
”Cybersecurity Fortification through Machine
Learning: Predictive Models for Malware
Detection in Network Environments”

MSc Research Project

Masters in Artificial Intelligence

Hudson Paul Rajesh
Student ID: x22181920

School of Computing

National College of Ireland

Supervisor: Muslim Jameel Syed

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Hudson Paul Rajesh

Student ID: x22181920

Programme: Masters in Artificial Intelligence

Year: 2023

Module: MSc Research Project

Supervisor: Muslim Jameel Syed

Submission Due Date: 14/12/2023

Project Title: ”Cybersecurity Fortification through Machine Learning: Pre-
dictive Models for Malware Detection in Network Environ-
ments”

Word Count: 9250

Page Count: 28

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Hudson Paul Rajesh

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



”Cybersecurity Fortification through Machine
Learning: Predictive Models for Malware Detection in

Network Environments”

Hudson Paul Rajesh
x22181920

Abstract

With a particular emphasis on virus detection in network contexts, this research
project explores the field of cybersecurity. By using a multimodal approach, we ap-
ply well-known machine learning techniques, such as Recurrent Neural Networks
(RNN), Artificial Neural Networks (ANN), and Convolutional Neural Networks
(CNN), to build resilient models for the detection of harmful activity. The research
employs well-known datasets for training and assessing the models’ effectiveness,
such as those from the Microsoft malware prediction repository. To ensure the
effectiveness of our models, we leverage established datasets, including data from
the Microsoft Malware Prediction Database. These datasets serve as a valuable re-
source for training and evaluating the performance of machine learning models and
provide a variety of representative malicious patterns for comprehensive analysis.
Our research on the application of RNN, ANN and CNN in malware detection
aims to improve the accuracy and effectiveness of cyber security measures. By
leveraging the power of these machine learning structures, we aim to strengthen
network security, creating proactive defences against cyber threats.

The goal of this research project is to strengthen cybersecurity by employing
predictive models to detect malware in network environments. The study carefully
uses downsampling methods and investigates how well Convolutional Neural Net-
works (CNNs) operate in conjunction with conventional machine learning models.
The main objective of the three investigations, which involve extensive feature en-
gineering and encoding methodologies, is to improve spatial understanding for more
precise virus identification.

It is discovered that the downsampling technique, which reduces the dataset to
100,000 rows, effectively manages computer resources while posing questions about
generalisation to a larger dataset. The use of CNNs, particularly in the most recent
experiment, provides encouraging new information about the possible benefits of
spatial dependency capture in malware detection.

Keywords: Cybersecurity, Predictive Models, Malware Detection,
Downsampling, Convolutional Neural Networks (CNNs), Feature En-
gineering, Network Security.

1 Introduction

In the digital age, cybersecurity is a crucial field where sophisticated and creative defences
are needed to counteract the increasing frequency and sophistication of cyberattacks. In

1



order to improve cybersecurity, this research project focuses on integrating machine learn-
ing techniques that are specifically designed to predict and identify malware in network
environments. As the amount of interconnected systems in our daily lives increases, the
need to protect networks from hostile breaches develops.

This study aims to address the changing situation of cyber risks with a focus on
virus detection in network contexts. Industry reports highlight the rapid increase in
cyberattacks worldwide, which emphasises the significance of our inquiry. Taking into
account the necessity of preventive measures, our study raises the following key query: In
what ways may artificial neural networks (ANN), convolutional neural networks (CNN),
and recurrent neural networks (RNN) be used in machine learning to build prediction
models that protect network environments from malware attacks?

1.1 Contextualizing the Problem:

Networks are a vital component of today’s digital economy, allowing for smooth commu-
nication and connectivity. It is necessary to reevaluate and strengthen our cybersecurity
efforts because this interconnectedness has also paved the way for the quick spread of
malware. Conventional signature-based techniques, although somewhat successful, are
becoming less and less effective in stopping new and evolving malware strains. The
need for a paradigm change towards intelligent, adaptable solutions is highlighted by this
shortcoming.

Figure 1: Malware detection using ML

This is a nice little introduction with some figures in Figure 21

1.2 Background

The significance of strong malware detection techniques in the constantly changing field
of cybersecurity cannot be emphasized. Malware’s constant evolution presents a serious
threat to the security and integrity of these networked systems since digital networks
remain the foundation of international communication and trade. Because it aims to
improve cybersecurity practices, go beyond the constraints of traditional approaches, and

2



provide a proactive defense against the ever-changing nature of modern cyber threats,
this research is significant.

Building upon a historical narrative of cybersecurity, this research acknowledges the
limitations of conventional signature-based and heuristic approaches when dealing with
targeted and polymorphic malware. Our goal is to close a significant gap in the literat-
ure by utilizing machine learning to construct and assess predictive models specifically
designed for malware detection in various network scenarios. The underlying reasoning
behind this research is that current solutions are unable to keep up with the intricacy of
contemporary cyber threats. Through our exploration of this uncharted terrain, we hope
to close a major gap and greatly improve cybersecurity efficacy.

This study intends to advance the discipline by laying the groundwork for adaptive
and intelligent malware detection. Our work aims to build predictive models trained
on large-scale datasets, rigorously assess their performance in real-world settings, and
determine their possible influence on strengthening cybersecurity. We expect to uncover
insights that go beyond the state-of-the-art in malware detection through a painstaking
process that blends data curation, model training, and empirical evaluation.

We believe that when we set out on our research trip, the effective use of predictive
models will refute the null hypothesis and show why they are better than conventional
approaches. This refusal will lead to a paradigm shift in the way that cybersecurity is
defended against the always-changing array of cyber threats, especially when combined
with a thorough knowledge of the impact of machine learning.

1.3 Research Questions

The primary research inquiry driving this study is:

1. How can predictive models be used to strengthen cybersecurity, with a particular
emphasis on downsampling techniques and Convolutional Neural Networks (CNNs)
integrated for improved malware detection in network environments?

This question explores predictive modelling strategies, concentrating on CNNs and
downsampling approaches. It aims to comprehend the best way to apply these
technologies to support cybersecurity measures, with a focus on how to use them
to enhance malware detection in network settings.

2. How much may machine learning techniques—specifically, the use of Convolutional
Neural Networks (CNNs) and downsampling—advance cybersecurity by increasing
the precision and effectiveness of malware detection in network environments?

The purpose of this inquiry is to measure the influence and efficacy of machine
learning methods—more especially, CNNs and downsampling—in the field of cy-
bersecurity. It aims to quantify the extent to which these methods improve malware
detection accuracy and efficacy in general across a range of network scenarios.

1.4 Objectives:

1. Create Predictive Models: Deploy advanced machine learning models with a focus
on malware detection. This entails carefully investigating and using convolutional neural
networks (CNNs) and downsampling methods. The aim is to fill the models with the
capacity to identify minute patterns and irregularities in network data that signify the

3



existence of different malware strains. This procedure guarantees that the prediction
models are precisely calibrated to the nuances of cybersecurity risks through extensive
data preparation, feature engineering, and model training.

2. Evaluate Model Performance: Deploy advanced machine learning models with a
focus on malware detection. This entails carefully investigating and using convolutional
neural networks (CNNs) and downsampling methods. The aim is to imbue the models
with the capacity to identify minute patterns and irregularities in network data that
signify the existence of different malware strains. This procedure guarantees that the
prediction models are precisely calibrated to the nuances of cybersecurity risks through
extensive data preparation, feature engineering, and model training.

3. Compare with Traditional Methods:Perform a thorough comparison between
the conventional heuristic and signature-based techniques to malware detection and the
machine learning-based models. This entails analysing each methodology’s advantages
and disadvantages, paying particular attention to false positives and detection rates.
This goal highlights the revolutionary potential of advanced modelling approaches above
traditional cybersecurity procedures by quantifying the benefits provided by machine
learning.

4. Investigate Adaptability: Examine how well-suited and resilient the prediction
models are to new and evolving malware strains. In order to simulate real-world situations
where the cybersecurity environment is dynamic, our inquiry entails exposing the models
to attacks that have never been encountered before. This aim highlights the practical
applicability and durability of the models in tackling the constantly changing nature of
cybersecurity concerns by guaranteeing their ability to adapt to developing threats.

5.Assess Practical Implications: Perform a thorough analysis of the real-world ef-
fects of implementing machine learning models to improve cybersecurity. This entails a
thorough analysis of the resources needed, including processing power, data storage, and
model upkeep. It also contains an appraisal of implementation challenges, taking into
account things like compatibility with already-existing cybersecurity frameworks. The
models’ overall efficacy in strengthening security measures in network settings is further
examined, offering insights into their practical application and possible implementation
issues.

1.5 Limitation

Although the goal of this research is to significantly advance the area, some limits must
be noted. The representativeness and accessibility of training data may have an impact
on how well machine learning models perform. Furthermore, the requirement for ongoing
updates and retraining may limit these models’ ability to adapt in real time to new
threats. The particular machine learning methods selected for application also place
limitations on the research.

1.6 The Structure of the report

This report’s format is intended to give readers a thorough knowledge of the research
process:

Literature review: An analytical analysis of previous research to lay the groundwork for
future studies and pinpoint knowledge gaps.

4



Methodology: A thorough explanation of the procedures involved in data gathering,
model construction, research design, and evaluation.

Results: Empirical findings are presented and analyzed, along with performance indicat-
ors and comparative evaluations.

Discussion: Analysing the findings, investigating the ramifications, and taking the re-
search’s overall influence into account.

Conclusion: an overview of significant discoveries, their consequences, and directions for
further study.

HELLO HJUDOSN

2 Related Work

Schultz et al. (2000)Over the years, the field of malware detection has seen tremendous
progress, largely due to the use of diverse approaches by researchers. Using a static
feature-based approach, pioneered the application of machine learning for identifying
unknown malware in 2001. They laid the foundation for feature-rich techniques in later
research by utilising PE (Programme Executables), byte n-grams, and Strings for feature
extraction. This pioneering work laid the groundwork for investigating various feature
sets to improve malware detection systems’ accuracy. Malware analysis, detection
and classification processes can be seen in Figure 2

Figure 2: Malware-analysis-detection-and-classification-processes

By using opcodes as the foundation for malware detection, Bilar (2007) presented
a fresh viewpoint in 2007. Bilar’s analysis of the frequency distribution of opcodes in
harmful and non-malicious files showed that opcode-based features are effective in dif-
ferentiating between the two. Continuing along this path,Elovici et al. (2007) used the
Fisher Score (FS) approach in conjunction with Programme Executable (PE) features

5



for feature selection that same year. They attained an astounding 95.8 accuracy rate
by using Artificial Neural Network (ANN), Bayesian Network (BN), and Decision Tree
classifiers. To maximise detection accuracy, our work highlighted the value of feature
selection strategies and the application of several classification methods.

By using filters like Gain Ratio (GR) and Fisher Score, Moskovitch et al. (2009)
expanded on the investigation of feature selection in 2008. With a remarkable 94.9
accuracy, their method made use of classifiers like Artificial Neural Networks (ANN),
Decision Trees (DT), Näıve Bayes (NB), Adaboost.M1 (Boosted DT and Boosted NB),
and Support Vector Machines (SVM). This highlighted the importance of feature selection
methods in enhancing the efficiency of classifiers.

The same year, Moskovitch et al. (2008) conducted a follow-up study where they
examined opcode n-grams (1 to 6 grammes) as features and used Document Frequency
(DF), GR, and FS for feature selection. They selected ANN, DT, Boosted DT, NB,
and Boosted NB as their classifiers. The results highlighted the effectiveness of boosted
decision trees, artificial neural networks, and decision trees in attaining a respectable
degree of accuracy with a low false positive rate.

Figure 3: Methodology Used in Signature-based IDS

Yuan et al. (2020)Deep learning applied to image-based representations has become
a popular approach in the malware classification space because of its capacity to handle
complex patterns found in malware variants. Grayscale image-based malware classifica-
tion via deep learning (GDMC) is a noteworthy technique in this field. However, there
is still potential for growth when it comes to GDMC’s accuracy, especially in situations
where the size of the training dataset is crucial. To fill this vacuum, we present a new
method called byte-level malware classification using Markov images and deep learning
(MDMC). As opposed to GDMC, MDMC creates a more sophisticated and reliable rep-
resentation by converting malware binaries into Markov pictures using bytes transfer
probability matrices. In the following categorization, a deep convolutional neural net-
work is utilized. Comprehensive tests on the Drebin and Microsoft malware datasets
demonstrate that MDMC performs better than the others, with average accuracy rates
of 97.364 and 99.264, respectively. The comparative analysis highlights the superior per-

6



formance of MDMC over the current GDMC methodology, particularly when different
ratios of training and testing datasets are taken into account.

Liu et al. (2020)We are part of a larger academic community focused on addressing
the growing threat of malware in the Android ecosystem, and our machine learning-
based inquiry into Android malware detection fits inside that framework. This problem
has been the subject of numerous research, each offering hypotheses and approaches from
different angles. As previous studies have shown, machine learning is a powerful and
promising method for detecting Android malware. Reviews that have already been writ-
ten have provided insightful analysis of various aspects of this discipline, highlighting the
value of machine learning. Nonetheless, our work aims to supplement these earlier evalu-
ations by offering an extensive assessment covering a broader range of Android malware
detection-related topics.Muzaffar et al. (2022) In particular, we contribute by providing
a thorough study that explores important aspects such as sample collection, data pre-
processing, feature selection, machine learning models, algorithms, and the assessment of
detection efficacy. We place our survey in the larger context of Android applications by
providing background information on the security features, malware classification, and
system architecture of Android. Our goal in concentrating on machine learning is to
provide a comprehensive and current overview of the state of research and new devel-
opments in Android malware detection. This work not only helps scholars comprehend
Android malware detection from a broad perspective using machine learning, but it also
lays the groundwork for future researchers by offering a path through the always-changing
landscape of this important field of study.

DATABASE INITIAL SERACH TOTAL INCLUSION

IEEE Xplore 42 8

Science Direct 111 5

Springer Link 35 3

Total 196 16

Shaukat et al. (2020)Our work addresses the pressing need for strong defences against
changing cyber threats in the rapidly growing domains of mobile applications and the
Internet. It is positioned within the dynamic landscape of cybersecurity. The incorpora-
tion of machine learning (ML) techniques is an essential component of this defence since
they have demonstrated invaluable capabilities in augmenting security protocols. Wolsey
(2022)Nonetheless, there are many obstacles in the way of machine learning’s effective-
ness in cybersecurity, chief among them being the need to guarantee the reliability of ML
systems against hostile online attackers. By giving a thorough summary of the difficulties
ML approaches confront in protecting cyberspace, this study adds to the larger conver-
sation. The literature on machine learning applications in cybersecurity is thoroughly
reviewed, with an emphasis on malware, spam, and intrusion detection in both computer
networks and mobile networks over the past decade.

The overall objective of comprehending and reducing the difficulties related to the ap-
plication of ML techniques in cybersecurity is in line with our approach. We seek to offer
a comprehensive view of the state-of-the-art in ML for cybersecurity through a thorough
analysis of commonly used security datasets, crucial ML technologies, and assessment
criteria. We add to the ongoing efforts to strengthen cyber defences and traverse the
complex terrain of machine learning risks by placing our research within the existing

7



body of literature. This study is a useful tool for researchers and practitioners working
to advance machine learning in cybersecurity, in addition to being a great resource for
scholars.

Baptista et al. (2019)”A Novel Malware Detection System Based on Machine
Learning and Binary Visualisation” from IEEE Explore presents a cutting-edge
approach to malware detection by fusing self-organizing incremental neural networks
(SOINN) with binary visualisation. This new method goes beyond conventional machine
learning methods by using malware binaries’ visual representations to improve pattern
recognition. The technique’s ability to identify malicious payloads in a variety of file
formats, including Microsoft Document Files (.doc) and Portable Document Files (.pdf),
was demonstrated. The published test findings showed impressive ransomware detection
accuracies of 91.7 and 94.1 for PDF and DOC files, respectively. The system’s impressive
incremental detection rate was particularly noteworthy as it allowed for the real-time
identification of unknown malware and its dynamic adaptation to evolving cyber threats.

As this study demonstrates, the combination of binary visualisation and SOINN makes
a substantial contribution to the field of cybersecurity. Because of its adaptive learning
method and capacity to detect malware across a variety of file types, it is a promising
contender in modern cybersecurity. The presented methodology is noteworthy due to
its potential impact on practical applications, demonstrating the usefulness of new tech-
nologies in supporting malware detection and defence tactics, especially in light of the
ongoing evolution of cyber threats.

Researchers utilising a variety of approaches have made noteworthy contributions
to recent studies on malware detection using the Kaggle dataset.Ahmadi et al. (2016)
groundbreaking study is one example of this kind of work that stands out for its thorough
methodology that makes use of the Microsoft malware dataset. In addition to features
retrieved from disassembled files, such as metadata, symbol frequency, opcodes, and
registers, the researchers also used hex dump-based features, which include n-grams,
metadata, entropy, image representation, and string length. By utilising the XGBoost
classification technique, their work produced an impressive 99.8 detection accuracy. Drew
et al. (2017)This demonstrates how feature-rich techniques may be used to effectively
leverage both the properties of disassembled files and hex dump characteristics for reliable
virus identification.

Faruk et al. (2021)Because malware is becoming more and more dangerous and poses
serious dangers to computer systems and stakeholders, the constantly changing technolo-
gical landscape has resulted in increased security concerns. Strong security measures play
a crucial role in preventing fraudulent actions and protecting end-user data. Malware,
which includes scripts, harmful code, and intrusive software, is a significant problem since
inexperienced users sometimes find it difficult to discern between benign and malicious
apps. In response, there is an increasing focus on creating computer programs and mobile
applications that can successfully identify and stop fraudulent activity, protecting stake-
holders’ security. Djenna et al. (2023)A particular study focuses on applying Artificial
Intelligence (AI) methods to malware identification and prevention. The study offers
a thorough analysis of current malware detection technologies, highlighting their draw-
backs and suggesting areas for development to boost effectiveness. The study highlights
the significance of artificial intelligence, machine learning, and deep learning in the field
of malware detection. The results underscore the need to implement forward-thinking
strategies in the creation of malware detection software, stressing the significant benefits
that these developments may provide. Sharma et al. (2019) suggest a machine learning

8



method for malware detection based on opcode incidence. The researchers addition-
ally assess five classifiers, namely LMT, REPTree, Random Forest, NBT, and J48Graft,
using a dataset from the Kaggle Microsoft malware classification challenge dataset. A
demonstration shows that the suggested method can identify the malware with nearly
100 accuracy of the time.

Fritsch et al. (2022)To achieve automated hyperparameter optimisation and the best
DNN design, a team of researchers from Kennesaw State University provide a unique
framework based on Bayesian optimisation. The NSL-KDD benchmark dataset for net-
work intrusion detection is evaluated in the study, and the demonstration results show
the effectiveness of the framework. As a consequence, the DNN architecture detects much
more incursion in terms of accuracy, precision, recall, and f1-score. With the maximum
accuracy of 82.95 and 54.99 for the KDDTest+ and KDDTest-21 datasets, respectively,
BO-GP surpasses the random search optimization-based method.

3 Methodology

Throughout the process of creating and testing my models for malware detection in
network environments, we carefully followed an extensive research methodology. This
strategy was thoughtfully crafted using knowledge gleaned from a detailed review of
relevant literature in the topic.

Figure 4: Research Process Diagram

3.1 Data Collection:

We choose to use the Microsoft Malware Prediction 2015 Bigdata dataset as our main
study source. This dataset was selected for testing and training our prediction models due
to its popularity and importance, having been acquired from the related competition. It
provides a full range of characteristics and labels. Our inquiry into machine learning-based
malware detection in network contexts has a strong foundation thanks to the dataset,
which contains a wide range of malware cases. A binary target called ”HasDetections”
is present in the Microsoft Malware Prediction dataset. The training set contains about
8.9 million samples and originally had 83 columns. Eighty-two columns and roughly

9



7.8 million samples make up the original test set. Because it provides no information for
any model, the machine identifier column has been eliminated. A balanced distribution
of classes is used in the training set.

Figure 5: Microsoft Malware Classification-datasets

The training dataset includes information about a number of characteristics specific
to every computer and the associated outcome regarding the detection of malware on the
system.

The dataset’s equilibrium
Initially, we must ascertain whether the dataset is unbalanced. When there is unequal

representation of the classes, the data is said to be imbalanced.
Certain machine learning classifiers, like Random Forest, are sensitive to the relative

proportions of the various classes and thus cannot handle imbalanced datasets. The class
with the highest percentage of observations may be favoured by those classifiers. These
trained classifiers frequently produce erroneous predictions.

Figure 6: Flow-chart for malware Detection

1. Drop the ’MachineIdentifier’ column: This column is not included in the
feature set because it is unique for every data entry and has no predictive value. Elim-
inating it simplifies the dataset and increases computational efficiency without lowering
the calibre of training data.

10



2.Remove features with 0.80 NaN values: Significantly high percentages of missing
data (NaN) in a column can add noise and reduce the classifier’s efficacy. The dataset
is modified to preserve only those attributes that provide significant information for the
classification task, hence improving the model’s interpretability and accuracy. Features
with 0.80 or more NaN values are removed.

3. Remove features that are 0.90 skewed: Highly skewed features—that is, where
a dominant value accounts for at least 0.90 of the dataset—might not provide a signi-
ficant contribution to learning. The classifier can concentrate on patterns and changes
in the data that are more useful for differentiating between classes by removing such
characteristics.

4.Convert all categorical data into numerical data (Count Encoding + Label
Encoding):

Categorical data must be converted into a numerical format to make the classifier’s
training process easier. To do this, a combination of label encoding and count encoding
techniques must be used. Through the use of count encoding, which substitutes the count
of occurrences for categorical values, each category’s frequency is represented numerically.
By giving each category a distinct numerical label through label encoding, the model is
better able to understand and learn from the categorical data.

Figure 7: Categorical Cardinality vs Features

5.Imputation of Missing Values: An imputation strategy may be used to replace
NaN values in remaining features, depending on the type of missing data. By doing
this, the dataset is guaranteed to be complete, enabling a more thorough analysis to be
performed during the training stage.

Determining the correlation between the goal variable ”HasDetections” and the 25
most significant attributes is essential to learn about the elements that impact malware

11



Figure 8: Missing value chart

detection on computers.

Figure 9: HasDetections

The binary result indicating whether or not a machine has detected malware is rep-
resented by the ”HasDetections” variable. By examining the correlation between ”Has-
Detections” and the 25 most significant features, we may identify patterns, dependencies,
and possible markers of malware presence in the dataset.

Feature importance scores from a machine learning model are usually used to de-
termine the top 25 significant features. Methods such as tree-based algorithms or other
model-agnostic approaches could be used to accomplish this. These characteristics have
a significant impact on the model’s ability to forecast malware detection.

Figure 9 will show the Relation between HasDetections and 25 important features.
To improve the Microsoft Malware Prediction 2015 Bigdata dataset for efficient mal-

ware detection, exploratory data analysis, or EDA, is essential. First and foremost, it is
important to comprehend feature distributions. Potential indicators of malware presence
can be found by visualising patterns relating to system parameters, network activities,
and security setups. Analysing feature distributions like firewall configurations or anti-
virus update rates might reveal important information about system risks.

The selection of pertinent features for the model depends heavily on correlation ana-
lysis. A deeper comprehension of the connections that lead to efficient malware detection
can be attained by looking into correlations between features and the target variable
”HasDetections.” It is possible to rank features that have a strong correlation with mal-
ware detection in order of priority for the classification model.

In EDA, handling outliers is a complex procedure. Making educated judgements about
the significance of outliers in the dataset and whether removal, alteration, or additional
research is required is made possible by identifying and evaluating them. This is especially
crucial for identifying odd system behaviour that can point to the presence of malware.

Analysing categorical data, like software versions or operating systems, visually aids
in understanding how malware detections are distributed throughout various groups. The

12



Figure 10: Relation between HasDetections and 25 important features

Figure 11: Values for 25 important features

13



machine learning model’s choice of how best to encode categorical variables is influenced
by the results of this investigation.

Understanding the contribution of each feature to the model’s prediction power re-
quires the use of feature importance visualisation. Decisions about which features to
include or exclude from the final model are guided by the visualisation of importance
scores obtained from feature extraction or selection algorithms.

Finding notable variations in means, distributions, or other statistical measures between
computers with and without malware detections can be accomplished by performing a
comparative analysis. This comparison method helps to fine-tune the feature set and
differentiate between the two classes.

EDA’s assessment of class disparities is another crucial component. To guarantee that
the machine learning model learns from both instances of malware detection and non-
detection appropriately, imbalances can be addressed via oversampling, undersampling,
or synthetic data synthesis.

If applicable, visualising decision boundaries provides a graphical depiction of how the
classifier separates malware detection occurrences. Understanding the areas of feature
space that contribute to successful classification and analysing the model’s behaviour is
made easier with the help of this visualisation.

Lastly, developing new features or altering current ones to capture subtle patterns
associated with malware behaviour constitutes the process of fine-tuning feature engin-
eering based on EDA insights. This repeated procedure improves the dataset’s eligibility
for classifying data and adds to the machine learning solution for malware detection’s
overall efficacy.

4 Design Specification

The printAUC callback is used to track and output the Area Under the Curve (AUC)
values while a binary classification neural network is being trained with Keras. After each
epoch, this custom callback—which is integrated into the model training process—calculates
and presents the AUC scores for the training and validation sets. It also ensures that
the best-performing model is saved for later usage by saving the model with the greatest
validation AUC to ”bestNet.h5”.

Some dependencies are necessary for the code to run successfully. These consist of the
neural network model’s fundamental architecture, the scikit-learn roc-auc-score function
for computing AUC, and the Keras library for neural network implementation. To ensure
repeatability, the dataset, known as one-hot-encoded-data, is split using train-test-split
into training and validation sets with a defined random state.

AUC values are used to assess the model’s performance during training. The callback
calculates and outputs the AUC scores for the training and validation sets at the end of
each epoch. Next, using Keras’ model.save(), the model with the highest validation AUC
is stored as ”bestNet.h5”.

For improved comprehension and reproducibility while thinking about possible en-
hancements, it is advised to describe the neural network architecture, including layer
configurations and hyperparameters. The model’s performance could also be further
optimised by doing hyperparameter tuning.

To summarise, this design specification adds to a thorough understanding of the code’s
implementation for binary classification neural network training with AUC monitoring

14



Figure 12: Confusion Matrix

15



by outlining the goal, functionality, related requirements, and enhancement recommend-
ations of the supplied Keras callback.

Figure 13: Flowchart of proposed deep-learning architecture for malware classification

One type of ensemble algorithm is Random Forest. It builds several decision trees
during training for classification problems and returns the class that appears the most
frequently across all of the different trees. Because bagging and feature randomness are
the two techniques used, the trees are mainly uncorrelated with one another.

The random forest produces distinct trees by enabling each tree to take a random
sample with replacement from the dataset for bagging. Rather than selecting every
conceivable feature, each tree chooses a random subset of characteristics to employ in
their splitting to achieve feature unpredictability. As a result, there is less correlation
between trees and more variety.

Performing both classification and regression tasks, managing huge datasets with high
dimensionality, and avoiding overfitting of data are some benefits of employing Random
Forest. On the other hand, it overfits extremely noisy datasets and could not be reliable
for predicting continuous data. It is comparable to a black-box in that it is likewise
uncontrollable.

*Logistic Regression
To assist in translating the probabilities into any values between 0 and 1, logistic

regression employs a sigmoid function. Because the odds of detecting malware range
from 0 to 1, logistic regression is advantageous for binary classification and a good fit for
this project. Moreover, it is simple to train and deploy.

One drawback is that to select significant independent variables for training, we must
first identify and eliminate associated factors from the data before retaining the relevant
variables. Nonlinear situations are also beyond the scope of logistic regression.

16



Figure 14: Random Forest Classifier

5 Implementation

The latter stages of the implementation concentrated on producing critical outputs to
operationalize and validate the Microsoft malware detection system. One important
result of the raw dataset’s extensive preparation was transformed data. Outliers were
found and dealt with, missing values were managed, and features were designed to capture
subtle trends in Microsoft malware behaviour. Python was essential in carrying out these
modifications, with help from Scikit-learn and Pandas.

Concurrently, an extensive collection of machine learning models was carefully created
to maximise Microsoft malware identification. Each model—which ranged from Support
Vector Machines and XGBoost to Random Forest and Gradient Boosting—was validated
and fine-tuned using reliable assessment measures. Scikit-learn and XGBoost in com-
bination with Python made training, evaluating, and XGBoost, facilitated the training,
evaluation, and selection of the most effective models.

The feature importance analysis shed light on the key factors affecting Microsoft
malware detection, which was helpful. This result was made possible by Scikit-learn and
Python, and it enabled more informed decision-making in cybersecurity initiatives by
fostering a more sophisticated understanding of malware behaviour.

Python was the main programming language used in the toolkit, mostly for data
manipulation, machine learning model creation, and feature engineering. Pandas played
a key role in effective data manipulation, and Scikit-learn made preprocessing and model
development easier. The performance of the ensemble was improved by XGBoost, and
Quantile Transformation was essential in normalising and strengthening the model against
a variety of virus patterns.

The conclusion of efforts is this final implementation stage, which yields an enhanced
and optimised Microsoft malware detection system. The outputs that are produced form
the basis of a data-driven, adaptable, and effective cybersecurity strategy that is ready
to fortify defences against constantly changing cyberthreats.

17



Figure 15: Work-flow of my proposed malware detection process

6 Evaluation

Our critical part provides a comprehensive examination of the study’s findings, with a
focus on the most relevant findings that are in line with our research question and aims.
Using strong statistical methods, we perform a careful analysis of the experimental results,
examining the significance levels. In the context of machine learning-based cybersecur-
ity fortification, our goal is to provide a thorough insight of the model’s performance.
From an academic and practitioner standpoint, the ramifications of these findings are
examined, providing insight into the possible contributions to the area. A more nuanced
understanding of the progress made in predictive models for malware detection in net-
work environments is fostered by this thorough and meticulous analysis, which highlights
the validity and significance of the study’s findings.

6.1 Experiment / Case Study 1

6.1.1 Model Architecture

In the beginning, we developed an elaborate model framework by carefully bringing
together the capabilities of Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and K-Nearest Neighbours (KNN). With the main goal of capturing
complex patterns and relationships within the large dataset, a broad ensemble tech-
nique was carefully constructed to capitalise on the distinct strengths of each component.
The objective of our model was to offer a comprehensive and intricate comprehension
of the intricate relationships present in the cybersecurity field by balancing the unique
characteristics of KNN, CNN, and RNN. Given the complexity of threats in network
environments, this synergistic design served as the cornerstone for our quest for efficient
malware detection.

6.1.2 Performance Metrics:

Our model’s evaluation revealed a 50.8 training accuracy and a 50.6 validation accuracy
after 20 epochs. The model’s performance was limited by the large amount of data,

18



Figure 16: Training and Validation Accuracy

even with the use of sophisticated machine learning methods. This situation presented a
difficult trade-off between guaranteeing computing efficiency and reaching higher model
complexity for better-detecting capabilities. The complex interactions among these ele-
ments highlight the fine balance needed to create reliable cybersecurity models, where the
volume of data demands careful attention to preserve computational viability while op-
timising model complexity. Immediately following the subsection discussing training and
validation accuracy, Figure 16 and Figure 17 visually represent the model’s learning
curve.

Performance metrics, observations, and dataset size adjustment: The choice to
reduce the dataset’s size is supported by a justification that outlines the factors taken into
account and how they affect the complexity of the model. We examine the training and
validation loss metrics after downsizing to reveal the expected accuracy vs. computational
efficiency trade-off. Remarks on the observed trade-offs and the model’s capacity to adjust
to a smaller dataset are captured in observations.

k Fold Number of Leaves Minimum data in leaf

5 50 50

5 50 50

5 60 60

10 60 60

Early stopping rounds Private Score Public Score

100 0.57744 0.58191

200 0.57821 0.58559

200 0.59638 061569

1 0 59604 061355

19



Figure 17: Training and Validation loss

6.2 Experiment / Case Study 2

In Experiment 2, the model struggled to find patterns in the large dataset, as seen by the
observed training accuracy of 0.5169 and validation accuracy of 0.5173 by the
20th epoch. The memory limitations coming from the large number of rows (100,000) and
columns (118) restricted the model’s ability to represent complex relationships, leading
to comparatively low accuracy ratings. It was clear from a thorough examination that
the computing demands of such a huge dataset were impeding the model’s ability to con-
verge efficiently. The weak performance resulted from the neural network architecture’s
difficulties navigating the intricate feature space, which included KNN, CNN, and RNN
components.

Modifications To address the computing difficulties in Experiment 2, an extensive re-
fining procedure was carried out in Experiment 1 to increase the model’s effectiveness.
This meant that during the data splitting step, the test size was purposefully decreased
to 0.40, and the random state was purposefully increased to 45. These changes were
made to encourage a wider range of representation in the training and validation sets,
which should prevent biases that may arise from a smaller test set. Moreover, these ad-
justments were purposefully made to improve the model’s applicability to new, untested
data. These modifications had an effect, as seen by the training loss being reduced to
0.7090 and the validation loss being improved to 0.6933 at the same time. These subtle
gains suggest a constructive and flexible reaction to the improved test conditions. In-
terestingly, the intentional elevation of the random state was useful in strengthening the
reproducibility of results by establishing a higher degree of consistency between studies.
In addition to relieving memory restrictions, these tactical adjustments had a noticeable
impact on the learning dynamics of the model. The improved loss measures suggest a
more sophisticated convergence process, where the model shows a better ability to identify
complex patterns in the dataset. As a result, these modifications aid in both the overall

20



performance optimisation of the model and the optimisation of computational resources,
ushering in a learning framework that is more robust and flexible.

Interpretations for Cross-Validation and Statistical Significance: The statistical
significance of the noted gains was validated by the use of hypothesis testing, demon-
strating the efficacy of the changes implemented in Experiment 1. Stability and general-
izability were prioritised during cross-validation to make sure that the model’s improved
performance was a reliable depiction of its actual capabilities rather than the result of
overfitting.

Experiment 2 clarified the difficulties that arise when a model is trained on a large data-
set with 100,000 rows and 118 columns. The model’s difficulty navigating the complex
feature space was suggested by the obtained validation accuracy of 0.5173 and training
accuracy of 0.5169, which were mostly caused by memory limitations. To encourage a
more representative dataset, Experiment 1 carefully adjusted the experimental circum-
stances by raising the random state to 45 and lowering the test size to 40. The model’s
adaptive reaction to improving conditions was demonstrated by the ensuing improve-
ments, which saw the training loss decrease to 0.7090 and the validation loss improved to
0.6933. The increased random state improved learning dynamics and resulted in reprodu-
cible results, allowing the model to grasp subtle patterns inside the data more effectively.
These adjustments offer a nuanced understanding of the model’s behaviour, emphasizing
its strengths and areas for improvement.Figure 17 and Figure 18 visually represent the
model’s learning curve

Figure 18: Accuracy and Epochs

6.3 Experiment / Case Study 3

In comparison to its predecessors, Experiments 1 and 2, the ”CNN model” experiment
adds several noteworthy modifications and improvements to improve the malware detec-
tion model.

First, one of the most important steps in getting the dataset ready is still feature en-
gineering and encoding. Through frequency encoding (FE) and one-hot encoding (OHE),
the code adds 344 new variables in this iteration, broadening the feature space and giving

21



Figure 19: loss and Epochs

the model more data for training. To maintain a representative subset of the data and
enable effective model training, the training data is downsampled to 2,000,000 rows.

The neural network design represents the biggest change. Convolutional neural net-
work (CNN) is a specialised architecture used in the experiment ”CNN-model” that is
well-known for its ability to capture spatial dependencies in data. In contrast to the
dense neural networks used in Experiments 1 and 2, CNN’s localised pattern recognition
capability might be useful for malware detection. The Adam optimizer uses a learning
rate of 1e-2, and the model hyperparameters are fine-tuned. The incorporation of call-
backs like ModelCheckpoint and EarlyStopping indicates a dedication to training process
optimisation. A visual depiction of the model’s learning progress for the 20 training
epochs is provided by the plotting of the training history, which includes metrics for ac-
curacy and loss.”Please refer to the training history plots, in particular Figures 19, 20,
where the maximum accuracy achieved during training or validation can be recognised,
for comprehensive accuracy numbers for each experiment.

The test dataset is used to apply the trained CNN model to during the prediction
phase, and the outcomes are saved in a submission file. This all-encompassing method
guarantees that the model’s effectiveness is assessed not just during training but also in
terms of its capacity to generalise and produce precise predictions on data that hasn’t
been seen before. When comparing the ”CNN model” architecture to that of its pre-
decessors, it is clear that the switch was made strategically to take advantage of the
network’s spatial understanding capabilities. This experiment aims to investigate the po-
tential advantages of a more specialised neural network design in malware detection while
preserving consistency in downsampling, feature engineering, and encoding techniques.
The code exhibits a careful refinement process that adheres to industry best practices
and makes use of CNNs’ advantages for better model performance.

6.4 Discussion

An analysis of the N experiments’ results highlights important features of the suggested
malware detection algorithms. The downsampling technique, which reduced the data-
set to 100,000 rows and 118 columns, showed computational efficiency; nonetheless, it
is important to recognise that there may be consequences for model generalisation. In

22



Figure 20: CNN-loss/Acc nd Epoch

Figure 21: Proposed Accuracy and loss in Epoch

23



the most recent experiment, a Convolutional Neural Network (CNN) was introduced,
which was a departure from typical neural networks and focused on spatial understand-
ing. Nonetheless, to identify subtleties in performance, a careful examination of the
accuracy patterns in Figure 20 is necessary. It is imperative to be open and honest
about limits and potential biases when critically evaluating experimental designs. Even
if the thorough feature engineering methods are strong, they need to be continuously im-
proved upon using knowledge gained from training data and performance indicators. The
study’s validity is increased when results are placed within the larger context of malware
detection, particularly when benchmarks from the literature research are compared.

These observations lead to several proposals for improvement, such as investigating
different approaches to downsampling, evaluating the effects of different dataset sizes,
and taking into account sophisticated methods like transfer learning. To improve the
resilience of the model, cooperation with domain experts and flexibility in response to
new threats are essential. This thorough debate adds to the continuing conversation
about cybersecurity and predictive malware by highlighting the significance of a critical,
iterative approach to experimental design.

7 Conclusion and Future Work

This study’s main research question was to strengthen cybersecurity in network environ-
ments by using predictive models for malware detection. This study aimed to investigate
the effectiveness of machine learning, specifically Convolutional Neural Networks (CNNs),
in tackling this particular problem. The effort included encoding techniques, thorough
feature engineering, and downsampling of a sizable dataset. Three experiments were also
carried out to assess the effectiveness of various models.

Significant progress has been achieved by the study in answering the research topic.
In the most recent experiment, the use of downsampling and the use of a CNN offered
important insights into the difficulties associated with malware identification. By care-
fully examining training records, accuracy patterns, and comparisons with earlier study
criteria, the goals were met. Important discoveries consist of the important discoveries
that include how well downsampling manages computational resources and how CNNs
may be able to capture spatial connections for virus detection.

Nonetheless, it is imperative to recognise specific constraints. Although the down-
sampling approach improves computational efficiency, it creates concerns regarding gen-
eralisation to a larger sample. The substantial feature engineering and encoding methods
may have an impact on the interpretability of the models. Even if the experiments’ goals
were successfully met, further improvement and adaptation are required for practical
application.

This discovery has important ramifications for the development of cybersecurity pre-
diction models. According to research, CNNs may improve malware detection by improv-
ing spatial knowledge. Restrictions highlight the need for ongoing improvement, industry
cooperation, and threat adaptation throughout time. Subsequent research proposals may
concentrate on different approaches to downsampling, the effects of different dataset sizes,
and the investigation of sophisticated methods such as transfer learning.

The study opens the door for the commercialization of stronger malware detection
technologies. To develop solutions that tackle actual cybersecurity concerns, future re-
search should focus on practical applications and incorporate insights from industry ex-

24



perts. Future research with significance should investigate novel approaches like dynam-
ically adapting to changing malware behaviours or integrating threat intelligence. To
sum up, the study effectively tackled the research topic and goals, offering significant
perspectives on the effectiveness of predictive models in malware identification. Despite
their promise, the results still need to be continuously improved upon and adjusted to
guarantee their usefulness in actual cybersecurity situations. Establishing a foundation
for future research and possible commercialization, the study highlights the need for
ongoing innovation and cooperation in the cybersecurity field.

Including the discussion and asked question (by email) from supervisor
and examiner

Question-1 : All figures except 21: why do training and validation curves
cross each other so many times?

With a big dataset, the model in Experiment 1 had to balance computing efficiency
and model complexity, which led to difficult learning curves. Improvements resulted
from reducing the dataset and changing some settings. The second experiment ran into
problems with a huge dataset because of memory constraints. The model performed
better once tweaks and data separation were refined. Significant changes were made to
the CNN model that was established in Experiment 3. Further analysis and optimisation
are necessary due to possible issues linked to feature representation, dataset size, and
model complexity, as indicated by the crossing curves in Figures 16 and 17.

Question-2: What is the difference between ANN and RNN?
Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) are two

types of neural network designs that are especially made to address various machine
learning difficulties. Artificial neural networks (ANNs) operate on the assumption that
input data is independent. This is the basis for their layered topologies, which consist
of input, output, and hidden layers. Information flows unidirectionally via hidden layers
of ANNs from the input layer to the output layer. This design is effective for tasks like
image recognition, classification, and regression when the order in which the input data
is entered matters little. ANNs do not have built-in memory structures, so they are less
effective at detecting temporal connections within sequential data.

Recurrent neural networks (RNNs), on the other hand, employ connections that form
directed cycles within the network to handle sequences and time-series data. This cyc-
lic structure allows RNNs to hold internal states or memory, allowing them to acquire
information from previous inputs in a series. Because of this, RNNs are especially good
at tasks where the sequence and context of the input data are crucial, such time-series
prediction, audio identification, and natural language processing.

When it comes to creating neural networks, ANNs and RNNs are basically compli-
mentary techniques. ANNs are excellent at jobs involving independent data, whereas
RNNs are crucial for determining dependencies in sequential data. Choosing one of these
architectures depends on the specific requirements of the machine learning task, emphas-
ising the need to match the network’s capabilities with the inherent characteristics of the
data being processed.

Question-3: Explain your hyperparameter tunning strategy/ies that you
adopted in this task.

Fritsch et al. (2022) An overview of artificial intelligence used in malware, Symposium
of the Norwegian AI Society, Springer, pp. 41–51. ) developed a novel framework based
on Bayesian optimisation to improve Deep Neural Network (DNN) architecture and ac-
complish automated hyperparameter optimisation. The hyperparameter tuning strategy

25



employed in this investigation was based on this paradigm. Kennesaw State University
researchers used the NSL-KDD benchmark dataset for network intrusion detection to val-
idate the efficacy of their method. The results shown significant improvements in intrusion
detection parameters, including f1-score, recall, accuracy, and precision. The results in-
dicate that the Bayesian optimisation guided by Gaussian Processes (BO-GP) technique
produced much better results than a random search optimization-based strategy, with
maximum accuracy of 82.95 for the KDDTest+ dataset and 54.99 for the KDDTest-21
dataset.

Building on this foundation, Experiment 3 presents modifications to enhance the
malware detection model. Feature engineering and encoding, which involve introducing
344 new variables using frequency encoding (FE) and one-hot encoding (OHE), are crucial
steps in preparing the dataset. The goal of this augmentation is to provide the model
with a wider range of training data by expanding the feature space. To achieve an
effective model training and guarantee a representative selection, the training data is
down sampled to 2,000,000 rows.

The application of a Convolutional Neural Network (CNN) architecture, which is
renowned for its capacity to capture spatial relationships, is the main modification. CNN’s
localised pattern recognition is effective in identifying malware, as opposed to the thick
neural networks used in Experiments 1 and 2. optimising the training process by adding
callbacks like ModelCheckpoint and EarlyStopping and fine-tuning hyperparameters like
a learning rate of 1e-2 Training history plots (Figures 19 and 20 in particular) depict the
learning process over the course of the 20 training epochs and contain comprehensive ac-
curacy statistics for each trial. The hyperparameter tuning approach integrates concepts
from Fritsch et al.’s Bayesian optimisation framework to the specific field of malware
detection. With CNN architecture and careful adjustments to training technique and
hyperparameters, the model performs better.

Question-4 :How did you validate your results?
The validation process involved a methodical examination of three separate experi-

ments, all aimed at determining how different data sizes and training epochs affected the
malware detection model’s accuracy. A dataset with 1,000,000 rows and 118 Columns
was used in the first experiment (Experiment 1), and the model was trained for a prede-
termined amount of epochs. Throughout the training process, close attention was paid
to the attained accuracy, loss, and other parameters. Experiment 2 then made modifica-
tions, raising the random state to 45 and decreasing the test size to 0.40. The purpose of
this update was to improve the model’s generalizability and handle memory restriction
issues. Accuracy metrics were once again examined in the training process. In order
to create a convolutional neural network (CNN) architecture, Experiment ”CNNmodel”
took into consideration the potential effects of architectural choices on model perform-
ance. This experiment followed the downsampling process, recording accuracy and loss
values over time with meticulous logging of 20 training epochs.

Future research might entail growing the dataset size from 0.45 and increasing the
number of training epochs in order to examine the effects of larger data sets and training
epochs and to confirm the model’s robustness. This strategy is based on the expectation
that a bigger dataset and longer training time will boost the model’s capacity to identify
intricate patterns in the data, which will increase accuracy. A detailed comparison of
accuracy metrics across the three experiments—each involving distinct adjustments to the
malware detection model—was carried out in order to validate the findings. Promising
patterns were found when the trials methodically investigated the effects of training

26



epochs and dataset size. Interestingly, the findings imply that expanding the training
epochs and dataset size may improve model accuracy even further. This conclusion,
which is based on a strategic analysis of every model variant, points to a possible area
for optimisation that could lead to better malware detection outcomes.

References

Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M. and Giacinto, G. (2016). Novel
feature extraction, selection and fusion for effective malware family classification, Pro-
ceedings of the sixth ACM conference on data and application security and privacy,
pp. 183–194.

Baptista, I., Shiaeles, S. and Kolokotronis, N. (2019). A novel malware detection system
based on machine learning and binary visualization, 2019 IEEE International Confer-
ence on Communications Workshops (ICC Workshops), IEEE, pp. 1–6.

Bilar, D. (2007). Opcodes as predictor for malware, International journal of electronic
security and digital forensics 1(2): 156–168.

Djenna, A., Bouridane, A., Rubab, S. and Marou, I. M. (2023). Artificial intelligence-
based malware detection, analysis, and mitigation, Symmetry 15(3): 677.

Drew, J., Hahsler, M. and Moore, T. (2017). Polymorphic malware detection using
sequence classification methods and ensembles, EURASIP Journal on Information Se-
curity 2017(1): 1–12.

Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G. and Glezer, C. (2007). Applying
machine learning techniques for detection of malicious code in network traffic, KI 2007:
Advances in Artificial Intelligence: 30th Annual German Conference on AI, KI 2007,
Osnabrück, Germany, September 10-13, 2007. Proceedings 30, Springer, pp. 44–50.

Faruk, M. J. H., Shahriar, H., Valero, M., Barsha, F. L., Sobhan, S., Khan, M. A.,
Whitman, M., Cuzzocrea, A., Lo, D., Rahman, A. et al. (2021). Malware detection and
prevention using artificial intelligence techniques, 2021 IEEE International Conference
on Big Data (Big Data), IEEE, pp. 5369–5377.

Fritsch, L., Jaber, A. and Yazidi, A. (2022). An overview of artificial intelligence used in
malware, Symposium of the Norwegian AI Society, Springer, pp. 41–51.

Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D. and Liu, H. (2020). A review of android
malware detection approaches based on machine learning, IEEE Access 8: 124579–
124607.

Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S. and Elovici,
Y. (2008). Unknown malcode detection using opcode representation, Intelligence and
Security Informatics: First European Conference, EuroISI 2008, Esbjerg, Denmark,
December 3-5, 2008. Proceedings, Springer, pp. 204–215.

Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Japkowicz, N. and Elovici, Y. (2009).
Unknown malcode detection and the imbalance problem, Journal in computer virology
5: 295–308.

27



Muzaffar, A., Hassen, H. R., Lones, M. A. and Zantout, H. (2022). An in-depth review of
machine learning based android malware detection, Computers & Security p. 102833.

Schultz, M. G., Eskin, E., Zadok, F. and Stolfo, S. J. (2000). Data mining methods for
detection of new malicious executables, Proceedings 2001 IEEE Symposium on Security
and Privacy. S&P 2001, IEEE, pp. 38–49.

Sharma, S., Rama Krishna, C. and Sahay, S. K. (2019). Detection of advanced malware by
machine learning techniques, Soft Computing: Theories and Applications: Proceedings
of SoCTA 2017, Springer, pp. 333–342.

Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A. and Xu, M. (2020). A survey
on machine learning techniques for cyber security in the last decade, IEEE access
8: 222310–222354.

Wolsey, A. (2022). The state-of-the-art in ai-based malware detection techniques: A
review, arXiv preprint arXiv:2210.11239 .

Yuan, B., Wang, J., Liu, D., Guo, W., Wu, P. and Bao, X. (2020). Byte-level mal-
ware classification based on markov images and deep learning, Computers & Security
92: 101740.

28


	Introduction
	Contextualizing the Problem:
	Background
	Research Questions
	Objectives:
	Limitation
	The Structure of the report

	Related Work
	Methodology
	 Data Collection:

	Design Specification
	Implementation
	Evaluation
	Experiment / Case Study 1
	Model Architecture
	Performance Metrics:

	Experiment / Case Study 2
	Experiment / Case Study 3
	Discussion

	Conclusion and Future Work

