~

\" National
College
Ireland

Enhancing Legal Guidance by Utilizing
Natural Language Processing-Based
Document Embeddings

MSc Research Project
MSc Artificial Intelligence

Tanmay Laxmikant Mukim
Student 1D: 22127933

School of Computing
National College of Ireland

Supervisor: Dr. Muslim Jamal Syed

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Tanmay Laxmikant Mukim
Student ID: 22127933
Programme: MSc Artificial Intelligence
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Muslim Jamal Syed
Submission Due Date: 14/12/2023
Project Title: Enhancing Legal Guidance by Utilizing Natural Language
Processing-Based Document Embeddings
Word Count: 619
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Enhancing Legal Guidance by Utilizing Natural
Language Processing-Based Document Embeddings

Tanmay Laxmikant Mukim
22127933

1 Introduction

The procedures for improving legal guidance through the utilization of document em-
beddings based on natural language processing are outlined in this setup manual. The
procedures for executing the code artifact, which comprises the Python coding and asso-
ciated processes, are as follows:

2 The configuration of the hardware

Here are the details about certain devices as well as Windows specifications to support
the code artifact, as illustrated in Figures [I] and |2| respectively.

Device specifications

NS12T5
Device name DESKTOP-140Q650

Processor Intel(R) Core(TM) i7-10510U CPU @
GHz

Installed RAM 16.0 GB (15.9

Device ID 86 -AB8339E7AGEAE
Product ID 00 EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Figure 1: Design specifications

Figure [2| displays the Windows specification because the project is being completed
and executed on the Windows 10 operating framework. The device specification includes
an Intel (R) Core(TM) I7 10th generation processor and 16 GB of RAM.

3 Program configuration

The Anaconda Rolon-Mérette et al.| (2016) Python Jupyter Notebook is utilized for coding
implementation and execution. The respective installed version of Python is 3.11. The

1

Windows specifications

Edition Windows 10 Home Single Language
Version 22H2

Installed on 17-03-2021

OS build 19045.3693

Experience Windows Feature Experience Pack 1000.19053.1000.0

Figure 2: Windows specifications

installation instructions for Python, as well as Jupyter Notebook, are provided in the
following subsections.

3.1 Anaconda Python Setup

Python versions and package versions can be easily created in an environment with the
aid of Anaconda software. The Jupiter Notebook is one of the packages available with
Anaconda. The first step in installing Anaconda Python on Windows is to go to https://
www . anaconda. com and click on the download button. Anaconda is available for Windows
in a multitude of versions. Following the download of the anaconda.exe file, the Python
package can then be installed on the device by following the instructions. the following
figures: |3 and 4] are the representations of instructions to install Anaconda Python,
respectively.

3.2 Library Imports

The corresponding implementation code can be run once Anaconda Python and Jupyter
Notebook are installed; however, a few libraries need to be installed first. The natural
language processing model libraries that are pre-installed in Anaconda Navigator are
listed below. The transformer libraries Rothman (2021) are nothing but a collection
of pre-trained modules such as Bidirectional Encoder Representations from Transformers
(BERT), ALBERT, and DEBERTa. The installation of the transformer libraries is shown
in the following figure: 5| In the next step, the necessary libraries must be installed before
being imported using Jupyter Notebook. Libraries are imported, as mentioned in Figure
(§

4 Implemented Datasets

This corresponding section provides the details of the implemented datasets for this study.

The following two datasets are collections of legal citations in textual format, respectively.
1. Shivam Bansal, 2018. Legal Citation Text Classification, Kaggle, Version 1. https:

//www.kaggle.com/datasets/shivamb/legal-citation-text-classification

https://www.anaconda.com
https://www.anaconda.com
https://www.kaggle.com/datasets/shivamb/legal-citation-text-classification
https://www.kaggle.com/datasets/shivamb/legal-citation-text-classification

) Anaconda3 2023.09-0 (64-bit) Setup — X

Welcome to Anaconda3 2023.09-0
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2023.09-0 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

(") ANACONDA.

Figure 3: Installing Anaconda Python

2. Washington University in St. Louis (2021). Supreme Court Decisions Text Analysis
Kaggle. Version 1. https://www.kaggle.com/datasets/wustl/supreme-court/code

5 Data Pre-processing

This section is the representation of the data pre-processing method, which primarily
involves Removing Punctuation, Spaces, and Sentence segments and turning them into
a list, as well as creating term frequency (inverse document frequency), as mentioned in

the following figures: [7] and

6 Natural Language Processing Models

The following four natural language processing models, Word2Vec in combination with
TF-IDF [J] with Bidirectional Encoder Representations from Transformers (BERT)
ALBERT together with DEBERTa [12] are implemented concerning the two legal
textual citation datasets, as mentioned as follows:

https://www.kaggle.com/datasets/wustl/supreme-court/code

2 Anaconda3 2023.09-0 (64-bit) Setup — hd

Advanced Installation Options

\ _) ANACONDA Customize how Anaconda3 integrates with Windows

Create start menu shortcuts (supported packages only).

[_] Add Anaconda3 to my PATH environment variable
NOT recommended. This can lead to conflicts with other applications. Instead, use

the Commmand

Prompt and Powershell menus added to the Windows Start Menu.

Register Anaconda3 as my default Python 3.11

Recommended.

Allows other programs, such as VSCode, PyCharm, etc. to

automatically detect Anaconda3 as the primary Python 3. 11 on the system.

|:| Clear the package cache upon completion

Recommended.

¢1.] Command Prompt

Recovers some disk space without harming functionality.

< Back Install Cancel

Figure 4: Installing Anaconda Python

C:\Users\tanma>pip install transformers
Defaulting to user installation because normal site-packages is not writeable

Ignor
Ignoring i
: Ignoring i

id distribution - m pdata\ mi thol

te-package

Ignoring invalid distribution -e m) mi \ ite-packages)

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
‘Requirement already satisfied:
Requirement already satisfied:

ges (from transformers) (©.17

Requirement already satisfied:

rom transformers) (©.14.1)

Requirement already satisfied:

transformers) (0.4.9)

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:

already satisfied:
already satisfied:

Requirement already satisfied

transformers in c:\users\tanma\appdata\roaming\python\python39\site-packages (4.34.8)
numpy>=1.17 in c:\programdata\anaconda3\lib\site-packages (from transformers) (1.23.5)
requests in c:\programdata\anaconda3\lib\site-packages (from transformers) (2.28.1)
packaging>=28.8 in c:\programdata\anaconda3\lib\site-packages (from transformers) (21.3)
huggingface-hub<1.8,>=8.16.4 in c:\users\tanma\appdata\roaming\python\python339\site-packa
.3)

tokenizers<@.15,>=0.14 in c:\users\tanma\appdata\roaming\python\python39\site-packages (f

safetensors>=0.3.1 in c:\users\tanma\appdata\roaming\python\python39\site-packages (from
tqdm>=4.27 in c:\programdata\anaconda3\lib\site-packages (from transformers) (4.64.1)

pyyaml>=5.1 in c:\programdata\anaconda3\lib\site-packages (from transformers) (6.8)
regex!=2019.12.17 in c:\programdata\anaconda3\lib\site-packages (from transformers) (2822

filelock in c:\programdata\anaconda3\lib\site-packages (from transformers) (3.6.8)
fsspec in c:\users\tanma\appdata\roaming\python\python3S\site-packages (from huggingface-
hub<1.0,>=8.16.4->transformers) (2023.9.2)

: typing-extensions>=3.7.4.3 in c:\programdata\anaconda3\lib\site-packages (from huggingfac

e-hub<1.0,>=0.16.4->transformers) (4.3.8)

Requirement already satisfied
|8-6->transformers) (3.8.9)
Requirement already satisfied
.4.5)

: pyparsing!=3.8.5,>=2.8.2 in c:\programdata\anaconda3\lib\site-packages (from packaging>=2

: colorama in c:\programdata\anaconda3\lib\site-packages (from tqdm>=4.27->transformers) (@

Figure 5: Installing Transformeres

Importing Labraries

In [2]: import pandas as pd
import numpy as np
from transformers import BertTokenizer, BertModel
import torch
from gensim.models import Word2Vec
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
import datetime
import seaborn as sns
import matplotlib.pyplot as Plot
import pickle
from transformers import BertTokenizer, BertForNextSentencePrediction, AdamW
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataloader, TensorDataset, random_split
from torch.nn import functional as F
from transformers import AlbertTokenizer, AlbertModel
from transformers import DebertaTokenizer, DebertaModel

Figure 6: Importing Labraries

In [5]: Data['case_name'] = Data['case_name'].str.replace('@', ' ')

Creating Term Frequency - Inverse Document Frequency

In [6]: TFIDFML = TfidfVectorizer()
TFIDFML.fit(Data.case_name)
Creating TF-IDF Dicitonary
Dictionary = dict(zip(TFIDFML.get_feature_names(), list(TFIDFML.idf_)))
Defining Feature Name
TFIDFfeature = TFIDFML.get_feature_names()
for term, idf_value in Dictionary.items(): # Printing The Dictonary
print(f'Term: {term}, IDF Value: {idf_value}')
print(TFIDFML.fit)
print(TFIDFfeature)

Term: @11, IDF Value: 9.382289428951436
Term: 1@, IDF Value: 9.382289428951436

Term: 100, IDF Value: 8.97682432084327

Term: 1000, IDF Value: 9.382289428951436
Term: 1001, IDF Value: 9.382289428951436
Term: 1829, IDF Value: 9.382289428951436
Term: 183, IDF Value: 9.382289428951436
Term: 104, IDF Value: 9.382289428951436
Term: 187, IDF Value: 9.382289428951436
Term: 11, IDF Value: 8.68914224839149

Figure 7: Creating term frequency (inverse document frequency)

Removing Punctuation, Spaces, Sentence Segment and turning into list

In [7]: def PreProcess(Text):
Remove punctuation, spaces, and unwanted characters
Rule = re.compile(r'[~a-zA-Z0-9\u4e88-\u9fa5]")
Text = Rule.sub(' ', str(Text))

Text = re.sub(' +', ' ', Text)

Split the text into words (tokenization) and return as a List
Text = Text.split() # Split text into words based on spaces

return Text

Figure 8: Data Pre-processing

7 Recommendation Engine

The following section represents the implementation of recommendation engines concern-
ing four natural language processing models: Word2Vec in combination with TF-IDF
with Bidirectional Encoder Representations from Transformers (BERT) [14] as well as
ALBERT together with DEBERTa

In [8]: # Implementing Data 5clicing Procedure With Respect To 1868 Samples
SubsetSize = 1888
SubsetData = Data.head(SubsetSize).copy()

Training the Word2Vec model on the basis of the corresponding subset
SubsetSentences = SubsetData[’'case_name’].tolist()
SubsetSentences = [PreProcess(text) for text in SubsetSentences]

Model = Word2Vec(
SubsetSentences,
vector_size=18e,
windows=5,
min_count=1,
sg=6

)

Incorporating TF-IDF information into Word2Vec word vectors
for Word in Model.wv.index_to_key:
Wordvector = Model.wv[Word]
if Word in Dictionary:
TFIDFWeight = Dictionary[Word]
WeightedvVector = WordVector * TFIDFWeight
Model.wv[Word] = WeightedVector

Saving the Word2Vec model
Model.save("word2vec_with_tfidf 18@@samples.model")
Printing the data details

print{len{Data})

print{len(SubsetSentences))

Loading the Word2Vec model with TF-IOF weighting
Word2VecModel = Word2Vec.load("word2vec_with_tfidf 1888samples.model”™)

8737
16aa

Figure 9: Implementing Word2Vec Natural Language Model

In [13]:

Implementing Dato 5clicing Procedure With Respect To 1868 Somples
SubsetSize = 1868

SmallerSubset = Data.head{SubsetSize).copy()
Corpus = SmallerSubset[’case_name’].tolist()

Preprocessing the corpus and feature nomes for TF-IDF
Corpus = [text.lower() for text in Corpus] # Converting text to lowercase

Initializing a BERT tokenizer and model
Tokenizer = BertTokenizer.from_pretrained('bert-base-uncased’)
BertModel = BertModel.from_pretrained('bert-base-uncased”)

Tokenizing and getting BERT embeddings in smaller batches
BatchSize = 32

MaxLength = 128

Embeddingslist = []

Implementing the Helper function for processing a batch and for obtaining
def process_batch({BatchTexts):

Preprocessing batch texts to Lowercase

BatchTexts = [text.lower() for text in BatchTexts]

inputs = Tokenizer(
BatchTexts,
return_tensorss"pt’,
padding='max_length",
max_length=MaxLength,
truncation=True
)
with torch.no_grad():
BatchEmbeddings = BertModel (**inputs).last_hidden_state

return BatchEmbeddings

for i in range(@, len(Corpus), BatchSize):
BatchTexts = Corpus[i:i + BatchSize]
BatchEmbeddings = process_batch(BatchTexts)
EmbeddingslList.append({BatchEmbeddings)

Concatenating embeddings from different batches for the smaller subset
Embeddings = torch.cat{EmbeddingsList, dim=8)

Printing the dato details
print{len(Data))
print{len(Embeddings))

8737
laaa

Figure 10: Implementing BERT Natural Language Model

In [19]: # Implementing Data Sclicing Procedure With Respect To 1888 Samples
SubsetSize = 1866
Smallersubset = Data.head(SubsetSize).copy()
Corpus = SmallerSubset|[’case_name’].tolist()

Preprocessing the corpus for TF-IDF
Corpus = [text.lower() for text in Corpus] # Convert text to lowercase for

Initializing an ALBERT tokenizer and model
Tokenizer = AlbertTokenizer.from_pretrained(’albert-base-vi")
AlbertModel = AlbertModel.from_pretrained('albert-base-v2'}

Tokenizing and getting ALBERT embeddings in smaller batches
BatchSize = 32 # You can adjust this as needed

MaxLength = 128 # You can odjust this as needed
EmbeddingsList = []

Implementing Helper function to process a batch and obtain ALBERT embeddi
def process_batch{BatchTexts):

Preprocessing batch texts to Lowercase

BatchTexts = [text.lower() for text in BatchTexts]

inputs = Tokenizer(
BatchTexts,
return_tensorss'pt",
padding='max_length",
max_length=MaxLength,
truncation=True
)
with torch.no_grad():
BatchOutputs = AlbertModel{**inputs)
BatchEmbeddings = BatchOutputs.last_hidden_state

return BatchEmbeddings

for i in range(@, len(Corpus), BatchSize):
BatchTexts = Corpus[i:i + BatchSize]
BatchEmbeddings = process_batch(BatchTexts)
EmbeddingsList. append(BatchEmbeddings)

Concatenating embeddings from different batches for the smaller subset
Embeddings = torch.cat{EmbeddingsList, dim=&)

Printing the dato details

print{len{Data))
print{len{Embeddings))

8737
18688

Figure 11: Implementing ALBERT Natural Language Model)

In [25]: |# Implementing Data Sclicing Procedure With Respect To 18688 Somples
SubsetSize = 1884
SmallerSubset = Data.head(5ubsetSize).copy()
Corpus = SmallerSubset[’case_name’].tolist()

Preprocessing the corpus for TF-IDF
Corpus = [text.lower() For text im Corpus] # Conwvert text to Lowercase Jor

Initializing o DeBERTa tokenizer and model
Tokenizer = DebertaTokenizer.from_pretrained('microsoft/deberta-base’)
DebertaModel = DebertaModel.from_pretrained('microsoft/deberta-base’)

Tokenizing and getting DeBERTa embeddings in smaller batches
BatchSize = 32 # You can adjust this as needed

MaxLength = 128 # You con adjust this as needed
EmbeddingsList = []

Implementing Helper function to process a batch and obtain DeBERTa embedy
def process_batch{BatchTexts):

Preprocessing batch texts to Lowercase

BatchTexts = [text.lower() for text in BatchTexts)

inputs = Tokenizer(
BatchTexts,
return_tensorss"pt",
padding="'max_length”,
max_length=MaxLength,
truncation=True
]
with torch.no_grad():
BatchOutputs = DebertaModel (**inputs)
BatchEmbeddings = BatchOutputs.last_hidden_state

return BatchEmbeddings

for i in range(@, len(Corpus), BatchSize):
BatchTexts = Corpus[i:i + BatchSize]
BatchEmbeddings = process_batch(BatchTexts)
EmbeddingslList.append(BatchEmbeddings)

Concatenating embeddings from different batches for the smaller subset
Embeddings = torch.cat(EmbeddingslList, dim=@)

Printing the data details

print{len({Data})
print{len(Embeddings))

8737
lade

Figure 12: Implementing DeBERTa Natural Language Model

In [9]: # Implementing recommendotion engine
def recommend_law({Text, Data, modelsWord2VecModel):
Tokenizing and preprocessing the input text
Text = PreProcess(Text)

Initializing variagbles to store Similarities and recommended Laws
Similarities = []
RecommendedLaws = []

for _, row in Data.iterrows():
Tokenizing ond preprocessing the Legal texts in your dotaset
LegalText = PreProcess(row['case_name"])

Calculating the Similarity between the input text and legal text
Similarity = & # Initiaolizing Similarity score to @
Count = @ # Initiglizing a Count to keep track of common words

for Word in Text:
if Word in model.wv and Word in LegalText:
Similarity += model.wv.n_similarity([Word], LegalText)
Count += 1

if Count » @:
Similarity /= Count # Colculoting the Averoge Similarity scord

Saving the 3imilarity score and corresponding legal text
Similarities.append(Similarity)

RecommendedLaws . append {row["case_name"])

Combining the Similarities and recommended lows into a DatoFrame
Recommendationdf = pd.DataFrame({'Legal Text': RecommendedLaws, "Simil:

Sorting the DatoFrame by Similarity in descending order
Recommendationdf = Recommendationdf.sort_walues(by='Similarity', ascend

Returning the top recommended [aws
TopRecommendations = Recommendationdf.head(28)

return TopRecommendations

Figure 13: Implementing Recommendation Engine with Word2Vec Natural Language
Model

10

In [14]: # Implementing recommendation engine
def recommend_law({Text, Data, Embeddings):
Similarities = []
RecommendedLaws = []
AverageSimilarities = []

Tokenizing and preprocessing the input text
Text = Text.lower()
inputsl = Tokenizer(
[Text],
return_tensorss"pt’,
padding="'max_length”,
max_length=MaxLength,
truncation=True
]
with torch.no_grad():
Embeddingsl = BertModel({**inputsl).last_hidden_state

for 1 in range(len{Embeddings)):

LegalText = Data['case_name'].iloc[i].lower()

inputs?2 = Tokenizer(
[LegalText],
return_tensors="pt",
padding="max_length',
max_length=MaxLength,
truncation=True

1

with torch.no_grad():
Embeddings? = Embeddings[i] # Utilizing the precomputed DeBERI

Calculating cosine similarity between embeddings
similarity = torch.nn.functional.cosine_similarity(Embeddingsl, Emt

Similarities.append(similarity)
RecommendedlLaws . append (Data['case_name']).iloc[i])
Calculating average similarity for each interaction
AverageSimilarity = np.mean(5imilarities)
AverageSimilarities.append(AverageSimilarity)
Recommendationdf = pd.DataFrame({'Legal Text': RecommendedLaws, "Simil:
Recommendationdf = Recommendationdf.sort_values(by="Similarityl’, ascer
TopRecommendations = Recommendationdf.head{28)

return TopRecommendations, AverageSimilarities

Figure 14: Implementing Recommendation Engine with BERT Natural Language Model

11

In [28]: # Implementing recommendation engine
def Recommend_laws(Text, Data, Embeddings):
Similarities = []
RecommendedLaws = []
AverageSimilarities = []

Tokenizing and preprocess the input text
Text = Text.lower()
inputsl = Tokenizer(
[Text],
return_tensorss"pt",
padding='max_length",
max_length=MaxLength,
truncation=True
]
with torch.no_grad():
Embeddingsl = AlbertModel (**inputsl).last_hidden_state

for i in range(len{Embeddings)):

LegalText = Data['case_name’].iloc[i]. lower()

inputs? = Tokenizer(
[LegalText],
return_tensorss'pt’,
padding="max_length',
max_length=MaxLength,
truncation=True

}

with torch.no_grad():
Embeddings2 = Embeddings[i] # Use the precomputed DeBERTa embi

Calculating cosine similarity between embeddings
Similarity = torch.nn.functional.cosine_similarity(Embeddingsl, Emt

Similarities.append(Similarity)
RecommendedLaws . append (Data['case_mame'].iloc[i])
Calculating average similarity for each interaction
AverageSimilarity = np.mean(Similarities)
AverageSimilarities.append{AverageSimilarity)
Recommendationdf = pd.DataFrame({'Legal Text': RecommendedLaws, "Simil:
Recommendationdf = Recommendationdf.sort_values(by="Similarity2", ascer
TopRecommendations = Recommendationdf.head(28)

return TopRecommendations, AverageSimilarities

Figure 15: Implementing Recommendation Engine with ALBERT Natural Language
Model

12

In [26]: |# Implementing recommendation engine
def RecommendLaw(Text, Data, Embeddings):
Similarities = []
RecommendedLaws = []
AverageSimilarities = []

Tokenizing and preprocessing the input text
Text = Text.lower()
inputsl = Tokenizer(
[Text],
return_tensorss"pt",
padding='max_length',
max_length=MaxlLength,
truncationsTrue
)
with torch.no_grad():
Embeddingsl = DebertaModel(**inputsl).last_hidden_state

for i in range(len{Embeddings)):

LegalText = Data['case_name"].iloc[i].lower()

inputs? = Tokenizer(
[LegalText],
return_tensorss'pt”°,
padding="max_length’,
max_length=MaxLength,
truncation=True

)]

with torch.no_grad():
Embeddings? = Embeddings[i] # Utilizing the precomputed DeBER]

Calculating cosine similarity between embeddings
Similarity = torch.nn.functional.cosine_similarity(Embeddingsl, Emt

Similarities.append(Similarity)
RecommendedLaws . append (Data['case_name'].iloc[i])
Calculating average similarity for each interoction
AverageSimilarity = np.mean(Similarities)
AverageSimilarities.append{AverageSimilarity)
Recommendationdf = pd.DataFrame({'Legal Text': RecommendedLaws, "Simil:
Recommendationdf = Recommendationdf.sort_values(by='"Similarity3', ascer
TopRecommendations = Recommendationdf.head{28)

return TopRecommendations, AverageSimilarities

Figure 16: Implementing Recommendation Engine with DeBERTa Natural Language
Model

13

References

Rolon-Mérette, D., Ross, M., Rolon-Mérette, T. and Church, K. (2016). Introduction to
anaconda and python: Installation and setup, Quant. Methods Psychol 16(5): S3-S11.

Rothman, D. (2021). Transformers for Natural Language Processing: Build innovative
deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT,
RoBERTa, and more, Packt Publishing Ltd.

14

	Introduction
	The configuration of the hardware
	Program configuration
	Anaconda Python Setup
	Library Imports

	Implemented Datasets
	Data Pre-processing
	Natural Language Processing Models
	Recommendation Engine

