National
Collegeof
Ireland

Configuration Manual

MSc Research Project

Acrtificial Intelligence for Business

Usman Ghani
Student ID; x22186514

School of Computing

National College of Ireland

Supervisor: VICTOR DEL ROSAL

1. Introduction

Our primary goal is to provide a cutting-edge sentiment analysis framework tailored
specifically for FlickCard, a platform for user-generated content. This system leverages
advanced deep learning models, including LSTM networks, to accurately classify sentiments
as positive, negative, or neutral. We created the notification alert system using the pushbullet
for fast replies when we received negative reviews on our products from our clients. In this
document, important code snippets are present that can be used to recreate the project code.

2. System Requirements

There are two methods to execute and set up our code. The first method involves
installing the Anaconda Navigator on our local machine. Alternatively, if we prefer
not to install the Anaconda Navigator locally, we can utilize Google Colab. Google
Colab is an online service that offers computational power and fast, free services for
running our machine learning tasks. In our case, we use the google colab.

2.1 System Configuration

Google Colab setup

® Open Google and search for Google Colab, then click on the first link in the
search results.

@ crroo oG |

& S5 C @& googlecom/searchiq=google+colabarlz=1C1GGRY_enPK1053PK1053&0q=goog&gs_lcrp=EqZjaHivbWUqBggCEEUYOZIPCAAQRRG7GIMBGLEDGIAEMG
Go g|e goagle colab X & @& Q
O Al [Videos [o Images [] Books [Mews i More Tools

esults (0.18 seconds

~ Google Research
Y httpsiiiresearch google.com > colaboratory 3
Welcome To Colaboratory

With Colab you can harness the full power of popular Python libraries to analyze and visualize

data. The code cell below uses numpy to generate some random data ...
Google Colab Notebook - Colab Pro - Cancel your subscription - Local runtimes

colab.google
hitps://colab.google §
Google Colab
Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free

access to computing resources, including GPUs and TPUs

~ Google Research
https:/fresearch.google.com » colaboratory » fag §
Google Colab
More technically, Colab is a hosted Jupyter notebook service that requires no setup to use, while

providing access free of charge to computing resources

SafeS

After clicking on the URL, you will be directed to Google Colab. Here, locate
the "File" option, and upon clicking, you will find the "New Notebook™
option. Clicking on it will open a new notebook where you can write and

execute your desired code.

Face Expression Recognition Mc X
€« C

cO Welcome To Colaboratory
lﬁﬂ Edit View Insert Runtime Tools Help

€O Flipkart Product Reviews Sentir x

Code + Text

€O Welcome To Colaboratory - Co x +

@ colab.research.google.com/?utm_source=scs-index

3 Copy to Drive

e % ®© @

GIC I

v = £

O ® &0

G share £

Connect ~

| = T4
Open notebook Ctri+0
Q (Upload notebook
Nelcome to Colab!
{x} ¢
o | Save a copy in Drive f you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history vie
| SaveacopyasaGitHub Gist he command palette.
D Save a copy in GitHub
Save Ctrl+s
|
Download
Print Ctri+P
<>
= What is Colab?
o) Colab, or "Colaboratory”, allows you to write and execute Python in your browser, with

As we are utilizing online services, loading the dataset directly from our local
machine isn't possible. Therefore, we need to upload our dataset. To do this,
navigate to the "File" option, then select "Upload™ and choose the data from
your local folder to upload it to the drive.

< C

o

File Edit View Insert Runtime Tools Help

= Files O x
o B e e
w =

» [sample_data

[

[1]

@ colab.research.google.com/drive/1iHv5AeZymG37_f38xkGXTAz-1ZBdwAEZ

& Flipkart Product Reviews Sentiment Analysis and perfrom Action.ipynb

Last edited on November 28

+ Code + Text

v Import Libraries

import pandas as pd

import numpy as np

import seaborn as sns

import spacy

from spacy.tokens import Doc

import spacy

import matplotlib.pyplot as plt

from wordcloud import WordCloud

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
impert pickle

from sklearn.metrics import accuracy_score

v Load the dataset

Load your dataset into a pandas DataFrame
«=+ [nitializing Python 3 Google Compute Engine backend (GPU)

® L ea

B comment

O @ »0

&, share 8

++ Connecting

v oo B /)

« .t Compressed > archive_1 v U Search archive 2 & ® T e a0® N

Organize ~ New folder - 1 0
nb -
~ MName Yate modified B comment aah Share

= This PC L N Date madifiec

¥ 3D Objects [~18.) Dataset-SA 2/3/2023 9:21 AM
B Desktop

‘% Documents NP =
¥ Downloads

J Music

¥ T sk

&= Pictures

B videos

2. Local Disk ()
- New Volume (D:)

~- New Volume (E)
v < >k

File name: |Dataset-SA ~ | AllFiles > plt

pen anee classification_report

From SKISarn. metrIcs Tmport confusion_matrix

import pickle
from sklearn.metrics import accuracy_score

~ Load the dataset

Disk 51.27 GB available [1 # Load your dataset into a pandas DataFrame
~ Connected to Python 3 Google Compute Engine backend (GPU)

3. Environment Setup

Google Colab typically comes pre-installed with many commonly used libraries. To
use them, you just need to import them into your notebook. If any libraries are not
already installed, you can easily install them using the pip command. In our specific
case, we import the necessary libraries required for our work.

e Pandas

e Numpy

e Seaborn

e Spacy

e Matplotlib
e Wordcloud
e Tensorflow
e Sklearn

e Pickle

4. Implementation
4.1 Data Collection

e The dataset was obtained from Kaggle, and it's necessary to unzip the
downloaded dataset before utilizing it. You can find the link to the dataset

provided below.
https://www.kaggle.com/datasets/niraliivaghani/flipkart-product-customer-

reviews-dataset

https://www.kaggle.com/datasets/niraliivaghani/flipkart-product-customer-reviews-dataset
https://www.kaggle.com/datasets/niraliivaghani/flipkart-product-customer-reviews-dataset

e Asdiscussed in the earlier section on setting up Google Colab, we loaded the
dataset onto the drive. Now, we proceed to read the dataset using the pandas
read command.

< C @ colab.research.google.com/drive/1iHvSAeZymG37_f38xkGXTAz-1ZBdwAEZ#scrollTo=WVIYyqu37QXK = ® I':; ® & 0 ® # 0O
(& Flipkart Product Reviews Sentiment Analysis and perfrom Action.ipynb B comment &) shore €2
File Edit View Insert Runtime Tools Help All changes saved
— + Code + Text Reconnect GPU w
© # Load your dataset into a pandas DataFrame
{x] df = pd.read_csv("/content/Dataset-SA.csv")
df.head()
o E product_name product_price Rate Review Summary Sentiment
(] 0 Candes 12 L Room/Personal Air Cooler??????(Whi... 3999 5 super! great cooler excellent air flow and for this p. positive
1 Candes 12 L Room/Personal Air Cooler???222(Whi 3999 5 awesome best budget 2 fit cooler nice cooling positive
2 Candes 12 L Room/Personal Air Cooler?????2(Whi... 3999 3 fair the quality is good but the power of air is de... positive
3 Candes 12 L Room/Personal Air Cooler???7222(Whi... 3999 1 useless product very bad product its a only a fan negative
4 Candes 12 L Room/Personal Air Cooler??????(Whi... 3999 z) fair ok ok product neutral

<> ~ data preprocessing and EDA(Exploratory data analysis)

[1] ## check the dataset shape

E df.shape

4.2 Data Preprocessing

e Check and remove missing values using the following code

L 1 ## Check Missing wvalues in our dataset
df . .isnull{).sumd{)

product_name 2
product_price =]
Rate 2
Rewview 24664
Summary 11
Sentiment e

dtype: ints4

L 1 df .dropna(inplace=Truea)
e Data visualization is done using matplotlib, seaborn
¢ Implement a comprehensive cleaning process on the "Summary" column:
Lowercase the text.
Tokenize using SpaCy.
Remove stop words.
Apply lemmatization.
Save cleaned text in a new "cleaned_text" column.

VVVVY

function for text cleaning
def clean_ text(text column):
cleaned_texts = []

for

text in text_column:
Step 1: Text Lowercasing
text = text.lower()

Step 2: Tokenization
doc = nlp(text)
tokens = [token.text for token in doc]

Step 3: Stop Word Removal
filtered_tokens = [token for token in tokens if not nlp.vocab[token].is_stop]

Step 4: Lemmatizatiod
lemmatized_tokens = [token.lemma_ for token in nlp(" ".join(filtered_tokens))]

Step 5: Reconstruct the cleaned text
cleaned text = " “.join(lemmatized tokens)
cleaned texts.append(cleaned_ text)

return cleaned_texts

Clean

the ‘Summary review column’ and create a new ‘cleaned_text® column

df["cleaned text"] = clean_text(df["Summary™])

4.3 Data Splitting
e Map sentiment labels to numerical values for LSTM model training.
e Split the dataset into input (X) and output (y) for model development
o Utilize scikit-learn's train_test_split function to divide the dataset into training
and testing sets for robust model evaluation.

Create our independent and dependent columns

Define a dictionary to map sentiment labels to numerical values

sentiment mapping = {"negative”™: @, "neutral”: 1, "positive”: 2}

Replace values in the '"Sentiment' column using the dictionary
df['Sentiment'] = df['Sentiment'].map(sentiment_mapping)

X=df['cleaned text']
y=df['Sentiment’]

Splitting the Data:

#Split dataset into training and testing sets for model training and evaluation.

from sklearn.model_selection import train_test_split

Split the dataset into training and testing sets
X_train, X_test, y_train, y test = train_test split(X,y, test size=0.2, random_state=42)

4.4 Tokenization and Padding
e Tokenize and pad the text data using Keras Tokenizer and pad_sequences to
maintain consistent input lengths for the LSTM model.

| #Tokenize the text and pad sequences to ensure consistent input lengths for the LSTM model.

Create a tokenizer and fit it on the training data
tokenizer = Tokenizer(num words=5000) # You can adjust the vocabulary size as needed
tokenizer.fit_on_texts(X_train)

Save the tokenizer to a file
with open('tokenizer.pkl®, 'wb') as tokenizer file:
pickle.dump(tokenizer, tokenizer file)

Convert text to sequences and pad them
X _train_sequences = tokenizer.texts to sequences(X train)
X_test _sequences = tokenizer.texts to sequences(X_test)

max_sequence_length = 180 # Adjust the sequence length as needed
X_train_padded = pad_sequences(X_train_sequences, maxlen=max_sequence length)
X_test padded = pad_sequences(X_test sequences, maxlen=max_sequence_ length)

4.5 Model Building
e Train the LSTM model on the prepared dataset, adjusting key parameters based on
validation results.

model = Sequential()

Embedding layer: Maps words to dense wvectors
model . add (Embedding(input_dim=58288, output_dim=322, input_length=max_sequence_length))

LSTM layer: Processes sequential data

model . add(LSTM({1&8, return_sequences=True)}) # Use return_sequences=True to stack LSTM layers
model .add (LSTM({75, return_sequences=True)}

model . add(LSTM({5&))

Dense layers: Fully connected layers for learning complex patterns
model . add (Dense (512, activation="relu”})

model . add (Dropout({&.3)) # Dropout layer to reduce overfitting

model . add(Dense (256, activation="relu’))

model . add (Dropout({&.2))

model . add(Dense (128, activation="relu’))

Output layer: Use softmax for multi-class classification
model.add(Dense(3, activation="softmax')) # 3 classes: negative, neutral, positive

Compile the model
model .compile{loss="sparse_categorical_crossentropy’', optimizer="adam®', metrics=["'accuracy"'])

Train the model

model . fit(X_train_padded. y_train,
validation_data=(X_test_padded, y_test).
epochs=15,
batch_size=128)

5. Model Evaluation

e Evaluate the trained LSTM model on the test set, considering metrics such as
accuracy, loss, size, and latency.
e Generate a confusion matrix for a detailed performance assessment.

from sklearn.metrics import confusion_matrix

Assuming you have a trained model 'model”
y_pred = model.predict(X_test padded)
y_pred_classes = np.argmax(y_pred, axis=1)

confusion = confusion_matrix(y test, y pred classes)

Create a heatmap for the confusion matrix

plt.figure(figsize=(5,3))

sns.heatmap(confusion, annot=True, fmt='d', cmap='Blues’', cbar=False,
xticklabels=["Negative', 'Neutral®', 'Positive'],
yticklabels=["Negative', 'Neutral', ‘Positive’])

plt.xlabel(Predicted')

plt.ylabel(' True"')

plt.title('Confusion Matrix")

plt.show()

e Save the trained model for later use

Save the LSTM model to a file
lstm model filename = "saved lstm model.h5’
model.save(lstm model filename)

6. Negative Feedback Handling
6.1 Load The model

For negative feedback, we made a notification system. We save the model in the
previous so we load that on the new notebook and also load the tokenizer pickle file.

< C @ colab.research.google.com/drive/1cSZoDyqYCe1M9FiFgTxxLp8vpPWrVBc5 Q ¥
¢ £ Action perfrom notebook.ipynb
File Edit View Insert Runtime Tools Help Lastsaved at8:01PM
- N + Code + Text
:= Files O X
)
< G B & v © Ipip install pushbullet.py
G I
» @@ sample_data v 18] from pushbullet import Pushbullet
o B saved_Istm_model.n5 faoaptensontlowskenaTnodel=gEnponEplcainadeol

import pickle
from tensorflow.keras.preprocessing. sequence import pad_sequences
l:l import numpy as np

B tokenizer.pkl

v [4] # Load the saved LSTM model
loaded_lstm_model = load_model(' /content/saved lstm _model.h5")

v 6] i#tload the tokenizer
with open('tokenizer.pkl®, 'rb') as tokenizer_file:
loaded_tokenizer = pickle.load(tokenizer_file)

v 9] def get_sentiment_prediction(text, model):
Tokenize and pad the input text
In another file or session,

<>
text_sequence = loaded_tokenizer.texts_to_sequences([text])
@ text_padded = pad_sequences(text_sequence, maxlen=100)
- # Make sentiment prediction using the trained model
Disk 80.78 GB available prediction = model.predict(text_padded)

~ Connected to Python 3 Google Compute Engine backend

ﬂ £ Type here to search
6.2 Model Prediction

e Made a function in which we will pass the message it will return the prediction.

def get sentiment prediction(text, model):
Tokenize and pad the input text
In another file or session,

text sequence = loaded tokenizer.texts to sequences([text])
text padded = pad_sequences(text_sequence, maxlen=10@)

Make sentiment prediction using the trained model
prediction = model.predict(text_padded)

Map the prediction to the corresponding sentiment class
sentiment classes = ["Negative”, "Neutral”, "Positive"]
predicted class = sentiment classes[np.argmax(prediction)]

return predicted class

6.3 Notification System

e Implement a notification system for negative feedback using the Pushbullet library.
e Send notifications based on the model's predictions, enhancing user engagement
and allowing timely responses to negative sentiments.

Example usage:
Replace 'your_text_here’ with the actual text you want to predict

} input_text = input("Please enter the feedback:\n")

Call the function to get sentiment prediction
predicted_sentiment = get_sentiment_prediction(input_text, loaded lstm model)

Define your notification message based on the prediction

if predicted sentiment == 'Negative':
Replace 'YOUR_API_KEY' with your actual Pushbullet API key
pb = Pushbullet('o0.9TzXjIdLLOvXGdFqaiODkvwZ8xPFH1t2")

Send a notification
push = pb.push_note("Negative Sentiment Detected”, "The sentiment analysis model has detected a negative sentiment. Please check the results.”)

print("Notification sent:", push)

Print the prediction and notification details
print("Prediction:", predicted_sentiment)

Please enter the feedback:

