word Count: 5352

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Abhishek Malik

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Autonomous Cloud Resource Allocation: A Hybrid
Machine Learning Ensemble Approach

Abhishek Malik
x22165843

Abstract

This research looks at Autonomous Cloud Resource Allocation using a Multiscale
Deep Learning Architecture, comparing two models for forecasting CPU consump-
tion. Deep learning was used to train and assess Bidirectional Long Short-Term
Memory (BILSTM) and STACKED LSTM GRU models on performance measures.
The BILSTM model emerged as the clear winner, with remarkable predictive abil-
ity. In a comparison examination, the BILSTM model produced a validation loss
of 8.6205e-04, an RMSE of 0.0294, and an outstanding R-squared value of 0.9743.
Meanwhile, the STACKED LSTM GRU model performed well, with a validation
loss of 9.1896e-04, an RMSE of 0.0303, and an R-squared of 0.9726. The results
demonstrate the BILSTM model’s superior accuracy in estimating CPU consump-
tion, recognising detailed patterns, and explaining data volatility. These findings
highlight the effectiveness of deep learning models for improving cloud resource
allocation. The research adds to our understanding of how to implement power-
ful predictive models for autonomous resource management in cloud computing,
opening the path for more efficient and responsive cloud architecture.

1 Introduction

1.1 Background

Cloud computing has changed the current computer environment by providing scalable
and on-demand access to computational (Singh et al. (2017)). However, the dynamic
nature of cloud systems poses issues in successfully managing these resources. Tradi-
tional resource allocation strategies frequently fall short of handling the complexities
and variety of workloads inside cloud infrastructures. As a result, the notion of Auto-
nomic Cloud Computing evolved, based on human autonomic systems, to construct self-
managing and flexible cloud environments. The cloud computing business model provides
easy on-demand network access to a shared pool of programmable computer resources.
The background section provides essential context and foundational information relevant
to the study of Autonomous Cloud Resource Allocation using Multiscale Deep Learning
Architecture. Autonomic systems emulate self-regulatory mechanisms seen in nature,
aiming to automate decision-making processes and optimize resource utilization without
constant human intervention. This approach aligns with the ever-evolving and diverse
nature of cloud workloads, offering the promise of efficient and responsive resource alloc-
ation.

1



1.2 Need for Autonomous Cloud Computing

The growing complexity of cloud systems, as well as the requirement to operate them
efficiently, drive the demand for Autonomic Cloud Computing (Erdil (2013)). Auto-
nomic systems mimic human-like self-regulation by adapting and adjusting to changing
situations without continual manual intervention. Because of the scale, variety, and
dynamic nature of cloud infrastructures, this technique is critical in cloud computing.
Autonomous systems promise improved resource allocation, proactive fault management,
and self-optimization, which are critical in successfully managing large and diversified
workloads. The QoS determines the cloud services provided by the diverse and dy-
namic nature of cloud resources. Fulfilling QoS criteria while optimising efficiency and
minimising resource dispersion, heterogeneity, and uncertainty pose difficulties to cloud
computing systems that cannot be successfully met using typical resource allocation rules
in the cloud environment.

1.3 Aim of the study

The purpose of this research and report is to investigate and assess the effectiveness of
a Multiscale Deep Learning Architecture in the context of Autonomous Cloud Resource
Allocation. The purpose of this research is to look at the use of advanced deep learning
models, namely the Bidirectional Long Short-Term Memory (BILSTM) and STACKED
LSTM GRU models, in forecasting CPU consumption in cloud computing settings. The
key goal is to evaluate these models’ capacity to estimate resource needs efficiently, op-
timising the allocation of computing resources autonomously. This paper attempts to
determine the most accurate and trustworthy forecast model for CPU utilisation by
rigorous examination and comparison of different models, eventually giving significant
insights into boosting autonomous resource management in cloud infrastructures.

1.4 Research Objectives

The research objectives of this report are:

• To evaluate the predictive power of the Bidirectional Long Short-Term Memory
(BILSTM) and STACKED LSTM GRU models in forecasting CPU use.

• To compare and assess the performance of various deep learning models in the
context of Autonomous Cloud Resource Allocation.

• Develop the most accurate and effective model for resource allocation optimization
in cloud computing settings.

1.5 Research Questions

The research questions for this report are:

• How well do Bidirectional Long Short-Term Memory (BILSTM) and STACKED
LSTM GRU models predict CPU usage in cloud environments?

• How do these deep learning models compare in terms of Autonomous Cloud Re-
source Allocation?

2



• Which model among BILSTM and STACKED LSTM GRU demonstrates superior
accuracy for optimizing resource allocation in the cloud?

• How can Multiscale DL Architectures contribute to autonomous resource manage-
ment in cloud infrastructures?

1.6 Research Gaps

The research gaps in this area of research lie in:

• Limited studies compare Bidirectional Long Short-Term Memory (BILSTM) and
STACKED LSTM GRU models specifically for Autonomous Cloud Resource Alloc-
ation.

• Lack of exploration regarding the real-time adaptability of these models to dynamic
changes in cloud environments.

2 Related Work

Table 1: Comparison Table for Traditional Resource Allocation Approaches.

Study Focus Approach Main Challenge Key Result

Grewal and Pateriya (2013)
Hybrid

cloud scalability
Rule-Based

Scalability
enhancement

Improved
resource utilization
and cost reduction

Tan et al. (2020)
Container-based

clouds
Heuristic

Optimizing
resource utilization

Enhanced
resource allocation
in container clouds

Haratian et al. (2019)
Adaptive resource

management
Adaptive &

Fuzzy
Dynamic

workload challenges

Dynamic rule and
membership updates

for QoS

Chen et al. (2020)
Self-adaptive

resource allocation

Iterative QoS
prediction &
PSO-based

QoS prediction
accuracy &

resource allocation

Improved QoS prediction
accuracy & resource

efficiency

Murad et al. (2022)
Job scheduling

in cloud

Various Job
Scheduling
Techniques

Effective scheduling
strategies

Emphasized the
importance of

effective scheduling

2.1 Traditional Resource Allocation Approaches

Cloud computing is a complicated but critical feature that seeks to improve resource
allocation in constantly changing contexts. (Grewal and Pateriya (2013)) developed a
Rule-Based Resource Manager for hybrid cloud environments, emphasising scalability
enhancement and cost reduction using rule-based systems. (Tan et al. (2020)) proposed
a Cooperative Coevolution Genetic Programming (CCGP) strategy to solve resource al-
location issues in container-based clouds, concentrating on learning workload patterns
and VM types for enhanced resource usage. In another study (Haratian et al. (2019))
proposed an Adaptive and Fuzzy Resource Management framework (AFRM) that dy-
namically updated rules and membership functions to meet QoS requirements, whereas
(Chen et al. (2020)) contributed a self-adaptive resource allocation method that uses it-
erative QoS prediction models and PSO-based algorithms to improve prediction accuracy

3



and optimise cloud application resource allocation. (Murad et al. (2022)) also highlighted
job scheduling methodologies, emphasising the need for good scheduling tactics in cloud
systems.

Table 2: Comparison Table for Machine Learning Techniques in Resource Allocation.

Study Main Focus Key Techniques Key Contributions

Wang et al. (2018)
Dynamic
resource
allocation

Historical data
analysis, similarity
identification

Introduction of
data-driven approaches,
historical data analysis
for allocation decisions

Jixian Zhang (2018)
Resource
allocation
prediction

Linear and
logistic regression

Prediction models
for optimal resource
allocation

Bal et al. (2022)
Task scheduling
& resource allocation

Cat swarm
optimization,
group optimization-
based DNN

Enhanced
schedulers, DNN for
resource allocation

Goodarzy et al. (2020)
Machine learning
survey

Workload estimation,
task scheduling,
VM consolidation,
energy optimization

Comprehensive
review of ML projects
in resource management

Khan et al. (2022)
Challenges &
future directions

Various ML
techniques in resource
management analysis

Identification of
challenges, proposed
future research directions

Huang et al. (2013)
Resource
allocation in
cloud computing

Support Vector
Regressions (SVRs)

Effective resource
redistribution based
on response time
estimation

Jayaprakash et al. (2021)
Energy efficiency
in cloud computing

Clustering,
Optimization,
ML methods

Demonstrated the
efficacy of ML in
enhancing energy
efficiency

Demirci (2015)
Energy
conservation in
cloud computing

ML-based
solutions for
resource management

Surveyed ML
applications, highlighting
energy efficiency in
the cloud

Duc et al. (2019)

Reliable resource
provisioning in
joint edge-cloud
environments

ML for workload
prediction,
component placement

Explored ML’s role
in enhancing reliability
in joint edge-cloud setups

Kumar et al. (2022)

ML and cloud
computing integration
for various
optimizations

ML for load
allocation,
task scheduling,
energy optimization

Demonstrated ML’s
potential in enhancing
multiple aspects of
cloud computing

2.2 Machine Learning Techniques in Resource Allocation

Initially, (Wang et al. (2018)) and (Jixian Zhang (2018)) focus on the transition from
static policies to data-driven methods, emphasising machine learning’s potential to tackle
resource allocation difficulties. They offer the idea of guiding resource allocation decisions
with historical data and similarity analysis. (Jixian Zhang (2018)) focus on linear and
logistic regression models in predicting optimal resource allocation. Building on this

4



foundation, (Bal et al. (2022)) offer an improved cat swarm optimization-based sched-
uler and a group optimization-based deep neural network for job scheduling and resource
allocation, respectively, stressing the application of optimization methods and deep learn-
ing in resource management. Moreover, (Goodarzy et al. (2020)) broaden this subject
by undertaking a thorough evaluation of machine learning initiatives in cloud resource
management, with an emphasis on workload estimate, task scheduling, VM consolida-
tion, and energy efficiency. Finally, (Khan et al. (2022)) extensively examine the existing
ML-based resource management issues and limits and recommend future research options
to develop this topic.

Various research has focused on resource allocation in cloud and edge computing sys-
tems, with machine learning (ML) approaches emerging as critical tools for maximising
efficiency and dependability. These studies investigate the complexities of resource pro-
visioning, including components such as workload classification, application placement,
and overall system orchestration. (Huang et al. (2013)) pioneered the use of Support
Vector Regressions (SVRs) to predict response times, allowing for resource redistribution
across virtual machines (VMs) on physical servers. (Jayaprakash et al. (2021)) expanded
on this by examining clustering, optimization, and machine learning approaches, high-
lighting their significance in energy efficiency and performance improvement. (Demirci
(2015)) examined ML’s use in energy efficiency inside cloud computing in-depth, assessing
numerous ML-based resource management systems. Duc et al. (2019) and Kumar et al.
(2022) focus on combined edge-cloud systems, emphasising the need of machine learn-
ing to guarantee reliable resource delivery. To overcome the challenges of distributed
applications in heterogeneous networks, their research focused on workload prediction,
component placement, and application flexibility.

2.3 Autonomous Systems in Cloud Computing

Both (Alqefari and Zaghloul (2013)) and (Werkhoven et al. (2018)) anticipate a future in
which intelligent systems will play a critical role in constructing technological landscapes.
(Alqefari and Zaghloul (2013)) offer a network system architecture for service manage-
ment that leverages cloud computing, with an emphasis on the integration of autonomic
Service-Oriented Architecture (SOA) and distributed autonomous control frameworks. In
contrast, (Werkhoven et al. (2018)) emphasize the appropriate integration of intelligent
autonomous machines into human society, stressing self-awareness in machines, human-
defined aims, and comprehension of human behaviours for effective collaboration. Both
studies anticipate a future with autonomous systems powered by sophisticated architec-
tures and artificial intelligence. Within Industry 4.0, (Kovács et al. (2019)) expanded on
these ideas by adding autonomous systems known as multi-systems, emphasising decent-
ralised control and cooperation via intelligent robots powered by artificial intelligence.
(Nasr (2022)) investigated the use of cloud computing in robot control systems, exploit-
ing its heavy computational capability to overcome embedded component restrictions.
Their suggested system included clustering, allocation, and path planning phases to al-
low for effective job execution by several robots. (Singhal et al. (2022)) broadened the
horizon by providing an advanced heuristic scheduling approach for cloud infrastructure
based on enhanced ant colony optimization.

5



Figure 1: Machine Learning Framework of Resource Allocation by (Wang et al. (2018))

6



Table 3: Autonomous Systems in Cloud Computing.

Study Focus
Key Techniques/

Approach
Main Challenges

Addressed
Key Results/Findings

Alqefari and Zaghloul (2013)
Network system
architecture

Autonomic SOA,
distributed control

Complexity,
dynamism, autonomous
restructuring

Enhanced service
management via
cloud-based architecture

Werkhoven et al. (2018)
Integration of
autonomous machines

Self-awareness,
human-defined
objectives

Handling failures,
human-machine
collaboration

Pathway to
responsible integration
of AI machines

Kovács et al. (2019)
Industry 4.0
and robotics

Multi-agent
systems, decentralized
control

Intelligent
robots, Industry 4.0
principles

Decentralized
control in smart
factories with AI robots

Nasr (2022)
Cloud-based robot
control systems

Leveraging cloud
computing for
control

Embedded system
limitations, efficient
control

Improved task
allocation, efficiency
using cloud power

Singhal et al. (2022)
Heuristic
scheduling for
cloud infra.

Enhanced ant
colony optimization

Nonlinear loads,
processing complexities

Optimized resource
allocation, rapid
solution times

Figure 2: Flow Diagram

3 Methodology

3.1 Data Collection

Performance measurements from 1,750 virtual machines (VMs) in a dispersed data centre
hosted by Bitbrains, a managed hosting and business computing service provider, were
collected throughout the project’s data-gathering phase. Bitbrains serves big financial
institutions and insurers by hosting apps used mostly in the solvency sector for financial
reporting after fiscal quarters. The dataset, divided into two tracks (fastStorage and
Rnd), comprises files representing virtual machines (VMs) linked to either fast storage
area network (SAN) or slower Network Attached Storage (NAS) devices. Because of the
greater storage performance, the fastStorage trace has 1,250 VMs, with a higher pro-
portion of application servers and compute nodes. In contrast, the Rnd trace, which
has 500 VMs, has a greater proportion of management machines without lower storage
performance needs. The files in the Rnd trace are organised into monthly subdirectories,
and each file, which is formatted in rows, contains observations of performance metrics
including such CPU cores, CPU capacity, CPU usage, memory provisioned and using,
disc read and write throughput, and network received and transmitted throughput. The
timestamp represents the number of milliseconds since January 1, 1970. To handle re-
source limits, only 100 CSV files were used out of the whole dataset, with an emphasis
on estimating CPU utilisation in megahertz using date-time information.

7



Figure 3: Day-wise Average CPU Usage Over Time (MHZ)

3.2 Exploratory Data Analysis

EDA is a detailed assessment of the performance metrics gathered for 1,750 virtual ma-
chines (VMs) in Bitbrains’ distributed data centre. The goal of the analysis is to acquire
insight into the data’s structure, trends, and qualities. An in-depth review of the distri-
bution of VMs between the fastStorage and Rnd traces, realising the composition of VM
types based on storage connectivity (fast SAN or slower NAS), or rather assessing any
discernible patterns concerning the nature of applications hosted by Bitbrains for major
banks and insurers would be part of the EDA process. Furthermore, EDA would entail
investigating the variation in performance parameters such as CPU utilisation, memory
usage, disc throughput, and network throughput across the two traces.

3.3 Data Preprocessing and Feature Engineering

The goal of the data pretreatment and feature engineering phase, which corresponds to the
transformation phase of the KDD technique, is to refine and enhance the performance
metrics dataset from Bitbrains’ distributed data centre. Converting timestamps to a
uniform datetime format allows for consistent temporal analysis. Furthermore, feature
engineering is used to extract relevant temporal information from timestamps, such as
month and year. These derived characteristics improve the dataset’s interpretability
and aid in visualisation efforts, allowing for a more in-depth knowledge of performance
patterns over time.

3.4 Modelling

The focus of the modelling step in the KDD methodology and in the area of Bitbrains’
distributed datacenter performance measurements is on building and training predictive
models to forecast CPU utilisation. This stage involves installing advanced deep learning
models including such STACKED LSTM GRU and BILSTM to capture subtle patterns

8



Figure 4: Monthly Distribution of Average CPU Usage

and relationships in the data, leveraging features acquired during the transformation
phase. These algorithms are evaluated on the heavily processed dataset to discover cor-
relations between performance parameters and timestamped CPU consumption, allowing
future CPU usage patterns to be predicted. With a 70:30 split ratio, the dataset is parti-
tioned into two subgroups. The training set receives 70% of the data, allowing the model
to learn from this significant amount. The remaining 30% is the testing set, which acts
as a separate dataset to assess the model’s performance and generalizability.

3.5 Evaluation

The major goal of the assessment phase of the Knowledge Discovery in Databases (KDD)
approach, implemented to Bitbrains’ distributed data centre performance metrics, is to
evaluate the performance and efficacy of the built forecasting models. To assess the
prediction capabilities of the models, many metrics such as accuracy and loss graphs,
RMSE values, and indeed the comparison of real and anticipated values are used. The
study is to test how effectively the STACKED LSTM GRU and BILSTM models can
anticipate CPU use based on the extracted features by measuring the accuracy and loss
measures.

3.6 Data Visualization

A graphical depiction of the day-to-day average CPU consumption is shown in 3. The
graph’s x-axis shows individual days, demonstrating the chronological element of the data,
whilst the y-axis depicts average CPU utilisation in megahertz (MHz). Each point on
the graph reflects the average CPU utilisation on a particular day. The graphical repres-
entation is useful for visually examining daily fluctuations and trends in CPU utilisation
over a certain time period.

A pie chart is shown in 4 to graphically display the distribution of monthly average

9



Figure 5: Weekday-wise Average CPU Usage Distribution

CPU consumption. The figure is broken into two sections: one in red which represents
43.9 percent and one in blue that represents 56.1 percent. Each section represents a
percentage of the average CPU utilisation for a given month. The red segment, which
accounts for 43.9 percent, depicts the relative percentage of CPU usage for one month,
while the blue section, which accounts for 56.1 percent, represents CPU consumption for
another month.

A graphical depiction of the weekday average CPU utilisation is shown in 5. The
graph’s x-axis ranges from 0 to 6, signifying each day of the week, with 0 generally
referring to Sunday and 6 typically corresponding to Saturday. The y-axis represents the
average CPU utilisation.

6 depicts a graphical representation of the link between the day, the number of CPU
cores, and the average CPU consumption measured in megahertz (MHz). The graph’s
x-axis depicts individual days, indicating the data’s temporal component, while the y-
axis indicates average CPU utilisation. Each data point on the graph represents a unique
day and the average CPU utilisation measured for a certain number of CPU cores, which
ranges from 0 to 30.

3.7 List of Models

This section involves the implementation of advanced neural network architectures for
forecasting CPU usage in the context of Bitbrains’ distributed datacenter performance
metrics. Two specific models are employed:

3.7.1 STACKED LSTM GRU MODEL:

This model employs a layered architecture that combines layers of Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU). LSTMs and GRUs are recurrent
neural network types that are designed to capture long-term relationships in sequential

10



Figure 6: Day and CPU Cores-wise Average CPU Usage (MHz)

data, making them suited for time series forecasting problems. The stacking of these lay-
ers provides for a more comprehensive representation of the dataset’s temporal patterns,
improving the model’s capacity to identify delicate correlations between performance
measures and CPU utilisation.

3.7.2 BILSTM MODEL:

Another deep learning architecture used for forecasting is the Bidirectional LSTM (BiL-
STM) model. Bidirectional LSTMs analyse input data both forward and backward,
allowing the model to collect information from both past and future contexts. Because
of this bidirectional approach, the BiLSTM model is well-suited for projecting CPU util-
isation based on previous performance measurements.

4 Design Specification

The fundamental approaches, systems, and frameworks enabling the implementation of
the project are fully defined and detailed in the ”Design Specification” chapter. The
selection and description of sophisticated deep learning models optimised for estimat-
ing CPU utilisation in Bitbrains’ distributed data centre performance measures is the
primary topic. The implementation, in particular, makes use of two significant models:
the STACKED LSTM GRU MODEL and the BILSTM MODEL. The STACKED LSTM
GRU MODEL is an advanced architecture that combines layers of Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU). Recurrent neural networks such
as LSTMs and GRUs are notable for their capacity to detect long-term relationships
in sequential data. By layering these layers, the model acquires a better knowledge of
the dataset’s temporal patterns, allowing it to discover complicated correlations between
various performance measures and CPU utilisation.

11



In parallel, the BILSTM MODEL, which employs a Bidirectional Long Short-Term
Memory (BiLSTM) architecture, is an important component of the design. The BiLSTM
model bidirectionally analyses input data, incorporating information from both past and
future contexts. This bidirectional technique is very useful for understanding temporal
connections in time series data, and it aligns perfectly with the forecasting goals of estim-
ating CPU consumption based on previous performance measures. The implementation
requirements are built around the Amazon Sagemaker laptop environment, guaranteeing
model training and assessment compatibility and efficiency. The use of deep learning
frameworks like TensorFlow or PyTorch is described, highlighting their importance in
assisting with the creation of sophisticated neural network topologies.

This chapter also emphasises the need for a curated dataset, especially picking 100
CSV files from a bigger dataset to properly manage resource restrictions. The data pre-
treatment processes are specified to ensure that the dataset is optimal for training and
assessment, including managing missing values, feature engineering, and datetime conver-
sion. As a result, the ”Design Specification” chapter serves as a thorough guide, offering
an in-depth explanation of the models, frameworks, and dataset processing procedures
that have been chosen. This systematic method promotes project openness and clarity,
setting the groundwork for effective execution and subsequent review.

5 Implementation

The last stage of bringing the suggested solution to actuality is discussed in the ”Im-
plementation” chapter, concentrating on the outputs generated as well as the tools and
languages used. The building of trained deep learning models for estimating CPU utilisa-
tion in Bitbrains’ distributed datacenter is a crucial outcome of the implementation phase.
The curated dataset, which contains day-by-day average CPU consumption, month-by-
month distribution, and weekday-by-weekday trends, was used to effectively train the
STACKED LSTM GRU MODEL and the BILSTM MODEL.

The outputs include altered data that went through a careful preparation pipeline,
including missing value management, feature engineering, including datetime conversion.
The dataset has now been adjusted for use as input into deep learning models, ensuring
ensuring temporal patterns and relationships are well recorded. The processed data is
useful in training models that can make accurate predictions about CPU consumption
patterns.

This implementation phase’s code complies to recommended practises in deep learning
model building. Popular frameworks such as TensorFlow or PyTorch have been used to
write the architecture of the STACKED LSTM GRUMODEL and the BILSTMMODEL,
with Python as the major programming language. The Amazon Sagemaker notebook
environment is heavily used during the implementation phase, offering a smooth and
efficient platform enabling model training and validation.

The models created are the result of iterative design, training, and assessment, and
they align with the suggested solution detailed in previous chapters. Specific code list-
ings and extensive user manual explanations, on the other hand, are purposefully left
out of this part to retain a simple and high-level perspective. Instead, the emphasis is
on completing the implementation successfully, emphasising the strategic use of tools,
languages, and processed data to fulfil the project’s objectives. This chapter acts as a
link between both the conceptual framework and the actual consequences, illustrating

12



Figure 7: Actual & Predicted Graph - STACKED LSTM GRU MODEL

how the suggested approach may be used to anticipate CPU utilisation in a real-world
datacenter scenario.

6 Evaluation

6.1 STACKED LSTM GRU MODEL

The STACKED LSTM GRU MODEL is an important element of a multiscale deep learn-
ing architecture meant to improve computational resource allocation in a cloud setting.
Stacked Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers are
used in the model to capture complicated temporal correlations within performance met-
rics data. The LSTM layers aid in the comprehension of long-term patterns, but the
GRU layers improve the model’s ability to catch short-term fluctuations. This stack-
ing design enables multiscale analysis, allowing for both broad trends and fine-grained
changes in resource utilisation. The STACKED LSTM GRU MODEL, trained on histor-
ical data, learns to recognise patterns that indicate optimal resource allocation, allowing
the autonomous system to adapt dynamically to altering computing demands.

The ”validation loss” measure, with a value of 9.1896e-04, represents the validation
dataset’s mean squared error. This low number indicates that the model’s predictions

13



Figure 8: Loss Graph

are extremely near to the actual values in the validation set, indicating the model’s
efficacy in reducing prediction errors. At the same time, the Root Mean Squared Error
(RMSE) is reported to be 0.030314197955657814. The root mean square error (RMSE)
is a measure of the average size of errors between anticipated and actual values, with
a smaller RMSE suggesting more precision. In this situation, the low RMSE indicates
that the STACKED LSTM GRU MODEL predicts CPU use well, since the average
error in predictions is rather modest. Furthermore, the R-squared value, reported as
0.9726457693339003, indicates how well the model explains the variation in the data.

6.2 BILSTM MODEL

Bidirectional Long Short-Term Memory (BiLSTM) MODEL appears as a critical com-
ponent in a multiscale deep learning architecture. The BiLSTM MODEL presents a
bidirectional method to sequence processing, which is tailored to improve the allocation
of computer resources in a cloud setting. The model develops a thorough grasp of tem-
poral relationships within performance metrics data by processing information in both
forward and backward directions. This bidirectional feature is especially useful for re-
cording intricate patterns and correlations, providing a more comprehensive picture of
resource utilisation changes. The BiLSTM MODEL excels at understanding temporal
connections when trained on historical data, allowing it to estimate CPU consumption

14



Figure 9: Actual & Predicted Graph - BILSTM MODEL

based on a bidirectional study of past and future contexts.
The ”validation loss” measure, with a value of 8.6205e-04, represents the validation

dataset’s mean squared error. This low result implies that the BiLSTM model’s predic-
tions closely match the actual values in the validation set, demonstrating the model’s
ability to minimise prediction errors. The Root Mean Squared Error (RMSE), which was
reported as 0.02936068540477952, is a measure of the average size of differences between
expected and actual values. Furthermore, the R-squared value of 0.9743395233305695
indicates how well the model explains the variation in the data. The Best Model is
BILSTM with best RMSE and R-squared Value.

6.3 Discussion

The table 4 shows that the BILSTM model is more efficient than the STACKED LSTM
GRU Model as the RMSE value approaches 0 and the R-Squared approaches 1.

15



Figure 10: Loss Graph - BILSTM MODEL

16



Table 4: Comparison of Performance Metrics for BILSTM and STACKED LSTM GRU
Models in Autonomous Cloud Resource Allocation.

Model Validation Loss RMSE R-squared
BILSTM 8.6205e-04 0.0294 0.9743
STACKED LSTM GRU 9.1896e-04 0.0303 0.9726

7 Conclusion and Future Work

7.1 Conclusions

In conclusion, this work investigated and implemented advanced deep learning models
for predicting CPU use in the context of Autonomous Cloud Resource Allocation, es-
pecially the Bidirectional Long Short-Term Memory (BILSTM) and STACKED LSTM
GRU models. The models performed well, with the BILSTM model emerging as the
preferable option as the best model, with reduced Root Mean Squared Error (RMSE)
and better R-squared values. The findings show that deep learning algorithms are effect-
ive in predicting and optimising CPU resource allocation in a dynamic cloud computing
environment. The research provides important insights into the use of multiscale deep
learning systems for improving autonomous resource management

7.2 Limitations

Despite the optimistic results, this study has certain drawbacks. The success of the
models is strongly dependent on the quality and representativeness of the training data.
Inaccuracies or biases in the dataset may have an influence on the models’ ability to
generalise to new data. Furthermore, the study assumes stationarity in the underlying
patterns, which might pose problems in real-world circumstances with non-stationary
patterns. Furthermore, the project’s scope was limited to CPU consumption; extending
the models to include additional resource measures might give a more thorough knowledge
of resource allocation dynamics.

7.3 Future Works

Future study in this area might take numerous forms. To begin, expanding the dataset
by include a larger variety of performance variables and considering longer time peri-
ods might improve the forecasting capabilities of the models. Investigating ensemble
approaches or hybrid models that integrate deep learning with standard forecasting tech-
niques might yield synergistic advantages. Adapting the models to real-time learning and
including external elements like network conditions or application workloads may further
increase their flexibility in dynamic cloud settings. Furthermore, evaluating the models’
performance under various cloud architectures and deployment scenarios would add to
their resilience and usefulness in a variety of circumstances. Finally, including energy
efficiency as a fundamental optimization factor in resource allocation might match the
models with cloud computing sustainability aims.

17



References

Alqefari, S. and Zaghloul, S. (2013). A new architecture of an autonomous system in
cloud computing.

Bal, P. K., Mohapatra, S. K., Das, T. K., Srinivasan, K. and Hu, Y.-C. (2022). A joint
resource allocation, security with efficient task scheduling in cloud computing using
hybrid machine learning techniques, Sensors 22(3).
URL: https://www.mdpi.com/1424-8220/22/3/1242

Chen, X., Wang, H., Ma, Y., Zheng, X. and Guo, L. (2020). Self-adaptive resource
allocation for cloud-based software services based on iterative qos prediction model,
Future Gener. Comput. Syst. 105(C): 287–296.
URL: https://doi.org/10.1016/j.future.2019.12.005

Demirci, M. (2015). A survey of machine learning applications for energy-efficient re-
source management in cloud computing environments, 2015 IEEE 14th international
conference on machine learning and applications (ICMLA), IEEE, pp. 1185–1190.

Duc, T. L., Leiva, R. G., Casari, P. and Östberg, P.-O. (2019). Machine learning methods
for reliable resource provisioning in edge-cloud computing: A survey, ACM Computing
Surveys (CSUR) 52(5): 1–39.

Erdil, D. C. (2013). Autonomic cloud resource sharing for intercloud federations, Future
Generation Computer Systems 29: 1700–1708.

Goodarzy, S., Nazari, M., Han, R., Keller, E. and Rozner, E. (2020). Resource manage-
ment in cloud computing using machine learning: A survey.

Grewal, R. K. and Pateriya, P. K. (2013). A Rule-Based Approach for Effective Resource
Provisioning in Hybrid Cloud Environment, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 41–57.
URL: https://doi.org/10.1007/978-3-642-35461-85

Haratian, P., Safi-Esfahani, F., Salimian, L. and Nabiollahi, A. (2019). An adaptive
and fuzzy resource management approach in cloud computing, IEEE Transactions on
Cloud Computing 7(4): 907–920.

Huang, C.-J., Guan, C.-T., Chen, H.-M., Wang, Y.-W., Chang, S.-C., Li, C.-Y. and
Weng, C.-H. (2013). An adaptive resource management scheme in cloud computing,
Engineering Applications of Artificial Intelligence 26(1): 382–389.

Jayaprakash, S., Nagarajan, M. D., Prado, R. P. d., Subramanian, S. and Divakarachari,
P. B. (2021). A systematic review of energy management strategies for resource
allocation in the cloud: Clustering, optimization and machine learning, Energies
14(17): 5322.

Jixian Zhang, Ning Xie, X. Z. K. Y. W. L. D. K. (2018). Machine learning based resource
allocation of cloud computing in auction, Computers, Materials & Continua 56(1): 123–
135.
URL: http://www.techscience.com/cmc/v56n1/27810

18



Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M. and Buyya, R. (2022). Machine
learning (ml)-centric resource management in cloud computing: A review and future
directions, Journal of Network and Computer Applications 204: 103405.

Kovács, G., Benotsmane, R. and Dudás, L. (2019). The concept of autonomous systems
in industry 4.0, Advanced Logistic Systems - Theory and Practice 12: 77–87.

Kumar, Y., Kaul, S. and Hu, Y.-C. (2022). Machine learning for energy-resource al-
location, workflow scheduling and live migration in cloud computing: State-of-the-art
survey, Sustainable Computing: Informatics and Systems 36: 100780.

Murad, S., Muzahid, A., Azmi, Z., Hoque, M. and Kowsher, M. (2022). A review on job
scheduling technique in cloud computing and priority rule based intelligent framework,
Journal of King Saud University - Computer and Information Sciences 34.

Nasr, A. A. (2022). A new cloud autonomous system as a service for multi-mobile robots,
Neural Computing and Applications 34(23): 21223–21235.
URL: https://doi.org/10.1007/s00521-022-07605-7

Singh, A., Juneja, D. and Malhotra, M. (2017). A novel agent based autonomous and
service composition framework for cost optimization of resource provisioning in cloud
computing, Journal of King Saud University - Computer and Information Sciences
29(1): 19–28.
URL: https://www.sciencedirect.com/science/article/pii/S1319157815000841

Singhal, A., Varshney, S., Mohanaprakash, T., Jayavadivel, R., Deepti, K., Reddy, P.
C. S. and Mulat, M. B. (2022). Minimization of latency using multitask scheduling
in industrial autonomous systems, Wireless Communications and Mobile Computing
2022: 1–10.

Tan, B., Ma, H., Mei, Y. and Zhang, M. (2020). A cooperative coevolution genetic
programming hyper-heuristics approach for on-line resource allocation in container-
based clouds, IEEE Transactions on Cloud Computing PP: 1–1.

Wang, J.-B., Wang, J., Wu, Y., Wang, J.-Y., Zhu, H., Lin, M. and Wang, J. (2018). A
machine learning framework for resource allocation assisted by cloud computing, IEEE
Network 32(2): 144–151.

Werkhoven, P., Kester, L. and Neerincx, M. (2018). Telling autonomous systems what
to do, Proceedings of the 36th European Conference on Cognitive Ergonomics, ECCE
’18, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/3232078.3232238

19


	Introduction
	Background
	Need for Autonomous Cloud Computing
	Aim of the study
	Research Objectives
	Research Questions
	Research Gaps

	Related Work
	Traditional Resource Allocation Approaches
	Machine Learning Techniques in Resource Allocation
	Autonomous Systems in Cloud Computing

	Methodology
	Data Collection
	Exploratory Data Analysis
	Data Preprocessing and Feature Engineering
	Modelling
	Evaluation
	Data Visualization
	List of Models
	STACKED LSTM GRU MODEL:
	BILSTM MODEL:


	Design Specification
	Implementation
	Evaluation
	STACKED LSTM GRU MODEL
	BILSTM MODEL
	Discussion

	Conclusion and Future Work
	Conclusions
	Limitations
	Future Works


