~

National
College
Ireland

Dynamic Prewarming Strategy using
Reinforcement Learning and LSTM for Cold
Start Mitigation in Serverless Computing

MSc Research Project
Cloud Computing

Sameer Nandkishor Kshirsagar
Student ID: 21219141

School of Computing
National College of Ireland

Supervisor: Dr. Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sameer Nandkishor Kshirsagar
Student ID: 21219141
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Ahmed Makki
Submission Due Date: 14/12/2023
Project Title: Dynamic Prewarming Strategy using Reinforcement Learning
and LSTM for Cold Start Mitigation in Serverless Computing
Word Count: 7235
Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sameer Nandkishor Kshirsagar

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Dynamic Prewarming Strategy using Reinforcement
Learning and LSTM for Cold Start Mitigation in
Serverless Computing

Sameer Nandkishor Kshirsagar
21219141

Abstract

Function-as-a-Service (FaaS) is emerging as a transformative cloud computing
paradigm, offering several advantages, including pay-per-use billing, rapid applic-
ation deployment, and elastic resource management. Cold start delay is a major
challenge in FaaS applications, where the initial invocation of a function can take
significantly longer than subsequent calls due to the need to initialize the under-
lying function container. These delays can significantly impact user experience
and overall system performance. To mitigate coldstart delays, researchers have
explored predictive prewarming techniques along with other solutions. Machine
learning models like LSTM are used to predict upcoming function invocations pat-
terns and prewarm containers accordingly. However, predictive prewarming can
lead to excessive pre warming, consuming resources and increasing infrastructure
costs.

To overcome this limitation, this research presents a Hybrid dynamic prewarm-
ing strategy that leverages reinforcement learning (RL) and LSTM to optimize
container prewarming decisions, striking a balance between cold start latency re-
duction and cost minimization. The RL agent continuously learns from historical
function invocation patterns and current system conditions, making real-time pre-
warming decisions based on predicted demand and resource availability.

Experimental evaluations demonstrate that the proposed strategy significantly
improves traditional predictive prewarming approaches, achieving almost the same
latency while minimizing resource costs by 30%. The dynamic nature of the RL-
based approach ensures optimal prewarming decisions, effectively mitigating cold
start delays while maintaining cost efficiency.

Keywords: Cold start delay, Serverless Computing, Q-learning, LSTM, Dy-
namic Prewarming, Reinforcement Learning.

1 Introduction

Considering the numerous perks that serverless platforms provide, this paper deep dives
into the research using machine learning techniques to minimize the latency impact of
cold starts on serverless platforms. Machine learning techniques focus on finding the hid-
den patterns in datasets, a beneficial asset for practical (real-world) applications where
the function invocations are unpredictable. In the complex world of enterprise applic-
ations, minimum response time is a necessity. By reviewing the historical information

derived from old trends, this study deep dives into the potential of machine learning to
warm serverless containers, leading to improved general performance. It’s important to
note that the intended solution currently caters to Python-driven programming projects.
Making it compatible with different programming languages is the area of focus in the
forthcoming section of this paper.

1.1 Research Question

Can a combination of reinforcement learning and LSTM algorithms be em-
ployed to develop a dynamic pre-warming approach for cold start mitigation
in serverless computing environments?

By Design Container orchestration and their lifecycle scale up and down between 0
and N hence often faces challenges in managing the freezing and termination of contain-
ers. To prevent this, workarounds like the keep-alive method were introduced. Keep-alive
involves pinging serverless functions in intervals with fake data packets that keep them
active in a warm state without requiring a response. While such approaches are effect-
ive, they are not suitable for business applications with changing loads and demands.
Additionally, keeping containers constantly active can lead to an increase in the server’s
memory footprint, potentially causing unnecessary compute resource usage. This, in turn,
could lead to a slowdown in execution, creating a counterproductive problem, especially
when the goal is to minimize request latency. This is an issue we need to rectify. This
paper uses machine learning to investigate an optimal strategy to achieve a balance while
minimizing the impact of cold starts.

Containerization makes serverless computing possible. Container orchestration is
what’s behind the scenes, driving the delivery of these services. Containers provide an
isolated and self-sufficient environment for applications, totally independent on the type
of operating system it is being run upon. This facilitates smooth deployment and gets
rid of the old inflexible strategies. Orchestrating containers is nothing but automating
the task of managing and provisioning them. However, this introduces the previously
mentioned ’cold starts’ problem. Cold start is a common issue in serverless computing
and researchers have been making efforts in addressing and handling this issue. The top
three platforms for serverless computing in the industry are AWS Lambda, Microsoft
Azure Functions, and Google Cloud Functions.

Moreover, financial management is crucial for any business. While users will be ap-
pealed by the concept of no administration it may not be appealing for the ones respons-
ible for managing budgets. Servelerless, like other cloud services, operates on a pay-as-
you-go model. This is why, there are benefits in creating efficient and high-performing
code, yet finding the correct balance between efficiency and performance can be challen-
ging. To explain this point further, consider the keep-alive workaround for minimizing
latency, keeping containers in a warm state will lead to excess resource consumption and
increased cost.

1.2 Research Objectives

e Set up a serverless test infrastructure in an EC2 instance or any other cloud plat-
form.

e Generate serverless function invocation predictions using machine learning models.

e Simulate function invocation calls in the test infrastructure using Function trace
historic data.

e Analyze the function execution performance in the test infrastructure based on
different metrics.

2 Related Work

The related research in this study emphasises the major key components that support
serverless architecture. At the core, Function as a Service (Faas) solutions require an
execution environment to host and process the business logic. Containers have emerged
as the prime technology to rapidly establish such environments. Nevertheless, functions
require the download of runtime libraries and dependencies before they can be operated.
By breaking down these aspects, it becomes quite evident that latency may start affecting
systems. Cold start latency is a huge issue in the serverless domain, with many researchers
proposing solutions to address this issue. This research report is going to deep dive and
thoroughly analyse such research papers.

2.1 Serverless computing and applications

In cloud computing, a serverless deployment model eliminates the burden of managing
and provisioning resources from the developers which facilitates them to focus only on
the application development process Baldini et al.| (2017) [Van Eyk et al| (2017). Server-
less, refers to Function-as-a-Service (FaaS). Serverless doesn’t mean there are no servers
involved Instead, it focuses on the fact that the complicated job of managing resources
is handed over to cloud service providers (CSP). FaaS brings in a new way of computing
that reacts to events, adopts pay-as-you-go pricing, and bills according to the actual time
the service is consumed. Functions are designed to scale on demand, they are stateless
,have short lifespans and operate on lightweight containers or virtual machines (VMs)
when triggered by an event [Vahidinia et al,| (2020). Conceptually the FaaS model is
created to start a new function instance whenever there’s a demand request and close it
down after the service. Yet, in practice commercial Faas offerings such as Google Cloud,
Azure Functions and AWS Lambda Function may opt to reuse a function or keep it run-
ning for a limited period to serve more requests. Agarwal et al.| (2023) Some open-source
serverless frameworks, such as Kubeless and Knative, implement similar strategies that
includes reusing an instance of a function instance to serve additional requests.

Using the advantages of serverless computing at the edge layer, machine learning
applications are built using a serverless edge computing architecture/Bac et al. (2022)
Lower latency and faster response times are the goals of this strategy. With a focus in
particular on image classification using the MNIST dataset, the method makes use of
federated learning in the serverless edge computing architecture to facilitate remote ma-
chine learning. The evaluation’s findings show that the serverless approach can facilitate
distributed machine learning, lower machine learning systems’ end-to-end latency, and
guarantee the best possible response and duration of operation.

In serverless computing, Lee et al| (2021) function fusion is used to reduce cold start
time while taking parallel execution into account. The approach involves establishing a
function fusion technique that manages branch and parallel execution fusing, as well as
proposing a model for workflow reaction time in sequential and parallel runs, warm start

modes, and warm start modes. The study’s findings show that the suggested approach
can improve the original workflow’s response time by 28-86% in five different workflows
Lee et al| (2021)), suggesting that it may be useful in reducing the cold start issue in
serverless computing. In order to overcome a major issue in serverless computing, the
paper suggests a novel solution to the cold start problem. This solution has applications
for enhancing the effectiveness of serverless processes. furthermore offers a thorough
assessment of the suggested approach in a real cloud environment, demonstrating its
applicability and efficiency in resolving the cold start latency problem.

2.2 Loading necessary Libraries when a function is invoked

The researcher investigated a method to minimize the cold start latency by loading only
essential libraries on function is invocation. This approach is in line with the broader
research focused on addressing and resolving cold starts in serverless environments.

Numerous studies have explored techniques to mitigate cold starts, they mainly focus
on two major approaches discussed below:

2.2.1 Optimizing Environments

This approach focuses on directly minimizing the cold start latency by optimizing the
execution environment for serverless functions. General techniques include:

1. Pre-warming: Actively provisioning and initializing functions in a warm state to
reduce cold start overhead. This can be achieved through invoking function from
time to time or utilising pinging mechanisms.

2. Containerization: Usage of containerization technologies, such as Docker, to encap-
sulate serverless functions and streamline the loading of dependencies and runtime
environments.

3. Function Sharing: Effectively sharing the runtime environment among multiple
instances of the same function to minimize cold start overhead, especially for fre-
quently invoked functions.

2.2.2 Minimizing Invocation Frequency

This approach focuses on decreasing the occurrence of cold starts by reducing the initial
invocations of functions. Methods include :

1. Caching: Caching is done by storing the outcomes of frequently invoked functions
in a cache to prevent repetitive cold starts and improve response times.

2. Prediction Models: Using predictive models to predict future patterns of function
invocation, allowing proactive provisioning and minimizing cold starts.

3. Burstable Instances: It is a kind of compute resource which is capable to temporarily
scale up without incurring cold start penalties during periods of increased demand.

In conclusion the Oakes et al. (2017) approach discussed in this paper takes an im-
portant step ahead in resolving cold starts in serverless computing. It entirely focuses
on loading required libraries and proven effectiveness, contributes meaningful insights for
further research and development in this domain.

4

2.3 ZIP-based Deployment vs. Container-based Deployment

In this section we are going to discuss the comparison between ZIP- based deployment
which is the default deployment method for AWS Lambda and Contaniner based deploy-
ment. Dantas et al.| (2022) In the ZIP-based deployment, it packages the dependencies
and the function’s code into a ZIP file whereas the container based deployment uses
container images. ZIP-based deployment offers simplicity and efficiency but it leads to
longer cold start delays because of the unzipping process. While Container-based deploy-
ment, on the other hand, can notably minimize cold start delays by directly loading the
container image into the Lambda execution environment.

The author highlights the effectiveness of pre-warming Kumari et al. (2022)), the
approach of actively invoking functions to keep their execution environment in a warm
state, in reducing cold start delay. Pre-warming is an excellent technique for applications
which has regular function invocation as it can minimize cold start delays by up to 90%.

2.4 Machine Learning based predictions

To reduce cold start latency and improve resource usage, a Cold Start Optimization
(CSO) method was applied on a Kubernetes-based serverless computing architecture. Xu
et al.| (2019) In order to detect cold beginnings and dynamically change container pool
capacity, an Adaptive Warm-Up (AWU) approach has been created simultaneously with
the deployment of a multi-layer perception network with two hidden layers. The finding
of the study demonstrated that the CSO method outperformed traditional strategies
like Moving Average (MA) and Auto-Regressive Moving Average (ARMA) models in
terms of cold start latency and resource waste. This unique method contributed to a
thorough assessment of the suggested technique by addressing cold start delay in serverless
computing and using actual application data for validation. Predicting serverless function
execution has also been done using similar LSTM deep learning prediction models, with
at least 1.8 x improvements over baseline Apache OpenWhisk installations (Govindan
(2020)).

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a category of Al algorithms that is made up of an agents,
environment, and rewards . The agent’s responsibilities invovlve taking actions that
changes both its own state and the state of the environment with the aim of achieving a
goal. Depending on the effect of each action on achieving the goal, the agent either gets
rewarded or a penalized. By analyzing the accumulated feedback from a set of actions,
the agent develops policies to maximize rewards.

RL learning algorithms have the ability to learn best policies for decision -making
in complex environments, adjusting to changes without depending on explicit rules or
heuristics. Various studies have dived into the utilisation of RL to autoscaling in serverless
platforms.

For instance, [Zafeiropoulos et al.| (2022) introduced an RL-based autoscaling mechan-
ism that uses a deep Q-learning (DQN) algorithm to dynamically allocate and deallocate
serverless functions. Compared to conventional mechanisms their approach accomplished
notable reductions in resource provisioning latency and cold start instances compared to
traditional mechanisms.

Action
Specification of threshold
State Observation Autoscaling Policy
Rewards Formulation and update

Environment

(orchestration ecosystem -
Serverless computing platform)

Figure 1: Reinforcement Learning Mechanism for Autoscaling Zafeiropoulos et al.| (2022).

Zafeiropoulos et al.| (2022)) Along with the RL-based autoscaling, researchers have in-
vestigated different approaches to improve resource management in serverless computing
platforms. For example, introduced a hierarchical autoscaling framework that uses RL al-
gorithms and prediction models to optimize resource allocation.The goal of their approach

is to achieve balance between energy consumption, latency and resource utilization. Fig-
ure [I] represents the reinforcement Learning Mechanism for Autoscaling
2022).

Despite the promising result observed in RL-based autoscaling, numerous challenges
still left to be tackled. One such challenge is the shortage of real-world datasets with
enough data for training RL agents. The complex task of modeling the complex interac-
tions between workloads, resource availability, and application performance in serverless
environments, is another hurdle. Moreover, RL algorithms can be computationally in-
tensive, requiring the development of efficient implementation strategies to manage the
high-dimensional state spaces and action spaces encountered in serverless autoscaling
scenarios.

Even with these challenges, RL remains an effective and promising approach for en-
hancing autoscaling in serverless computing platforms. With increasing accessibility of
datasets with real-world autoscaling and ongoing improvement of RL algorithms, RL-
based autoscaling is expected to play a major role in optimizing resource usage, reducing
costs, and enhancing performance of applications in serverless environments.

3 Methodology

3.1 Data Collection

Data collecting acted as an accelerator for the proposed solution’s deployment and eval-
uation. A dataset provided by Microsoft online using the GitHub platform
became known as having recorded practical serverless execution patterns. The dataset
has been made available with log records captured on Microsoft Azure Functions for 2

weeks beginning on January 31, 2021, at 00:00. Microsoft Azure has published and made
this dataset accessible to individuals with a Creative Commons Attribution 4.0 License
Bannon (2022)) |Azure, (n.d.b). This 1.98 million-row data file was legally copied, edited,
and shared for academic purposes Bannon (2022).

Along with the Microsoft dataset, large amount of data were produced in log files
during the project’s development and project’s execution. In order to enable smooth
integration with machine learning models and expect future invocations based on notice-
able patterns from historical trends, these logs were created carefully. It is important
to focus that no private or sensitive data was added to any dataset related to this re-
search at any point during the whole procedure. This well planned method highlights
the commitment to upholding the research’s moral principles while utilizing data-driven
insights to advance the study. The result of these efforts improves in the field of research
and opens the door to new developments in understanding and making sense of serverless
computing paradigms.

3.2 Data Preparation

A well-known data mining technique called Knowledge Discovery in Databases (KDD)
was thoroughly used to prepare the Microsoft dataset. Bannon| (2022) The schema that
gave important data for each function request was shaped by an early study that in-
dicated the need for additional attributes. "App’ and ’func,” which stand for encrypted
serverless application and function IDs, respectively, were two of these properties. The
“end timestamp,” which shows the exact instant the function execution was completed,
and the "duration,” which shows the entire execution time in seconds, were also included
in the dataset. Applications are the deployment unit in the Azure Functions environ-
ment, and the dataset contained 120 applications that had 420 functions. Remarkably,
nine functions showed significant activity, each providing more than 40,000 entries; these
functions together account for 70% of the collection, or 1.3 million records Bannon (2022)).
The investigation into the temporal dynamics showed that the events’ inter-arrival
times did not fit the Poisson distribution model. Rather, it showed a discrete but posit-
ive and continuous distribution within the sample set. The formula p(AN B) # p(A)p(B)
raised concerns about the possibility of variable independence because of daily and
weekly temporal patterns. High levels of data variability were suggested by the coef-
ficient of variance (CV = %) Before the dataset was made available, trace timestamps
were adjusted, beginning at zero, to improve its usefulness. During the implement-
ation phase, actual start timestamps were computed, with the baseline being set at
A = January 31, 2021, at 0:00. The careful preparation of the data guaranteed a strong
basis for the subsequent analysis and the creation of efficient machine learning models.

start timestamp, = A + At - end timestamp, — At - duration;

Following a thorough examination of the dataset, the records were logically placed in
order along their natural timeline, resulting in a well-organized presentation of the events.
The computation of the time difference along the designated axis was done for the start
timestamp of row n+1 and row n and so on. With regard to the temporal dynamics
between subsequent function requests, this time difference turned out to be an important
characteristic. The computed values functioned as vital inputs for the simulation script,
which was essential to its capacity to coordinate the intervals between function calls. The
well-crafted script made use of this feature to include millisecond-long pauses between

functions, accurately mimicking real-world time intervals between function executions.
Because it reflected the complexities of real-world scenarios including function requests
and their temporal dependencies, the simulation script’s refined approach to temporal
control enhanced the simulated environment’s authenticity and accuracy.

delay; = start_timestamp, ,; — start_timestamp,

3.3 Machine Learning Techniques

When it comes to optimizing serverless systems, one carefully thought-out tactic is to
use machine learning techniques to forecast the best times for functions to execute. This
strategy’s main component is the discovery of timestamps linked to function execution,
which are vital inputs for a background process that is currently operating on the server.
This background operation makes sure that functions are prepared to run smoothly at the
scheduled times by installing required dependencies and preemptively warming Docker
containers. The predicted time period, which is a 5-hour window, is closely linked to the
complete orchestration. The 10 days used in load testing trials were not included in the
training data used to refine the prediction models, highlighting a robust and diversified
dataset.

This study used Q-learning and the Long Short Term Memory (LSTM) algorithm, two
well-known machine learning techniques. Based on past data, the earlier method—supervised
learning—performed exceptionally well in predicting execution times. Whereas QQ-learning
shown remarkable efficiency in enhancing function execution schedules, resulting in su-
perior overall outcomes throughout the studies. Although linear regression, was also
investigated, it was not used in the trials since LSTM performed better.

Multiple research investigations have demonstrated the effectiveness of neural net-
works, particularly when processing time series data. It was found that unsupervised
learning strategies, such clustering, were more appropriate for specific activities, whereas
supervised learning strategies, like linear regression, were suitable for tasks involving the
prediction of historical data. Previous research on cold start mitigation had extensively
explored reinforcement learning, which led to its consideration and eventual removal in
favor of neural networks. Essential Python packages, such as Pandas for data processing,
Numpy for numerical operations, and Tensorflow for neural network construction and
training, made it easier to apply this machine learning-driven approach. This thorough
method highlights the importance of careful algorithm selection and a well-curated data-
set in attaining effective and responsive serverless computing, in addition to showcasing
the versatility of machine learning techniques in optimizing serverless operations.

3.3.1 Linear Regression

A fundamental component of statistical methods, regression analysis is a key instrument
for determining the complex relationships between dependent and independent variables.
It was possible to get insight into the geometric meaning and originality of the actual
risk minimizer by showing the estimator’s distribution’s progress to a multivariate nor-
mal distribution and obtaining the normal equations. |Su et al.| (2012) Determining and
estimating the parameters of a function that offers the best fit for a given dataset is the
main objective of regression analysis. To understand relationships between variables and
explaining how changes in one variable translate in another is the fundamental compon-

ent of this analytical method. Within regression analysis, there is a range of linear types:
basic regression models, in which a single independent variable predicts a dependent vari-
able, to more intricate multiple regression models that take into account many predictors.
Because it makes it easier to forecast outcomes based on changing independent factors,
this adaptable statistical tool is quite useful, particularly when working with continuous
dependent variables. |Korkmaz (2021]) Regression analysis is a widely used technique in
many different domains. It is useful for quantifying and forecasting the impact of changes
in individual variables on the continuous dependent variable, as well as for understand-
ing the nature of relationships within datasets. For researchers and analysts wishing
to gather significant insights from their data—whether they are studying scientific phe-
nomena, identifying economic trends, or assessing the success of programs—regression
analysis is a necessary instrument.

Y:b0+b1X+€

Where:

Y is the dependent variable.

X is the independent variable.

b0 is the y-intercept (the value of Y when X is 0).

b1 is the slope of the regression line (the change in Y for a one-unit change in X).

e ¢ represents the error term, which accounts for the variability in Y that cannot be
explained by the linear relationship with X.

3.3.2 Long Short-Term Memory:

A neural network architecture with specialized elements, such as a cell state, gates, and
activation functions, is created in order to achieve Long Short-Term Memory (LSTM).
Together, these parts allow the network to store and update information selectively across
time, which enables it to identify long-term dependencies in sequential data. LSTMs are
well-suited for tasks like time series forecasting and natural language processing because
they can successfully model and make predictions based on sequential data by precisely
directing the flow of information through the gates and updating the cell state. Nguyen
et al.| (2022)) The LSTM model is trained on the previous patterns of function invocation
to capture the dependencies between the function request patterns and the number of
future invocation requests. The quantity of pre-warmed containers needed to minimize
cold-start delays is then estimated in advance using this data Kumari et al.| (2022)).

In order to forecast function invocation times and keep an efficiently warm function
container queue, LSTM networks are essential. The implementation of an LSTM network
is an advanced technique that facilitates the deliberate prediction of invocation timings,
which helps to create a container pool that is responsive. This approach also includes a
container pool technique, indicating a dedication to resource optimization and improved
scalability. |Agarwal et al. (2023) The empirical results demonstrate the effectiveness of
the suggested solution and exhibit better results than baseline methods. Remarkable
results include an important increase in response time and a significant decrease in the

frequency of cold starts. The paper’s strong points are its realistic implementation of
reinforcement learning in the context of serverless computing and its thorough assessment,
which compares the suggested solution to accepted baseline methods. Nonetheless, it is
critical to recognize some constraints, including the controlled nature of the laboratory
setting and the possibility of increased data and time expenses related to Reinforcement
Learning (RL) methods.

3.3.3 QLearning (Reinforcement learning)

With reinforcement learning, an agent gains decision-making skills by acting and getting
feedback in the form of rewards or penalties. It’s particularly effective for solving problems
modeled as Markov Decision Processes, where the outcome of an action depends only on
the current state and not on the sequence of events that preceded it .Q-learning is a
subset of reinforcement learning, characterized by its use of a value-based method to
iteratively improve an agent’s policy by learning the optimal actions to take in various
states through a system of rewards and penalties.

The Learning algorithm works in environments with a discrete, finite number of states
and actions, making it suitable for scenarios where decisions are based on uncertain
outcomes, such as prewarming decision optimization Kostrikov et al| (2021) The Q-
learning agent always aims to learn optimal policy by estimating the value of state-action
pairs, which is captured in a Q-table. This is particularly relevant to our focus on
optimizing decisions about when to prewarm containers in advance. The LSTM model
was used to make predictions about future states in the system, focusing on time-series
forecasting due to its capability to remember long-term dependencies. These predictions
provided a basis for the Q-learning agent to make informed decisions on when to pre
warm a container. [Kumar et al. (2020) The agent uses a rewards function that takes into
account the costs involved in preparing resources early and tries to avoid unnecessary
preparation if the expected delay is short.

The learning implementation uses an epsilon-greedy strategy for action selection,
which alternates between exploration (with probability €) and exploitation (with probab-
ility 1 —¢) Kumar et al.| (2020)). This method allowed our agent to balance learning about
the environment (exploration) and making the best decision based on present knowledge
(exploitation).

The update rule for Q-learning is expressed as:

Q(s,a) < Q(s,a) + o |R(s,a) + 7 max Q(s',ad") — Q(s, a)]

where:

Q(s,a) is the Q-value for state s and action a.

« is the learning rate,

R(s,a) is the reward for taking action a in state s,

v is the discount factor,

e max, (s, a’) is the maximum estimated Q-value for the next state .

10

Type Tool/Platform
Operating System Linux Ubuntu Server 18.04 LTS (HVM)
Virtual Machines Amazon Web Services (AWS) EC2
Machine Learning Keras Tensorflow 2.15.0
Serverless Platform Apache OpenWhisk 1.0.0 (open-source)
Container Technology Docker 20.10.17 CE
Programming Language Python 3.11.5
Performance/Load Testing | Java (openjdk-11) & Apache JMeter 5.6.2

Table 1: Used Platforms and Tools

3.4 Platforms and Tools
Table [1] is the table where all platforms and tools is mentioned.

4 Design Specification

4.1 Experimental Setup

Table (1] provides a representation of the setup and configuration for the experimental
portion of this investigation. Provisioning two ’t2.large” AWS EC2 instances, each with
two virtual CPUs, eight gigabytes of RAM, and sixteen gigabytes of SSD volume storage,
comprised the infrastructure used for this experiment. The Ubuntu Server 18.04 LTS
operating system was chosen as a key component of this configuration due to its excellent
interoperability with the Apache Serverless Framework. Notably, it was discovered that
the more recent operating system versions were less compatible, particularly with regard
to OpenWhisk’s installer techniques. Following difficulties and several unsuccessful in-
stallations on more recent versions, Ubuntu Server 18.04 LTS was determined to be the
best option for the testing setup.

Using core components like Docker for containerization, Kafka for real-time streaming,
Djemame et al.| (2020) Nginx as the web server, Consul for networking, and CouchDB as
the NoSQL document database, OpenWhisk, a serverless platform, was essential to this
configuration. Although these software components were used locally for the project, it’s
important to note that OpenWhisk is the foundation for IBM Bluemix, a web serverless
platform. Due to its effectiveness, the installation method of choice was the Docker
Compose plugin, version 1.21.2. The main software requirements for this method were
Python, Java, and Docker. The meticulously set up test setup established the foundation
for the later stages of the research, guaranteeing a stable and harmonious arena for the
exploration of serverless computing frameworks and paradigms.

4.2 Architecture Diagram

Figure [2| represents the architecture diagram of project.

11

Warms

— K
Reads C S V
— ks 1 ‘
I p

| Predict:
Fﬁglﬂ]{;in CSV ‘ o pr!dc'
Dataset ‘ Funetiongateway.py

|

QN — !

Figure 2: Architecture Diagram

4.3 Algorithm

Please refer 77 for Algorithm used in this project.

Algorithm 1 functiongateway
0: function FUNCTIONGATEWAY (execution_version)
0: beginning time < datetime.now()
0: formatted_ start_time <+ beginning_time.strftime(” %Y-%m-%d %H:%M:%S.%{)
0: exists, docker_list <— does_container_exist(CONTAINER_NAME)
0: container_status <- "warm” if exists else ”cold”
0: docker_name < docker_list[0].strip() if exists else initialize_docker_container()
0: execute_function_in_container(docker name)
0: ending time < datetime.now()
0: formatted_end time + ending_time.strftime(” %Y-%m-%d %H:%M:%S.%f")
0: execution_duration < int((ending_time - beginning_time).total_seconds() * 1000)
0
0
0
0
0
0
0
0
0:

timestamp <— datetime.now().strftime(” %Y %m%d_-%H%M%S”)
log_file_name < {”ML_Run_Log_model_name_execution_version_timestamp.csv”
result_file «— os.path.join(LOG_FILE_PATH, log_file_name)
with open(result_file, 'a’, newline=") as result_file:
result_writer <— csv.writer(result_file)
result_writer.writerow ([
formatted_start_time, formatted_end_time,
execution_duration, docker_name, PYTHON_SCRIPT, container_status])
end function=0

Section 7?7 contains documentation that goes into further detail on the algorithms
mentioned above.

5 Implementation

We implemented a serverless test infrastructure using a custom framework built in Py-
thon. This system was set up on an Amazon EC2 server, running Ubuntu. Initially,

12

we planned to use Apache OpenWhisk for the test infrastructure, but we faced some
limitations with it, especially regarding container configuration. Due to this, we had to
create our own container orchestration module in Python to address these issues. For
load testing, we used Apache JMeter, which tested the infrastructure by using function
invocation data from the Azure Git repository. The machine learning part of our project
involved training and testing models in Jupyter notebooks, using the Keras library with
TensorFlow. We should mention that integrating the machine learning part directly into
our test infrastructure was not covered in this research. Therefore, we manually added
the machine learning predictions to the test infrastructure

5.1 Machine learning models

In this research, we employed three machine learning techniques: Linear Regression,
LSTM, and Q-learning. Our initial approach involved a comprehensive analysis of Azure
function invocation logs data, spanning a two-week period. We conducted an extensive
visualization of the data to discern patterns, focusing on frequently invoked functions,
daily and hourly invocation trends. Subsequent to the preliminary analysis, a specific two-
week dataset exhibiting the most representative patterns was selected. We then applied
the Interquartile Range (IQR) method to this dataset to filter out anomalies, ensuring the
data’s integrity for further testing and evaluation. Linear regression was deployed first,
serving as a baseline model due to its computational efficiency and simplicity. The model’s
predictions informed our understanding of the basic trends within the data. Following
this, an LSTM model was trained on the cleansed dataset to predict wait times. The
LSTM’s ability to capture temporal dependencies made it suitable for forecasting the
server load and response times. Finally, we optimized a Q-learning algorithm through
an iterative process of trial and error. Key parameters of the learning agent—learning
rate, discount factor, and exploration probability—were meticulously adjusted to optimal
levels after multiple experimental runs, enhancing the agent’s decision-making process
for container prewarming strategies. This fine-tuning was crucial to balance the trade-off
between exploration of new strategies and exploitation of known efficient actions.

5.2 Container Management and Simulation Module

The initial test infrastructure was implemented using Apache OpenWhisk, which provides
static container pooling capabilities. However, this research requires dynamic prewarming
based on predictions, which OpenWhisk does not natively support. To address this
requirement, a custom Python-based container orchestration module was developed.

1. Function Gateway (Function gateway.py): This module serves as the entry point
for all incoming serverless function requests to the test system. It handles JMeter
test plans and receives the machine learning model name and execution version
as arguments. It checks for existing containers and creates new ones if necessary
before function execution. It also defines a test function that implements Monte
Carlo simulation to generate realistic workloads. Finally, it generates logs based on
the traffic to track the system’s performance.

2. Prewarming Agent (prewarming agent.py): This module is responsible for proact-
ive warming up containers based on prediction CSV files generated by the machine

13

learning model. FEach prediction represents a function invocation and the sub-
sequent wait time. The prewarming agent creates a new container for each line in
the prediction CSV file and sets a thread to sleep for the duration of the wait time
specified in the input line. This simulates the intervals predicted between successive
function calls, ensuring that containers are ready to handle incoming requests when
they arrive.

3. Q-Learning Agent (qlearning agent.py): Ideally, the Q-learning agent would be
integrated directly with the testing infrastructure to optimize its action-reward feed-
back and enable truly dynamic prewarming. However, due to current limitations,
the Q-learning agent module is used to run Q-learning simulations on the output
of the LSTM prediction model. The script generates an improved prediction CSV
file that can be used for subsequent testing.

This approach provides a more dynamic and responsive prewarming strategy com-
pared to static container pooling. By proactively warming up containers based on pre-
dictions, the system is better equipped to handle incoming requests promptly, minimizing
cold start delays and improving overall system performance.

5.3 Apache Jmeter

Apache Jmeter test plan was generated through Jemeter GUI tool to evaluate the ef-
fectiveness of the machine learning results, simulating a realistic workload of function
invocations based on prediction data. It uses the filtered test data generated during data
preprocessing which contains function invocation timestamps and wait times to guide
the test execution. The test plan employs a ThreadGroup with a single thread and 2452
loops. Each iteration utilizes a SystemSampler to invoke the function gateway module
that triggers a test function call. Additionally, UserParameters are employed to set the
start time variable before each iteration, enabling accurate measurement of the overall
wait time. Each line in the input test data corresponds to one function invocation, a user
parameter START is defined to indicate the start time of test execution. This variable is
updated to the start time corresponding to the input line. Jmeter threads are set to sleep
for a duration defined as follows, this is implemented to make sure the interval between
consecutive function calls are similar to the input test data.

sleep duration = START_TIME + WAIT — CURRENT_TIME

A detailed log capturing the start time, wait time, and other relevant metrics is
also generated after each run, providing valuable insights into the performance of the
execution.

6 Evaluation

The research evaluation is divided into two parts, similar to the implementation process.
The first part explores the details of the machine learning implementation and the pre-
dictions generated. These predictions are then used for excessive testing in a serverless
test infrastructure. Analyzing the collected logs in section 2 77, we assess the model’s
performance and identify key findings related to the research question.

14

6.1 Machine Learning Model Predictions
6.1.1 Long Short-Term Memory(LSTM)

The Long Short-Term Memory (LSTM) network was used for modeling function invoc-
ation patterns throughout the week. The LSTM’s ability for capturing temporal de-
pendencies makes it particularly suitable for forecasting invocation patterns of serverless
computing environments. For the LSTM model, initial data preparation involved the
removal of outliers and the conversion of time stamps into a numerical format suitable
for sequential analysis. This preprocessing step included the encoding of time features
such as hour and day into their sine and cosine components to maintain their cyclical
nature, enhancing the model’s ability to interpret time-based patterns. The constructed
model consists of an initial input layer shaped to the training data, an LSTM layer with
64 neurons featuring ReLLU activation for temporal processing, and two dense layers—the
first with 8 ReLU neurons for non-linearity, and a final single neuron with linear activa-
tion for outputting the predicted wait time. Normalization of the data was done to ensure
consistency in the input scale, which is essential for the model’s performance. This pro-
cess involved adjusting the 'wait’ feature based on the training data’s mean and standard
deviation, setting a standardized baseline for the LSTM network to learn from.This archi-
tecture was compiled to focus on the key task of time series forecasting within the given
dataset. After model training, the LSTM model’s performance was visually evaluated
by plotting its predictions against the actual wait times for the test dataset. Fig shows
comparison between the model prediction and actual wait times, with a few exceptions
at peak intervals indicating areas for potential model improvement. In terms of learning
dynamics, the model demonstrated a quicker adjustment to fluctuations in server demand
during periods of high request rates. Despite initial discrepancies, the LSTM model ad-
apted over successive epochs, suggesting a capacity to optimize threshold adjustments to
prevent SLA violations. Under lower request rates, the LSTM model exhibited a steadier
learning curve with fewer deviations from the actual wait times.

This analysis of the LSTM model’s predictions provided valuable insights into its pre-
dictive accuracy. The trained model has a Mean Squared Error (MSE) of 7976.886869300415(ms)
and Mean Absolute Error (MAE) of 69.03350519778282(ms). Through iterative training
and evaluation, the LSTM network illustrated a reliable capacity for forecasting server
wait times. These predictions were exported to a csv file for validation in the test infra-
structure.

6.1.2 Q-learning

Reinforcement learning agents interact with its environment directly and the decision
policy is optimized based on the action reward feedback. In this research, we have simu-
lated the QLearning executing rather than manipulating the test infrastructure directly.
This was done due to the limitation of the test infrastructure and complexity. Q-learning
agent was programmed to interact with LSTM wait time predictions and 2 other optim-
ization parameters. Prediction CSV was preprocessed to aggregate average predictions
per minute and the used in the Q Learning implementation forming the states within
which the Q-learning agent would operate. Each state represents a possible prewarming
opportunity and the agent can choose one of the 2 actions based on the reward. Ac-
tion can be either 0 or 1, which indicates if the container needs to be created or not.
The Q-learning algorithm was designed to reduce the number of containers created, thus

15

Predictions
350 A | Actuals

300 1

N N
(=] w
o o
s s

=

1%

o
s

Wait Interval(ms)

50 A "‘ ! ’ l ’ l

0 25 50 75 100 125 150 175 200
Event Index

Figure 3: Long Short-Term Memory(LSTM) actual vs prediction output.

controlling costs while maintaining server response efficiency. The reward mechanism
penalized both the wait time and the cost of launching new containers, guiding the agent
toward a strategy that would selectively instantiate containers based on demand and
cost constraints. Throughout the simulation, the Q-learning agent continuously updated
its Q-table, which represented the accumulated knowledge of the value of taking certain
actions in specific states. This update process was governed by the learning rate, which
determined how new information affected existing knowledge, and the discount factor,
which quantified the importance of future rewards. A key feature of this implementa-
tion was the cost-per-minute limitation, which acted as a threshold to prevent excessive
container creation. This constraint was crucial for ensuring the agent did not exceed the
budgetary limits set for container creation within each minute.When the agent decided
to create a container, it updated the running cost for that minute, and the wait time for
that state was reset, indicating the deployment of a new container to manage the request
load. If the wait time was under two seconds, the agent added it to the next state’s wait
time, considering it too short to warrant a new container. The results from the Q-learning
agent’s training were recorded in a new CSV file, reflecting the agent’s evolving policy
and the decisions made at each state. The resulting data from this experiment provide a
granular look at how reinforcement learning can be applied to make more cost-effective
resource allocation decisions in cloud computing environments. This approach has the
potential to significantly reduce operational costs and increase efficiency in serverless ar-
chitectures. Fig shows the changes in wait time after q learning decision. Here the drop
to zero implies removal of a prediction based on the agent decision Fig [4]

6.2 Model Testing in Infrastructure

The validation of the machine learning predictions was conducted using a Python-based
test infrastructure. Initially, an Apache OpenWhisk-based test system was utilized to
evaluate the performance without any prewarming helpers. However, we later transitioned

16

Wait Times Comparison

10000 A

/QM/ i AL m\/ W"J'\ [WM,

6000 -] 1t

Before Q-learning ']
After Q-learning !

Wait Time(ms)

4000 1

2000 -

0 50 100 150 200 250
Index

Figure 4: Q-learning output.

to a Python-based container orchestration module to enable implementation of predictions-
based prewarming. Logs from the OpenWhisk-based system will not be incorporated in
the result analysis. Apache JMeter was employed to simulate a subset of real-world
Function trace calls from the Azure dataset to validate each machine learning predic-
tion. A custom Python method implementing Monte Carlo simulation was executed for
each test run. The Prewarming Agent module within the system executed the container
prewarming logic based on the predictions generated by the machine learning model.

6.2.1 Testing with LSTM

Fig [5] shows the serverless function execution times with the LSTM based predictions
compared to the default executions. Improved Latency up to 30% is observed when
containers are prewarmed based on predictions made by th eLSTM model. There are
spikes in execution time which was observed even with the predictive prewarming. This
is caused by the high number of concurrent requests in that timeframe. As the current
implementation only prewarms 1 container based on the prediction, this is expected.
Further improvements in latency is expected if prewarming pool size is increased to
handle concurrent requests.

6.2.2 Testing with Q Learning

In the evaluation of the Q-learning model, a focus was placed on cost efficiency im-
provements in container management within a serverless computing framework. The
implementation of Q-learning aimed to reduce unnecessary container initializations, a
key factor contributing to operational costs. The Q-learning algorithm was trained on
server log data, where it learned to identify and skip wait times under two seconds. This
decision criterion was established to avoid the instantiation of containers when the ex-
pected wait time did not justify the resource allocation. Additionally, a cost cap per
minute was set for container prewarming, ensuring that the algorithm adhered to budget
constraints while maintaining service availability and performance.

17

Elapsed Time with LSTM based Predictions

5000 - . . .
Elapsed Time without Predictions

4000 A

| | '
3000 A | | { t I
|
1
|

f \1 fw? »H | '\1. M {‘ | _"H

Elapsed Time(ms)

1000_ | \ / A 1’ / 11/ :\ | A

0 20 40 60 80 100 120
Event Index

Figure 5: Testing with LSTM output.

Fig [6] The bar chart illustrates the tangible cost savings achieved through the Q-
learning approach. The 'Before Q-learning’ bar represents the total cost incurred without
the Q-learning model’s intervention, characterized by a higher frequency of container ini-
tializations. In contrast, the "After Q-learning’ bar shows a significant reduction in costs,
demonstrating the financial benefits of the Q-learning policy.. 35This cost reduction
did not come at the expense of execution times, which remained consistent with those
observed when employing LSTM-based predictions. The Q-learning policy successfully
optimized container usage, dynamically adjusting the threshold for container creation and
thereby reducing the total number of containers used. Fig [7|shows the box plot compar-
ing executing time for LSTM prediction and) Learning optimization. The interquartile
range and mean execution time remained almost the same in both implementations. The
strategic avoidance of unnecessary container initializations, coupled with the cost cap
strategy, underscores the effectiveness of Q-learning in resource management. By imple-
menting a more selective container instantiation policy, the Q-learning model managed to
reduce operational costs without compromising on the quality of service, as indicated by
the steady execution times. The Q-learning model’s ability to learn and adapt to usage
patterns, all the while considering cost implications, positions it as a valuable tool for
cloud resource optimization. Moving forward, the continued refinement of the Q-learning
algorithm could further enhance cost savings and resource utilization in serverless envir-
onments.

7 Discussion and Conclusion

Long Short-Term Memory (LSTM) model based predictive prewarming was a promising
solution for the cold start delay problem. The analysis conducted within the test infra-
structure showcased a notable enhancement in execution times, with improvements in the
range of 10-35%. Performance improvements observed in this study matched the prior
research, validating the efficacy of predictive prewarming in reducing latency.

18

5000

4000 A

3000

Elapsed Time(ms)

2000 1

1000 +

. | 1

LSTM Predictions QLearning Decisions

Figure 6: Testing with Q-learning.

Notwithstanding these advancements, the feasibility of deploying aggressive prewarm-
ing strategies based on predictive models in real-world scenarios is not cost effective. Ag-
gressive pre-warming could lead to an increase in operational costs, making it a less viable
option for cost-conscious serverless computing deployments. It is in this context that the
integration of a reinforcement learning (RL) layer becomes important, offering a dynamic
approach to prewarming that balances latency improvements against cost implications
and other dynamic runtime parameters.While the integration of the Q-learning layer did
not result in significant latency reductions, it maintained execution times comparable to
the LSTM-based prewarming strategy. This outcome was anticipated as the RL model
was designed not to prioritize latency but to conserve costs, achieving a considerable 35%
reduction in prewarming expenses.

The findings of this research suggest that the Q-learning model can effectively sustain
service latency at acceptable levels while significantly curtailing the costs associated with
prewarming. The cost efficiency part of the solution also indicated how Reinforcement
learning agent based decisions can be used for enhancing the sustainability of serverless
architectures operation which is relevant now. Looking ahead, the integration of the Q-
learning agent into the test infrastructure will enable incorporating additional parameters
into the reward function which will further improve the prewarming decision making. This
would allow a more granular approach to decision-making, taking into account a wider
array of operational metrics such as container utilization rates, frequency of function
invocations, recent actual invocation history and historical cost data.

The extension of the Q-learning model to consider these additional parameters could
enable a more sophisticated approach to resource management. By leveraging a broader
dataset and a more complex reward structure, the Q-learning agent can be trained to
make even more informed decisions, enhancing its ability to dynamically optimize for both
cost and performance. Such an approach will help in making the serverless computing
infrastructures not only more responsive to real-time demands but also more economically

19

Comparison of Total Cost - Before and After Q-learning Policy

17500 4

15000 -+

12500 A

10000 -

7500 4

Total Cost(In Dollars)

5000 A

2500 A

Before Q-learning After Q-learning

Figure 7: Final results with Q-learning.

efficient, thereby addressing one of the critical challenges faced by the industry today.

References

Agarwal, S., Rodriguez, M. A. and Buyya, R. (2023). Reinforcement learning (rl)
augmented cold start frequency reduction in serverless computing, arXiv preprint
arX1w:2308.07541 .

Azure (n.d.a). Azurepublicdataset /azurefunctionsinvocationtrace2021.md,
https://github.com/Azure/AzurePublicDataset/blob/master/ |
AzureFunctionsInvocationTrace2021.md. GitHub.

Azure (n.d.b). Azurepublicdataset/license, https://github.com/Azure/
AzurePublicDataset/blob/master/LICENSE. GitHub.

Bac, T. P., Tran, M. N. and Kim, Y. (2022). Serverless computing approach for de-
ploying machine learning applications in edge layer, 2022 International Conference on
Information Networking (ICOIN), IEEE, pp. 396-401.

Baldini, 1., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.
Muthusamy, V., Rabbah, R., Slominski, A. et al. (2017). Serverless computing: Current
trends and open problems, Research advances in cloud computing pp. 1-20.

Bannon, R. (2022). Leveraging Machine Learning to Reduce Cold Start Latency of Con-
tainers in Serverless Computing, PhD thesis, Dublin, National College of Ireland.

Dantas, J., Khazaei, H. and Litoiu, M. (2022). Application deployment strategies for
reducing the cold start delay of aws lambda, 2022 IEEE 15th International Conference
on Cloud Computing (CLOUD), IEEE, pp. 1-10.

20

https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/Azure/AzurePublicDataset/blob/master/LICENSE
https://github.com/Azure/AzurePublicDataset/blob/master/LICENSE

Djemame, K., Parker, M. and Datsev, D. (2020). Open-source serverless architectures:
an evaluation of apache openwhisk, 2020 IEEE/ACM 15th International Conference
on Utility and Cloud Computing (UCC), IEEE, pp. 329-335.

Govindan, S. K. (2020). A Deep Learning Based Framework to Initialize New Containers
and Reduce Cold Start Latency in Serverless Platforms, PhD thesis, Dublin, National
College of Ireland.

Korkmaz, M. (2021). A study over the general formula of regression sum of squares
in multiple linear regression, Numerical Methods for Partial Differential Equations
37(1): 406-421.

Kostrikov, 1., Nair, A. and Levine, S. (2021). Offline reinforcement learning with implicit
g-learning, arXiv preprint arXiw:2110.06169 .

Kumar, A., Zhou, A., Tucker, G. and Levine, S. (2020). Conservative g-learning for offline
reinforcement learning, Advances in Neural Information Processing Systems 33: 1179—
1191.

Kumari, A., Sahoo, B. and Behera, R. K. (2022). Mitigating cold-start delay using warm-
start containers in serverless platform, 2022 IEEE 19th India Council International

Conference (INDICON), IEEE, pp. 1-6.

Lee, S., Yoon, D., Yeo, S. and Oh, S. (2021). Mitigating cold start problem in serverless
computing with function fusion, Sensors 21(24): 8416.

Nguyen, T., Do, T., Le, K., Go, S., Na, S., Kim, D. and Tran, D. (2022). An lstm-
based approach for predicting resource utilization in cloud computing, Proceedings of
the 11th International Symposium on Information and Communication Technology,
pp. 173-179.

Oakes, E., Yang, L., Houck, K., Harter, T., Arpaci-Dusseau, A. C. and Arpaci-Dusseau,
R. H. (2017). Pipsqueak: Lean lambdas with large libraries, 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems Workshops (ICDCSW), IEEE,
pp- 395-400.

Su, X., Yan, X. and Tsai, C.-L. (2012). Linear regression, Wiley Interdisciplinary Reviews:
Computational Statistics 4(3): 275-294.

Vahidinia, P., Farahani, B. and Aliee, F. S. (2020). Cold start in serverless computing:
Current trends and mitigation strategies, 2020 International Conference on Omni-layer
Intelligent Systems (COINS), IEEE, pp. 1-7.

Van Eyk, E., Tosup, A., Seif, S. and Thommes, M. (2017). The spec cloud group’s
research vision on faas and serverless architectures, Proceedings of the 2nd international
workshop on serverless computing, pp. 1-4.

Xu, Z., Zhang, H., Geng, X., Wu, Q. and Ma, H. (2019). Adaptive function launching ac-
celeration in serverless computing platforms, 2019 IEEE 25th International Conference
on Parallel and Distributed Systems (ICPADS), IEEE, pp. 9-16.

Zafeiropoulos, A., Fotopoulou, E., Filinis, N. and Papavassiliou, S. (2022). Reinforcement
learning-assisted autoscaling mechanisms for serverless computing platforms, Simula-
tion Modelling Practice and Theory 116: 102461.

21

	Introduction
	Research Question
	Research Objectives

	Related Work
	Serverless computing and applications
	Loading necessary Libraries when a function is invoked
	Optimizing Environments
	Minimizing Invocation Frequency

	ZIP-based Deployment vs. Container-based Deployment
	 Machine Learning based predictions
	Reinforcement Learning

	Methodology
	Data Collection
	Data Preparation
	Machine Learning Techniques
	Linear Regression
	Long Short-Term Memory:
	QLearning (Reinforcement learning)

	Platforms and Tools

	Design Specification
	Experimental Setup
	Architecture Diagram
	Algorithm

	Implementation
	Machine learning models
	Container Management and Simulation Module
	Apache Jmeter

	Evaluation
	 Machine Learning Model Predictions
	Long Short-Term Memory(LSTM)
	Q-learning

	Model Testing in Infrastructure
	Testing with LSTM
	Testing with Q Learning

	Discussion and Conclusion

