
Automated Machine Learning:
Understanding the relation between Data

and Neurons

MSc Research Project

Artificial Intelligence

Mugil Sivasamy Kalamani
Student ID: X22165096

School of Computing

National College of Ireland

Supervisor: Muslim Jameel Syed

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Mugil Sivasamy Kalamani

Student ID: X22165096

Programme: Artificial Intelligence

Year: 2023 Jan - 2024 Jan

Module: MSc Research Project

Supervisor: Muslim Jameel Syed

Submission Due Date: 31/1/2023

Project Title: Automated Machine Learning: Understanding the relation
between Data and Neurons

Word Count: 4978

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mugil Sivasamy Kalamani

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ✓
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

✓

You must ensure that you retain a HARD COPY of the project, both for
your reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on a computer.

✓

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Automated Machine Learning: Understanding the
relation between Data and Neurons

Mugil Sivasamy Kalamani
X22165096

Abstract

Automated Machine Learning is one of the fields that can improve productivity
in every possible field as it automates most of the ML tasks, allowing everyone
to develop AI systems. Neural networks are the base of all AI systems in the
current world, and they are very complex, making it difficult to understand the
deep workings of the dataset. Without that knowledge, automating neural network
model selection and tuning is impossible. This research study mainly focuses on
selecting the no of neurons in each layer and the number of layers in the neural
network. As a bonus, the analysis gave a deep understanding of the contribution
of the Activation function to fitting the curve. The basic straight-line equation y
= mx + c is the basis of the neural network, and a neuron holds every straight
line or a single-valued function. Thus, from all the experiments, it is found that
the minimum no of neurons required in the first layers is (e + 1), where e is the
total no of extrema in the data column. For n-dimensional Dataset, the sum of all
extremas in all the columns + no of columns. The first layer of the neural network
is the most important, and the activation function is chosen Based on how the data
relation is; if it is a smooth curve, smooth functions like sigmoid and tanh can be
used, and for sharp-edged curves, ReLU and other functions should be used.

1 Introduction

In today’s world, Artificial intelligence is developing extremely fast, leading to automating
every bit of manpower-intensive task. Artificial intelligence is in every possible field, but
it needs domain knowledge and a high-level understanding of data to develop and tune the
AI systems. Machine learning and neural networks form the basis of many AI systems.
Automated Machine Learning is the field where a multitude of research and development
is going on for the automation of ML model training and tuning. Existing AutoML
techniques use grid search or random search, where the subset of the primary dataset
is fit using an optimal range of parameters, and the best model is selected based on
the model’s performance on the subgroup. (Grid Search: It is a method of automated
Machine learning, where all possible Hyperparameter are given as a grid and models
are generated with all the combinations of these hyperparameters in the grid all these
models are trained on the Dataset and the function returns the combination with the
best performance.) This method usually needs a lot of Computing power and time to
train multiple models, so it is traditionally done on cloud servers to decrease time and
increase performance. However, the trust in cloud platforms’ privacy and data security

1

is a question mark for many small and large industries. Thus, finding a better and more
efficient way to tune the model is essential to improve productivity in all fields.

My focus on AutoML is to understand the basis of Neural networks, how all the
weights, biases, activation functions and hyperparameters contribute to the fitting of data
and how the fitting of the model to the data is changed with each parameter. In Neural
networks, the main parameters are the neurons in each layer, and no layers are needed
for the model to fit the particular dataset. These two parameters significantly determine
the model’s ability to work on the Dataset. The objective is to analyse the function of
individual neurons in modelling linear equations of the data and how combinations of
neurons, layers and activation functions model non-linear relationships. This research
bridges a gap in understanding the direct impact of neural networks and the performance
of regression tasks.

The motivation for the project is obtained from personal thought while learning about
Automated Machine Learning’s existing tools and techniques used in Hyperparameter
Optimization in the AutoML tools. It was found that all the AutoML tools use Grid
Search, Random Search and a few other HPO methods to find an optimal model for that
particular dataset. All these methods start with a blind selection of Hyperparameter
space and use all its combinations to test the small sample sub-dataset and select the
combination with the best performance to apply to the whole dataset. But from a
mathematician’s point of view, behind all ML algorithms is pure mathematics, and ML
is just fitting a straight or curved line through the training data points, so it is possible
to use a different mathematical approach to select the parameters and Hyperparameter.

The Research was narrowed down to a simple Artificial Neural network and its ap-
plication on regression problems. The best way to develop an AutoML system to select
ANN for regression tasks is to start by understanding the basics of neural networks, and
how each neuron contributes to the fitting of the dataset. And so all the literature on
the development of basic perceptron to current Deep neural networks was reviewed.

2 Related Work

In the article, Hutter et al. (2019) mentioned that AutoML has taken a boost, but many
successes still rely on human work. In the article “Deep learning”, Giovanni details the
Application of deep learning in two fields, RNN and CNN, for text and image-based tasks.

In 2021, He et al. (2021) surveyed all state-of-the-art AutoML tools and methods and
discussed all the existing limitations and advantages of those tools.

Many different approaches to automating the neural network have already been taken,
and Nagy and Boros (2021), in an article, discussed the use of reinforcement learning for
ANN automation.

Perceptors are the primary neural network building blocks, and the article “The Per-
ception” by Rosenblatt (1958) explains the idea from which the neural network started
to develop. It gives an essential perspective to understand neural networks.

An introduction to computational geometry by Arbib (1969) discusses the basics of
perceptron’s mathematical formulation, giving a perfect mathematical relationship on
how ANNs work in depth. David E Rumelhart 1986 introduced the backpropagation
method to correct the weight and bias in the function to fit the data.

The performance and features of Auto-Sklearn, an automatic tool in the sklearn frame-
work, are reviewed in detail by Rosenblatt (1958). The testing was done rigorously in all

2

possible ways and pushed the limits of the AutoML tools.
The idea of neurons and Neural networks was started after ? wrote a paper on

how neurons in the brain may work. This paper discussed neurons’ multi-dimensional
connection and ability to process information efficiently and quickly.

In the attempt to determine the number of hidden layers and neurons in a layer for
wind speed prediction,Rachmatullah et al. (2021) wrote a paper on this, which gives a
good insight into how to approach the problem of selecting the optimal no of neurons in
the layer.

The main thing in machine learning is understanding the data and measuring the
complexity of any dataset; there is no proper method to measure the complexity of data.
The article by Zubek and Plewczynski (2016) described a way of assessing the complexity
of a dataset by looking at the probability distribution of the data.

To understand DNN, Zhang et al. (2023) introduced an approach of using linear
separability to separate hidden layers and understand the working deep neural network
and all its Hyperparameters. The Research gives a good insight into how to look at the
Neurons and the layers and their relationship to the dataset.

Stühler et al. (2023) benchmarked automl performance in price forecasting, and the
results were promising, so the AutoML tools could be significantly reliable. Similarly,
Warner et al. (2023) benchmarked ELM and Google AutoML and found that ELM is
much better than AutoML.

Johannes et al., in 2022, introduced an approach to select models by linking the model
performance to the features of the production process.

The usage of AutoML in the medical field is essential. Still, Manfred et al., in an
article on the use of AutoML in radio neurology, says that conventional models perform
better than AutoML.

With the mathematical approach in mind, all the existing literature on Hyperpara-
meter Optimization and selection of the model is reviewed in search of any mathematical
way to select these parameters. Still, all the research work was very narrowed down to
a single dataset and used blind testing of Hyperparameters on that particular dataset or
mostly performance review of multiple AutoML tools. Thus there is no direct existing
literature to motivate the study.

3 Methodology

The Research started with a primary literature review on the problem, how the existing
AutoML techniques are functioning currently, and the limitations and issues in the do-
main faced by both the user and technique development end. A clean and neat systematic
approach, as in the Figure 1, was followed throughout the research work.

Before starting with the understanding of basic Neural networks, the Idea was to
find a way to measure the dataset or its complexity and train multiple models with
different datasets of increasing complexity and map their performance with complexity
to obtain a graph of model combination to dataset complexity, thus by interpolating And
extrapolating the graph, we can directly choose the model combination by measuring
dataset complexity and use that combination. Thus to test this, the study was done
on synthetic data and a real-world dataset, to have a basic idea of models and their
combination’s performance on different datasets.

The practical research started with basic testing of Neural network model performance

3

Figure 1: Research Process

for different parameter (Layers, Number of neurons, and activation function) settings for
two datasets. This is similar to an AutoML technique in which a grid search method
defines the parameter space. Still, the moto is not to tune the model for best performance
but to understand how these parameters, when chosen wrong, can take the performance
to worst. The experiment gave an excellent insight into all the limitations and issues
with the existing techniques, like the time and computational resources it takes. The
experiment also gave an outline of the Hyperparameter’s contribution to the fitting of
the dataset.

For the experiment, The real-world dataset is a pollution dataset under the Google
Air View Dublin Project, which is carried one in collaboration with Dublin City Council
to improve the air quality of Dublin City Google Project Air View Data - Dublin City
(May 2021 - August 2022) - data.smartdublin.ie (n.d.). To this dataset, other weather
information is added from the Weather website Met Éireann - the Irish Meteorological
Service (n.d.). The dataset is from a mobile sensor, and the dataset has 5 million data
points over one year, with various features contributing to Pollution like traffic count,
weather information, etc. This dataset is taken as it has a very complex relationship
between the features and the pollution levels. The pollution dataset is preprocessed to
remove anomalies, feature extraction for a few columns, and dimensionality reduction for
fields like latitude and longitude.

The second dataset is a synthetic dataset containing 15 elements, created using math-
ematical functions like sin, tan, exponent, log and polynomial equations and a combin-
ation of these functions and equations. These functions are simple and can be easily
related to y values, so it is taken as an example of a simple dataset.

The Synthetic dataset was generated to test the model’s performance in addition to
the real-world dataset. The main reason for generating a synthetic dataset is that it is

4

easy to know the pattern in data as we know the mathematical function that generated
the data. Also, this study is to understand the model and not to train a model with
the best accuracy to deploy in real-world usage, to understand the model to the fullest,
we first have to understand the data on which the model is trained. In this case, real-
world data may have an Extreme amount of noise and anomalies, which makes it hard
to manually understand the pattern in data. Thus generating synthetic data where the
function creating the pattern is known is well-suited for this study. To generate the
dataset, multiple mathematical functions were used, and all are listed in the Figure 2.

Figure 2: Equations to generate Synthetic Dataset

The models were trained on the same hyperparameter space for both datasets. Com-
plex and simple two datasets give a fundamental relationship between the model’s hy-
perparameters contribution and the data relation to y values Figure 3. This insight also
motivates us to understand the depth of neurons, layers, and activation functions and
their contribution to fitting linear two-dimensional data to non-linear multi-dimensional
data Figure 4.

The idea is to find the optimal no of neurons in each layer and no of layers, activation
function, etc. To understand these parameters, the experiment started with a primary
single neuron. It went up to multi-layer deep neural network architecture, and the data
was synthesised from linear line equation and up to multi-dimensional non-linear equa-
tion.

3.1 Equipment and Software

Equipment and Software: The study primarily used Python programming language to
develop and test neural networks. The basic neural network structure and functions

5

Figure 3: Model Performance on Pollution dataset

6

were constructed using frameworks like TensorFlow and Keras. The pandas and numpy
library were used for synthesising the dataset and Data preprocessing, transformation,
etc. The data visualisation framework used was Matplotlib for its simple and efficient
visualisation. For the programming Interface, Pycharm IDE and Jupyter Notebook were
used.

All the study and experiments were done on a local machine, with a 14-core (20-
thread) Intel i9 processor and a DDR5 RAM of 16 GB. The device has an NVIDIA RTX
3060 GPU with dedicated 6 GB RAM for accelerated computing.

Figure 4: Model Performance on Synthetic Dataset

3.2 Evaluation Methodology

To evaluate these simple neurons, the function or polynomial equation used to generate
the dataset is compared with the neural network weight and bias equation by rearranging
it as a simple mathematical equation used to create the dataset. The weight and bias of
each neuron are extracted after training the model to a mean squared error of 10 power -6
as it is a regression task and is substituted in the weight bias equation of neural networks
to get back the mathematical equation used to generate data. Suppose the error is high
even after multiple epochs. In that case, that indicates that the model is not able to fit
the data, and the weight and bias equation should be able to rearrange in the polynomial
equation that generated the data; if not rearrangeable, then this again indicates that the
model architecture is not sufficient to fit that data. The model’s inability can be visually

7

seen using the plots generated after the training. This proves the direct link between
neural network weight, bias function and dataset generation equation. Also, to visualise
the data and model fitting ability, the x values of the dataset are entirely passed to the
trained model to predict the y values and plotted together in a graph.

4 Design Specification

Figure 5: Neural Network

A Neural Network is a massively complex system made of tiny neurons, where each
neuron has a weight associated with its connection to the previous layer, a bias, and an
activation function. The equation of a simple straight line is given by

y = mx+ c

Where m is the slope of that line in an N-dimensional space, and c is the point where
the line intercepts the y-axis. Similarly, when we look at a neural network, weight is
compared to the slope, and intercept is compared to the neuron’s bias. I.e. weight(w)
is multiplied by the input (x), and bias(b) is added to the weight multiplied by input (w
. x). Every single neuron in the neural network works in the same way. If a neuron has
multiple inputs (x1, x2, x3 . . . xn), then it has a weight corresponding to each input,
i.e. (w1, w2, w3 . . . wn). All the inputs are multiplied by their corresponding weights
and added to their own bias(b). The activation function is a mathematical function that
takes this w. x + b equation is used as input and gives a squished or curved line function
as output. The shape of the production depends on the activation function intended to
be used. This is the primary single-neuron architecture. Every other Neural network
architecture is created by adding the neurons in a vertical or horizontal stack.

For the study of multiple model architecture’s performance on the two mentioned
datasets, the model architecture is defined using hyperparameter space; the parameters
are no of layers, no of neurons and activation function. The model is trained for all the

8

combinations of hyperparameters in the parameter space, and the mean squared error is
saved to a file. Then, multiple plots are plotted to get valuable insight into the model’s
performance. This experiment also gives an idea of which parameter is inducing the
error in the fitting of the data, which tells us which parameter’s contribution we have to
understand deeply to avoid overfitting or underfitting the model.

To study the individual contribution of each neuron to the fitting of data, the exper-
iment started with a simple single-neuron architecture, and it went up to 4 neurons in
the horizontal stack, four neurons in the vertical Stack and all other combinations inside
the range.

The basic idea starts by checking the minimum number of neurons and layers required
to fit a straight line data and move to a single sin wave and then to multiple sine waves.
Then, two-dimensional data is provided from a plane surface to non-linear plane data.
To test the fitting, the data is plotted and visually checked. For a considered case, if the
defined architecture cannot fit the data even after thousands of epochs, the architecture
is insufficient, and the neurons should be added. First, neurons are added vertically (i.e.,
in the same layer), and if they are still inadequate, new layers are introduced to fit the
complexity of the data. This method will give the minimum no of neurons required to
provide a particular data, either a straight line or a curve.

4.1 Measuring Dataset Complexity

Figure 6: Simple and Complex Data

The simplest way to measure any curve is to find the local maxima and local minima
present in the data. The sum of no of maxima and minima in a data is directly propor-
tional to the complexity of the data. If more maxima and minima are present in the data,
then the data is more complex. The study uses this method to evaluate the complexity
of the data.

9

5 Implementation

5.1 Straight line

Figure 7: Straight line graph

Figure 8: Single Neuron Architecture

The straight line equation is given by

y = m.x+ c

from Figure 7, where m and c are slope and intercept, respectively. For the data genera-
tion, the slope value was 0.5, and the intercept was 3. A single neuron architectureFigure 8
is used to fit the straight line, and after training the model, the final weight and bias are
extracted. The weight(w) and bias (b) were 0.50229 and 2.99414, respectivelyFigure 9.
The model equation is given by,

y = w.x+ b

Comparing these two equations, the model directly fits the straight-line equation, so one
neuron is sufficient to provide straight-line data.

For the same straight line, the x and y values were interchanged, and on rearranging
the equation, we get

x = 2y–6

where 2 is the slope and – 6 is the intercept. Weight and bias were found to be 2.00000
and – 5.99998, respectively.

10

Figure 9: Single Neuron Loss plot

Figure 10: Single Neuron Loss plot for X and Y interchanged

Figure 11: Two layer Architecture

11

Now, a second layer is introduced with a single neuron, as in the Figure 11, and the
same data is fit on the model. The model weight bias equation is given by

y = (w1 ∗ x1 + b1)w2 + b2

on rearranging, we get

y = (w1 ∗ w2) ∗ x1 + (b1 ∗ w2 + b2)

which is similar to the straight line equation, where (w1 * w2) is the coefficient of x1,
and so it is supposed to be slope and (b1 * w2 + b2) is the intercept. After training the
model, we get weight and bias to be [0.34395, 1.45370], [1.21265, 1.23717], respectively;
substituting in the model equation, we get weight and bias to be 0.5 and 3, which is the
slope and intercept of the line data generated.

Figure 12: [1,1] architecture Loss plot

Figure 13: [2, 1] Architecture with one inputs

Two neurons in the first layer and one in the output layer were used for the same line
data. As our concentration is on the regression task and the regression task needs only
one output, it is mandatory to use a single neuron in the output layer so that it gives
a single output. For this model ArchitectureFigure 13, the final rearranged weight bias
equation is given by

y = (w1 ∗ w3 + w2 ∗ w4) ∗ x1 + (w3 ∗ b1 + w4 ∗ b2 + b3) (1)

Weight and bias were found to be Layer 1 = [1.75029, -0.85670], [1.35468, 0.85306], Layer
2 = [0.82297, 1.09774], [0.94868916], respectively. On substituting, We get the slope and
intercept of the straight line [0.49053, 3.00115].

12

Figure 14: [2, 1] architecture Loss plot

5.2 3D Linear Data

Figure 15: [2, 1] Architecture with two inputs

For plane, two parallel straight line equations make up a 3D plane, so another straight
line data is generated using 2 and 3 as slope and intercept, respectively. These two
equations combine to form a plane equation; we get

x = y + 0.25z–3.73

Where the coefficient of y is 1, z is 0.25, and the intercept is -3.75. The model equation
on rearranging, we get

y = (w11 ∗ w3 + w21 ∗ w4) ∗ x1+
(w12 ∗ w3 + w22 ∗ w4) ∗ x2+
(w3 ∗ b1 + w4 ∗ b2 + b3)

(2)

The weight and bias after training were extracted and substituted in the equation to get

y = 0.924x1 + 0.2685x2–3.5833

Comparing this with the plane equation, it is evident that the model could fit the data
using two neurons in the Hidden layer and one in the output layer. In all these cases,
the linear activation function was used as the data is linear, the linear function wouldn’t
change the weight and bias according to activation, and the equation was kept simple.

13

Figure 16: [2, 1] architecture with 2 inputs Loss plot

Figure 17: [3, 1] Architecture with three inputs

14

5.3 4D Linear Data

For 4 Dimensional Data, the simplified weight and bias model equation is given by

y = (w11 ∗ wo1 + w21 ∗ wo2 + w31 ∗ wo3) ∗ x1+
(w12 ∗ wo1 + w22 ∗ wo2 + w32 ∗ wo3) ∗ x2+
(w13 ∗ wo1 + w23 ∗ wo2 + w33 ∗ wo3) ∗ x3+
(wo1 ∗ b1 + wo2 ∗ b2 + wo3 ∗ b3 + bo)

(3)

and the four-dimensional data mathematical equation is given by

a.x+ b.y + c.z + d = w

Training the model and substituting the bias and weight values found that it could fit
the dataset with 3 features.

5.4 Simple Curved lines

Figure 18: Sin 0 to π/2 and one neuron neural network

A curved line Figure 18 with zero extrema is generated using a sin function, where
the x value ranges from

0− π/2

A single neuron with a linear activation function was used, and it could not fit the data
perfectly as a linear function doesn’t introduce a non-linearity in the output. However,
the model could fit the curve ideally using the sigmoid activation functionFigure 19.

5.5 Curved line with one maxima

The x range was increased from pi/2 to pi to create data with a single maximum Figure 20.
Neural network architecture like [1], [1,1] and [2,1], [3,1], [3, 2,1] were used to fit this
parabolic curve. When we look at the simplified mathematical function that defines a
single neuron with a linear activation function, is

y = m ∗ x+ c

15

Figure 19: Sin 0 to π/2 and one neuron neural network

Figure 20: Sin 0 to π and one neuron neural network

16

which mathematically is an equation of a straight line. All the activation function is used
to introduce a slight curvature to the straight line equation, without allowing the line
to form a maxima or minima. But for fitting a parabolic curve that has one maxima, a
single neuron cannot fit the data, with any activation function, As none of the activation
functions is going to introduce a maxima to the line equation of the single neuron. Also
increasing the depth of the Neural network is only going to share the weight and bias
between depths while remaining as a straight-line equation. When increasing the breadth
of the neural network, the equation changes to

y =) ∗ x2 + (w21 ∗ w11 + w22 ∗ w12) ∗ x+ (w21 ∗ b1 + w22 ∗ b2 + b3)

This is the equation of a parabola,

y = a ∗ x2 + b ∗ x+ c

thus only increasing breath can fit the parabolic curve and not increasing the depth.
Also, here

x2

term goes to zero as the linear activation function cannot introduce a curve to the data.
Thus only when using a sigmoid activation function can introduce a non-linearity to the
data making the Neural network learn that curve. Thus, a neuron is vertically stacked
on the first layer, removing the third layer. The model could fit the data perfectly, as in
the image below.

Figure 21: Sin 0 to π and two neuron neural network

5.6 Curved line with one maxima and one minima

Now again, the range of x is increased to (2 . pi), and [2, 1] architecture was used.
The model couldn’t fit the dataFigure 20, and the horizontal stacking of neurons didn’t
show any improvement. The model could fit that data when neurons were stacked in [3,
1] architecture, as in the below image.

17

Figure 22: Sin 0 to 2π and two neuron neural network

Figure 23: Sin 0 to 2π and three neuron neural network

Figure 24: Sin 0 to 3π and three neuron neural network

18

5.7 Curved line with two maxima and one minima

Again, the x range is increased to (3 . pi), and [3, 1] architecture was used. The
model couldn’t fit the data, and the horizontal stacking of neurons in layers showed
no improvement. The model could fit that data when neurons were stacked in [4, 1]
architecture, as in the below image. Also, using other activation functions like “ReLU”

Figure 25: Sin 0 to 3π and four neuron neural network

needed more neurons in vertical stacking to fit the same graphs Figure 26.

Figure 26: Sin 0 to 3π and 100 neuron neural network

6 Evaluation

The experiments and case studies in the Research not only answered the questions that
the answers were sought but also gave many insights into how neural networks work on
the data and answered the selection of other hyperparameters. This section discusses all
the evaluation results and is only tested for regression tasks.

19

6.1 No Neurons in each layer

From all the experiments, simple curve with no extrema’s (single-valued function), straight
line and n-dimensional linear data, as each of the dimensions was able to be fit by a single
neuron, the study suggests that the minimum no of neurons in the first layers should n,
where n is the no of the dimension of the dataset.

For the data with extrema’s, from all the observations, the minimum no of neurons in
the first layer is e + 1, Where e is the total no of maxima and minima. And if there are
n dimensions in the non-linear data, there must be e + 1 neurons for each dimension in
the first layer. Also, stacking neurons vertically in addition to the needed no of neurons
will share the weight values while still forming the desired mathematical equation.

6.2 No of layers

From all the experiments, it is evident that the first layer is the most critical layer for
the neural network in fitting the curve. No neurons needed for this layer are given by

e + 1, Where e is the total no of extra.
Since our main objective is to focus on the regression tasks, the output layer will

always have a single neuron with a linear activation function.

6.3 Activation function

As we have seen, each neuron contributes to fitting a straight line of equation, y = mx
+ c; the activation function introduces the non-linearity in doing the simple curve. Even
though non-linearity is presented, as all the activation functions are single-valued (i.e.
the function won’t have two values for any point of x), the non-linear curve will also be
single-valued. Also, the curve plots show the difference between each activation function
and the data they are fitting on. We may need more neurons to fit a smooth curve line
using the relu activation function, but the extrema conditions apply to check a zig-zag
data using ReLU or leakyReLU. Similarly, a zig-zag curve with a sigmoid activation
function may need more neurons. It is best to choose the proper activation function to
provide data depending on the fit we seek.

6.4 No of Epochs

Under the condition of selecting the minimum number of neurons in the layer, having
more epochs does not overfit the data. Another reason for not overfitting the data even
after 1000 epochs was that our data was smooth and continuous. It is always best to use
an early stopping callback. Also, fitting happens only if more than the minimum required
neurons exist.

6.5 Discussion

The main point to note in the experiment is that it is only done for single-frequency non-
linear data. Some expected results may not be achieved if the data has more frequencies.
Also, the study gave another hypothesis: converting the data into a frequency domain
might answer the no of layers needed for a much better understanding. (i.e. finding the
total no of extra for each frequency and stacking neurons vertically for each frequency, and

20

also giving the first layer to the highest frequency and the last hidden layer to correspond
to the lowest frequency.)

As the optimiser uses its epochs to fit the model to the data, having a minimum num-
ber of neurons constantly increases the epochs, costing a lot of time. When accelerated
processing is used efficiently, the time may be reduced. Also, in some tests, it is seen that
adding a layer reduced the epoch drastically.

As a neural network is a substantial complex mathematical equation, it is easy to
prove the observation theoretically.

7 Conclusion and Future Work

The research’s main objective is to find a better and more efficient way to Automate the
ML pipeline by understanding the in-depth contribution of each parameter in a neural
network. With findings like (e + 1) no of neurons for the first layer and n(e + 1) for n
dimensions, these hyperparameters can be selected very efficiently with a vast per cent
decrease in Computing resource usage and time consumed. This also allows it to run on
local machines, theory, by making it available for everyone, reducing the dependency on
high-performance cloud systems and the data security and privacy risk.

Future work will study more data varieties and observe how the model performs for
each data. Also, as said earlier, testing the hypothesis and frequency domain of data
may answer a few more questions related to the no of layers and neurons contribution to
multiple frequency data.

References

Arbib, M. (1969). Review of ’perceptrons: An introduction to computational geometry’
(minsky, m., and papert, s.; 1969), Information Theory, IEEE Transactions on 15: 738–
739.

Google Project Air View Data - Dublin City (May 2021 - August 2022) -
data.smartdublin.ie (n.d.).
URL: https://data.smartdublin.ie/dataset/google-airview-data-dublin-city

He, X., Zhao, K. and Chu, X. (2021). Automl: A survey of the state-of-the-art,
Knowledge-Based Systems 212: 106622.

Hutter, F., Kotthoff, L. and Vanschoren, J. (2019). Automated Machine Learning -
Methods, Systems, Challenges.

Met Éireann - the Irish Meteorological Service (n.d.).
URL: https://www.met.ie/

Nagy, A. and Boros, (2021). Improving the sample-efficiency of neural architecture search
with reinforcement learning.

Rachmatullah, M. I. C., Santoso, J. and Surendro, K. (2021). Determining the number
of hidden layer and hidden neuron of neural network for wind speed prediction, PeerJ
7: e724.
URL: https://doi.org/10.7717/peerj-cs.724

21

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain [j], Psychol. Review 65: 386 – 408.

Stühler, H., Zöller, M.-A., Klau, D., Bedrikow, A. B. and Tutschku, C. (2023). Bench-
marking automated machine learning methods for price forecasting applications, ArXiv
abs/2304.14735.
URL: https://api.semanticscholar.org/CorpusID:258418202

Warner, B., Ratner, E. and Lendasse, A. (2023). Edammo’s Extreme AutoML Technology
– Benchmarks and analysis.
URL: https://doi.org/10.1007/978-3-031-21678-715

Zhang, C., Chen, X., Li, W., Liu, L., Wu, W. and Tao, D. (2023). Understanding deep
neural networks via linear separability of hidden layers, arXiv (Cornell University) .
URL: https://arxiv.org/abs/2307.13962

Zubek, J. and Plewczynski, D. (2016). Complexity curve: a graphical measure of data
complexity and classifier performance, PeerJ 2: e76.
URL: https://doi.org/10.7717/peerj-cs.76

22

	Introduction
	Related Work
	Methodology
	Equipment and Software
	Evaluation Methodology

	Design Specification
	Measuring Dataset Complexity

	Implementation
	Straight line
	3D Linear Data
	4D Linear Data
	Simple Curved lines
	Curved line with one maxima
	Curved line with one maxima and one minima
	Curved line with two maxima and one minima

	Evaluation
	No Neurons in each layer
	No of layers
	Activation function
	No of Epochs
	Discussion

	Conclusion and Future Work

