
Configuration Manual

MSc Research Project
Artificial Intelligence

GANESH KESHAM
Student ID:x22180812

School of Computing
National College of Ireland

Supervisor: Muslim Jameel Syed



National College of Ireland
MSc Project Submission Sheet

School of Computing

Student
Name:

Ganesh Kesham

Student ID: X22180812

Programme: Msc in Artificial Intelligence Year: 2023

Module: Msc Research Practicum

Lecturer: Muslim Jameel Syed
Submission
Due Date: 14/12/2023

Project Title: TEXT TO IMAGE GENERATION USING GAN

Word Count: Word Count: 30008 Page Count : 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the rear
of the project.
ALL internet material must be referenced in the bibliography section. Students are required to
use the Referencing Standard specified in the report template. To use other author's written
or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Ganesh Kesham

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including
multiple copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project is lost
or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if
applicable):



Text to Image Generation Using
Gan

Ganesh Kesham
X22170812

1 Introduction

This manual is created with stepwise implementation of how project implement worked and
how model is created. In addition to it information and process of used libraries and tools
required to carry out for project implementation is mentioned. Furthermore, information
regarding specifications of location machine is mentioned in the manual. Each model
information is mentioned in this configure manual.

2 HARDWARE CONFIGURATION

A. Operating system: Windows >= 7

B. Processor: Intel i5

C. System Compatibility: 64-bit

D. Hard Disk: 1TB

E. RAM: 8/16 GB

3 Research Questions
1. How can a novel deep architecture effectively integrate recurrent neural networks (RNNs)

and generative adversarial networks (GANs) to synthesize realistic images from detailed

textual descriptions?



2. To what extent can advancements in RNNs and GANs be harnessed to bridge the gap

between text and image modelling, enabling the translation of textual concepts into visually

plausible pixel-based representations?

3. What is the capability of the developed model in generating credible and realistic images

of birds and flowers solely from intricate textual descriptions, and how does it compare to

existing methods?

4. How can the quality, realism, and fidelity of the generated images be quantitatively and

qualitatively assessed to provide comprehensive insights into the model's performance in

text-to-image synthesis?

5. In what ways can the insights gained from this research contribute to advancements in Al

capabilities for text-to-image generation, potentially pushing the boundaries of current

technologies and enhancing the translation of textual semantics into visual realism?

4 Setup for Configuration
SOFTWARE CONFIGURATIONS

a) Python==3.7.9 :-

Python is a high-level, versatile programming language known for its readability and
simplicity. It's favored for its ease of use and readability, making it an excellent choice for
beginners and experienced developers alike. Python supports multiple programming
paradigms (procedural, object-oriented, and functional), and its extensive standard library and
third-party packages make it suitable for various applications, including web development,
data analysis, machine learning, artificial intelligence, scientific computing, automation, and
more. Its syntax emphasizes code readability and simplicity, enabling developers to write
clear and concise code.



Fig 1 : Python.

b) Visual Studio Code:-

Visual Studio Code (VS Code) is a popular, free source code editor developed by Microsoft.
It's known for its lightweight nature, extensive customization options, and support for a wide
range of programming languages and frameworks.

Key features of VS Code include:

1. Cross-platform: Available on Windows, macOS, and Linux, ensuring a consistent
experience across different operating systems.

2. Extensions: Offers a rich ecosystem of extensions contributed by the community,
enabling support for various languages, debugging tools, themes, and more.

3. Integrated Development Environment (IDE) features: Provides features like
IntelliSense (code completion), debugging, Git integration, syntax highlighting, and
code refactoring, enhancing developer productivity.

4. Customization: Highly customizable through themes, keyboard shortcuts, and
extensions, allowing developers to tailor their coding environment to suit their
preferences and needs.

5. Built-in Terminal: Includes a built-in terminal within the editor, enabling developers
to run commands, scripts, and various tools without leaving the coding environment.

6. Performance: Known for its speed and responsiveness, even when handling large
projects or multiple files simultaneously, that cater to different programming needs.

Fig 2 : Visual Studio.

c) Google Collab:-

Google Collab, short for Collaboratory, is a free cloud-based Jupiter notebook environment
provided by Google. It allows users to write and execute Python code in a browser,
eliminating the need to set up and configure development environments locally.

Key features of Google Collab include:



Free GPU/TPU support: Collab provides access to free GPU (Graphics Processing Unit)
and TPU (Tensor Processing Unit) resources, enabling faster execution of machine learning
and deep learning tasks.

Jupiter Notebook Integration: It's built on top of Jupiter notebooks, allowing users to create
and share documents that contain live code, equations, visualizations, and narrative text.

Easy Collaboration: Users can share their Collab notebooks just like Google Docs, allowing
for real-time collaboration among multiple users.

Pre-installed Libraries: Comes with pre-installed libraries commonly used in data science
and machine learning, such as NumPy, Pandas, Matplotlib, TensorFlow, and more.

Cloud-Based: All computations are performed on Google's cloud servers, leveraging their
computing power and storage.

Storage and Version Control: Integrates with Google Drive for easy storage and version
control of notebooks.

Educational and Research Use:Widely used in academia and research for teaching, sharing
code, experimenting with new ideas, and running data analysis or machine learning
experiments. Google Collab serves as an accessible and convenient platform, particularly for
those interested in experimenting with machine learning models, performing data analysis, or
collaborating on coding projects without the need for high-end hardware or complex setup
procedures.

Fig 3 : Google Collab.

5 Libraries Configuration

I. Pandas: A powerful data manipulation and analysis library that provides easy-to-use data
structures and tools for data cleaning, transformation, and analysis.



II. NumPy: Fundamental package for numerical computing in Python. It provides support for
arrays, matrices, mathematical functions, and operations.

III. Matplotlib: A popular plotting library for creating static, interactive, and animated
visualizations in Python. It offers a wide variety of plots and customization options.

IV. Seaborn: Built on top of Matplotlib, Seaborn provides a high-level interface for drawing
attractive and informative statistical graphics.

V. Scikit-learn: A versatile machine learning library that provides simple and efficient tools
for data mining and analysis. It includes a wide range of algorithms for classification,
regression, clustering, etc.

VI. Tintern: Tintern is a standard GUI (Graphical User Interface) toolkit for Python. It's
included with most Python installations, making it accessible and widely used for creating
desktop applications with graphical interfaces.

VII. Imbalanced-learn: A library used for dealing with imbalanced datasets in machine
learning. It provides techniques for oversampling, under sampling, and creating balanced
datasets.

VIII. TensorFlow: An open-source machine learning framework developed by Google. It's
widely used for building and training machine learning models, especially deep learning
models.

IX. Kera’s: An open-source neural network library. It's high-level and user-friendly,
allowing for easy prototyping and experimentation with deep neural networks. (Note: It's
often integrated with TensorFlow as of its integration into TensorFlow as tf.keras.)

X. URL lib: A Python library for opening URLs. It's used for fetching URLs, making
requests, and handling responses.

XI. OpenCV (OpenCV-python): An open-source computer vision and machine learning
software library. It provides tools and functions for image and video analysis, object
detection, and more.

XII. Pillow: A Python Imaging Library (PIL) fork. It adds image processing capabilities to
Python and supports opening, manipulating, and saving many different images file formats.

It is divided into five stages: business comprehension, data comprehension, data preparation,
modelling, and evaluation. CRISP-DM acts as a guiding structure throughout the project
lifecycle in the context of this study on text-to-image creation utilizing GANs.
It begins with understanding the technology's main objectives and prospective applications
bridging word descriptions to visual representations—which aligns with the Business
Understanding phase.
Following this, the Data Understanding step explores and comprehends the flower's dataset,
verifying its eligibility for training the GAN model. The Data Preparation phase includes the
preparation operations required to convert picture and text data into a model-compatible
format. The modelling phase is concerned with the design and growth of the GAN
architecture, whereas the evaluation phase examines the model's effectiveness in producing



realistic pictures from text descriptions. CRISP-DM was utilized in this report, which
contains various stages, which are as follows:

6 Implementation
Importing All Library: -

Fig 4 : Importing all Library.

Loading image data: -

Fig 5 : Loding Image Data.

This diversity and intricacy are visualized using iso map, revealing the dataset's complexity
through shape and color features, emphasizing the challenges and opportunities for image
recognition and generation tasks. The dataset's unique characteristics, encompassing
variations within and between categories, render it an ideal resource for training and
evaluating models aimed at tasks like image classification, generation, and semantic



understanding of floral imagery.

Loading text data: -

Fig 6 : Loading Text Data.

Preprocessing: -

Fig 7 : Processing the Data.

The dataset utilized in this project comprises 102 distinct categories of flower images,
meticulously curated to represent commonly occurring flowers in the United Kingdom. Each
category contains a variable number of images, ranging from 40 to 258 images per class. This
diversity in image quantity across categories enriches the dataset, offering a comprehensive
representation of various flower species. Each image is meticulously.

Annotated with descriptive sentences, providing context and information about the depicted
flowers. Notably, the dataset exhibits extensive variability in terms of scale, pose, and
lighting conditions, capturing the inherent complexities and nuances present in real-world



flower photography. Additionally, certain categories exhibit significant intra-category
variations, contributing to the dataset's richness, while other categories showcase remarkable
similarities.
\
Saving Caption Data into a csv file: -

Fig 8 : Saving Caption Data.

The design specification chapter encapsulates the architectural blueprint and technical
intricacies of the text-to-image generation system utilizing Generative Adversarial Networks
(GANs). At its core, the system revolves around a novel deep architecture merging the power
of recurrent neural networks and convolutional GANs. The primary goal is to bridge the gap
between textual descriptions and visually plausible image outputs. The architectural design is
segmented into key components: the Generator Layer, tasked with transforming text
descriptions into high-resolution images, and the Discriminator Layer, responsible for
discerning between real images from the dataset and those generated by the Generator. The
Generator Layer, a pivotal element, harnesses recurrent networks or transposed convolutions
to interpret text embeddings and create corresponding image representations.

7 Model Building
Generator Layer



Fig 9 : Generator Layer.

Fig 10 :Discriminator Layer

Fig 10 :Discriminator Layer.

Model Training Output: -

Fig 11 :Model Training Output.

Within this design, careful consideration is given to the preprocessing pipeline, ensuring
seamless integration of image and text data.

Preprocessing involves converting images into standardized NumPy arrays, adjusting pixel
sizes as per predetermined specifications, and transforming textual descriptions into
embeddings stored in a structured CSV format.



The system architecture also encompasses functions crucial for model training, such as the
'train_step' function, responsible for creating images based on text descriptions, calculating
losses, and adjusting gradients, and the overarching 'train' function, orchestrating the training
process by fetching batch data and aggregating losses.

Fig 12 : Model Training.

7 Evaluation

Fig 13 : Evaluation,

The Image Generator Model's outputs represent a great achievement after a lengthy training
period of roughly 450 epochs and a total training duration of 24 hours. The design of the
model included both the Discriminator and Generator networks, which are critical
components of the GAN framework for text-to-image creation.

Specific functions were used to calculate losses for both the Discriminator and Generator
networks during the training phase. Consequently, visible progress was made by the 438th
epoch, with the Generator loss measured at 1.3284586668014526 and the Discriminator loss
measured at 1.2313429117202759. The achieved losses imply that the Generator and



Discriminator networks are approaching equilibrium. A decreasing Generator loss implies
that the model's capacity to create more realistic pictures from textual descriptions is
improving. Meanwhile, the Discriminator loss, while greater than the Generator loss as
predicted in adversarial training, represents the network's capacity to distinguish between
actual and created pictures.

Output Testing: -

Fig 14 : Output Testing.

Fig 15 : Output Testing.

The showcased test_image portrays a flower characterized by a purple hue, exhibiting oval-
shaped petals. The textual description accompanying this image emphasizes these distinct



visual attributes. Subsequently, upon examining the test_output result, it reveals a multitude
of smaller images.

These images are likely the generated outputs produced by the model in response to the
provided textual description. The presence of numerous smaller images suggests the model's
attempts to interpret and generate various visual representations corresponding to the textual
description of a purple-colored flower with oval-shaped petals.
This observation underscores the model's efforts in generating diverse outputs to encapsulate
the potential variations and nuances inherent in the given textual input, aiming to produce a
range of plausible floral images that align with the described characteristics. Further
evaluation and analysis of these outputs would provide deeper insights into the model's
ability to interpret textual descriptions.

Gui Output Tkinter:-



Fig 16 :Gui Output Tkinter.

Al-powered text-to-image generator interface. The displayed image represents the user
interface or platform designed for generating images from textual descriptions using artificial
intelligence. The interface features a message prompting the user: "Enter text to create Image
then click on generate image. This message serves as an instruction or guidance for the user,
outlining the required steps to utilize the image generation functionality offered by the Al
system. Users are encouraged to input textual descriptions of the desired image content into
the provided text entry field.

Once the desired text is entered, the user initiates the image generation process by clicking
on the "generate image" button or similar interface element. This action prompts the AI
image generator to interpret the input text and produce corresponding visual outputs,
generating images that encapsulate the semantic content described in the entered text.
This action prompts the Al image generator to interpret the input text and produce
corresponding visual outputs, generating images that encapsulate the semantic content
described in the entered text. The interface design aims to facilitate user interaction, enabling
individuals to effortlessly create images based on their textual descriptions through a
straightforward and intuitive process within the Al-powered image generation platform.

Fig 17 : AI image detector.



8 Conclusion and Future Work
Significant milestones and discoveries have occurred throughout the development of a

text-to-image generating model employing GANs. Convergence in the Generator and
Discriminator networks, as indicated by lowering Generator loss and maintaining
Discriminator loss, demonstrates potential progress in synthesising realistic pictures from
textual descriptions. The lengthy training process, which lasted around 450 epochs over 24
hours, reflects the model's intricacy and the diligent efforts made to optimise its capabilities.
This checkpoint is a critical stage in the development of the model, establishing the
framework for detailed assessment and potential practical implementations.

Despite development, several limits remain. The present assessment, which focuses on losses
and convergence, does not fully reflect the quality and perceptual integrity of produced
pictures. To support quantitative measurements, subjective assessments and sophisticated
qualitative evaluations are required. Furthermore, the computational intensity and time
required for training need optimization measures to improve efficiency and scalability.

Traditional Al systems have excelled in specific fields such as natural language
understanding and picture identification. However, synergy across these fields remains a
difficult frontier. The hunt for coherent and contextually meaningful pictures from textual
descriptions has piqued the interest of many researchers. This approach combines subtle
textual comprehension with elaborate visual interpretation a union that necessitates novel
neural network designs and advanced learning processes.

The fundamental goal of this research is to go ahead in the field of artificial intelligence by
concentrating on the creation of a revolutionary method for producing realistic visuals
exclusively from precise textual descriptions. To achieve this goal, the research will take
advantage of recent advances in recurrent neural networks (RNNs) for learning
discriminative text features, as well as the capabilities of deep convolutional generative
adversarial networks (GANs) for producing highly realistic images within specific categories.
The project aims to bridge the gap between text and picture modelling by incorporating these
advances, culminating in the development of a robust deep architecture and GAN
formulation. The aim is to demonstrate the model's ability to translate complex textual
notions like birds and flowers into visually appealing and credible image outputs, therefore
greatly advancing the area of text-to-image creation in artificial intelligence.

This report delves into the pursuit of generating realistic images from textual descriptions, a
compelling yet challenging task within current Al systems. While existing technologies fall
short of this goal, recent advancements in recurrent neural networks have demonstrated
proficiency in learning discriminative text features. Additionally, deep convolutional
generative adversarial networks (GANs) have shown promise in generating highly realistic
images across specific categories like faces, album covers, and interiors. In this study, I
introduce a novel deep architecture and GAN formulation aimed at bridging these text and
image modelling advancements. Here approach is centred on translating textual concepts into
vivid visual representations, effectively converting characters into pixelated images. Through
rigorous experimentation, we showcase the capability of our model to produce credible
images of birds and flowers from intricate textual descriptions. This work represents a
significant step toward achieving the synthesis of detailed images solely from text, offering
insights into the convergence of text and image modelling within the realm of artificial
intelligence.

The confluence of artificial intelligence (Al) in natural language processing (NLP) and
computer vision in recent years has resulted in significant advances in the field of text-to-
image creation. This emerging discipline aims to bridge the gap between verbal descriptions
and visual representations, culminating in the creation of realistic visuals only from



comprehensive word inputs. The capacity to transform textual semantics into visually
appealing visuals has enormous potential in a variety of disciplines, including design, content
development, and augmented reality applications (Ramesh et al., 2021). The automatic
production of realistic pictures from written descriptions has a wide range of possible
applications, including image editing, video games, and accessibility.
Traditional Al systems have excelled in specific fields such as natural language
understanding and picture identification. However, synergy across these fields remains a
difficult frontier. The hunt for coherent and contextually meaningful pictures from textual
descriptions has piqued the interest of many researchers. This approach combines subtle
textual comprehension with elaborate visual interpretation—a union that necessitates novel
neural network designs and advanced learning processes.

Future enhancements and research avenues encompass multifaceted dimensions.
Comprehensive evaluation involving human ratters’ subjective assessments will gauge the
perceptual fidelity and realism of generated images, providing nuanced insights. Fine-tuning
parameters, such as optimizing optimizer configurations and fine-tuning learning rates, can
further elevate the model's performance. Exploration of advanced GAN variants or attention
mechanisms might enrich the model's ability to capture intricate details and improve image
quality. Furthermore, considerations for scalability and efficiency, possibly through parallel
computing or hardware acceleration, will expedite model training and deployment.

In conclusion, while this phase signifies substantial progress in text-to-image generation, a
comprehensive evaluation, fine-tuning, and exploration of advanced techniques remain
crucial for refining the model's capabilities and ensuring its practical applicability across
diverse domains. This checkpoint sets the trajectory for continued research, aiming to push
the boundaries of text-to-image generation technology and unlock its potential in various
real-world applications.


	1Introduction
	2HARDWARE CONFIGURATION
	4Setup for Configuration
	SOFTWARE CONFIGURATIONS
	Fig 1 : Python.
	b)Visual Studio Code:-
	Key features of VS Code include:
	c)Google Collab:-
	Key features of Google Collab include:
	6Implementation
	Fig 10 :Discriminator Layer.
	Model Training Output: -

	7Evaluation
	8Conclusion and Future Work


