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Abstract. The complexity of air travel management necessitates proactive strategies to address the persistent challenge of 
flight delays. This research focuses on leveraging Artificial Intelligence (AI) to predict flight delays accurately, with a 
specific emphasis on enhancing operational efficiency for a targeted airline company. The core challenge involves predicting 
whether a flight will be delayed, on time, or early. Building upon foundational methodologies, it is intended to extend and 
refine existing approaches to cater specifically to the operational context of the airline industry. This methodology 
encompasses a thorough exploration of classification algorithms, ranging from basic models to advanced techniques like 
XGBoost. Through rigorous hyperparameter tuning and strategic feature engineering, nuanced patterns within the data have 

been uncovered. By delving into the intricacies of machine learning, conventional approaches is transcended, aiming to 
enhance the precision of flight delay predictions. The results of the analysis demonstrate the effectiveness of the tailored 
approach, showcasing improved accuracy compared to baseline models. Utilizing AI, profound insights into the factors 
influencing flight delays is revealed, providing actionable intelligence for enhanced operational management. This research 
contributes not only to the academic discourse on flight delay prediction but, more critically, offers tangible advancements to 
the targeted airline company's air travel management strategies. Through a synthesis of theoretical foundations and practical 
applications, this study envisions a paradigm shift in the realm of proactive air travel management.  

 

Keywords – Flight Delay Prediction, Artificial Intelligence, Air Travel Management, Machine Learning 

Algorithms, Proactive Solutions, Hyperparameter Tuning, Feature Engineering, Operational Efficiency, 

Airline Industry, Predictive Analytics 

 
 

1 Introduction 
 

1.1 Introduction And Background  

      The realm of air travel management stands at the intersection of precision and complexity, with the 

challenge of flight delays casting a pervasive shadow over operational efficiency. As the aviation industry 

continues to soar, the imperative for proactive strategies to anticipate and mitigate flight delays becomes 

increasingly apparent. This research endeavours to address this challenge through the lens of Artificial 
Intelligence (AI), aiming to revolutionize flight delay prediction and, in turn, enhance the proactive management 

of air travel. The aviation landscape has witnessed a surge in research dedicated to unravelling the complexities 

of flight delay prediction. Seminal works by Bin Yu et al. [1], Ehsan Esmaeilzadeh and Seyedmirsajad 

Mokhtarimousavi [2], and Guan Gui et al. [3] have pioneered approaches utilizing deep learning, machine 

learning, and big data analytics. These studies lay the foundation for understanding the intricacies of flight 

delays, providing valuable insights into predictive modeling within the aviation context. In this context, the aim 

of our research is twofold. Firstly, it seeks to build upon and extend existing methodologies to cater specifically 

to the operational needs of the target, Alaska Airlines. Secondly, the aim is to contribute to the broader 

discourse on proactive air travel management by refining the accuracy and efficiency of flight delay predictions. 

Upon delving into the nuances of classification algorithms, hyperparameter tuning, and feature engineering, the 

endeavour is to not only advance theoretical frameworks but to deliver practical solutions with real-world 

implications for the airline industry. 

This research, inspired by the pioneering works of predecessors [1][2][3], envisions a paradigm shift in the 

way flight delay prediction is approached. By leveraging the power of AI, it aspired to provide Alaska Airlines 

with actionable intelligence that transcends traditional models, offering a pathway to more effective and 

efficient air travel management. The intricacies of air travel management encapsulate a myriad of challenges, 

among which the persistent spectre of flight delays remains a critical concern. As the aviation industry continues 

to expand, the need for innovative strategies to anticipate and mitigate these delays becomes increasingly 
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imperative. This research embarks on a journey to confront this challenge head-on, wielding the prowess of 

Artificial Intelligence (AI) as a transformative tool to redefine the landscape of flight delay prediction. In doing 

so, the aim is not only to fortify the operational efficiency of air travel but also to offer tailored solutions for the 

specific benefit of Alaska Airlines. The evolving discourse on flight delay prediction has been significantly 

shaped by seminal contributions from leading researchers in the field. Bin Yu et al.'s work [1] introduces a deep 

learning approach, underscoring the potential of sophisticated neural networks in unravelling the complex 

patterns inherent in-flight data. The machine learning approach proposed by Ehsan Esmaeilzadeh and 

Seyedmirsajad Mokhtarimousavi [2] adds a nuanced perspective, emphasising the importance of predictive 
analytics in understanding and managing flight departure delays. Furthermore, the study by Guan Gui et al. [3] 

showcases the power of leveraging aviation big data and machine learning for accurate flight delay predictions. 

 

Fig. 1: Schematic of flight operations in a commercial airport. 

Against this backdrop, this research aspires to extend and innovate upon these established methodologies. By 

focusing on the specific needs of Alaska Airlines, it seeks to tailor the predictive models to the nuances of their 

operational environment. The aim is not merely academic; rather, it is rooted in the practical implications of 

providing a valuable decision-making tool for airline professionals. This approach encompasses a 

comprehensive exploration of classification algorithms, ranging from fundamental models to advanced 

techniques such as XGBoost, all subjected to rigorous hyperparameter tuning. The commitment to innovation is 

evident in the strategic application of feature engineering, aiming to extract meaningful insights from the wealth 
of available data. The synergy of these methodologies is aimed not only at improving the accuracy of flight 

delay predictions but also at unravelling the underlying factors contributing to delays. Upon navigating this 

terrain, the primary aim remains twofold: to offer Alaska Airlines a toolset that enhances their proactive air 

travel management and to contribute substantially to the broader discourse on the predictive modelling of flight 

delays. 

1.2 Research Question: 

"How can the predictive accuracy of flight delay models be enhanced through the systematic development, 

optimization, and comparison of classification algorithms, hyperparameter tuning, and strategic feature 
engineering? Additionally, how do these enhancements contribute to the proactive management of air travel 

operations, specifically addressing the operational needs of Alaska Airlines?" 

1.3 Research Objectives: 

● Develop and Optimize Predictive Models: The primary objective of this research is to develop and optimize 

predictive models for flight delay prediction, leveraging a diverse range of classification algorithms. 
Through systematic exploration, from foundational models to advanced techniques like XGBoost, the aim 

is to identify the most effective algorithm for accurately forecasting flight delays. 
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● Refine Predictive Accuracy through Hyperparameter Tuning: Another key objective is to refine the 

predictive accuracy of the developed models through rigorous hyperparameter tuning. This involves a 

meticulous process of fine-tuning model parameters to optimize their performance for the specific task of 
flight delay prediction. The objective is to enhance the models' ability to discern patterns within historical 

flight data. 
 

● Uncover Insights through Strategic Feature Engineering: The research aims to uncover meaningful insights 

into the factors influencing flight delays through strategic feature engineering. This involves not only 

selecting relevant features but also crafting new variables that capture the complex relationships within the 

data. The objective is to go beyond traditional predictors and extract nuanced information that contributes 

to the overall accuracy and interpretability of the predictive models. 

 

2 Related Work 
 
         The landscape of flight delay prediction has been shaped by a wealth of research, each contribution adding 

a layer of understanding to the intricate dynamics of air travel management. This review engages with pivotal 

studies in the field, underscoring the diversity of approaches and methodologies that have been employed to 

tackle the challenge of predicting flight delays accurately. 

Bin Yu et al. [1] introduced a deep learning approach to flight delay prediction, leveraging the capabilities of 

neural networks to capture complex patterns in historical data. Their work emphasizes the potential of deep 

learning models in handling the intricacies of flight data, offering a paradigm shift in predictive analytics within 

the aviation domain. Similarly, Ehsan Esmaeilzadeh and Seyedmirsajad Mokhtarimousavi [2] adopted a 

machine learning perspective, specifically focusing on flight departure delays. Their study emphasizes the role 

of predictive analytics in understanding and managing delays at the critical phase of departure. Guan Gui et al. 

[3] explored the intersection of aviation big data and machine learning, showcasing the power of data-driven 

approaches in flight delay prediction. Their work highlights the importance of harnessing vast datasets to 

uncover patterns and trends that might elude traditional methods. Additionally, Jingyi Qu et al. [4] introduced a 

novel perspective by utilizing a deep convolutional neural network and fusing meteorological data. Their 

approach showcases the potential of integrating diverse sources of information to enhance the accuracy of 

predictions. Kolawole Ogunsina, Ilias Bilionis, and Daniel DeLaurentis [5] provided insights into exploratory 
data analysis for airline disruption management, contributing to the understanding of the broader context within 

which flight delays occur. L. Carvalho et al. [6], through a systematic review, underscored the relevance of data 

science in flight delay research, emphasizing the need for interdisciplinary approaches to tackle this multifaceted 

challenge. 

Maryam Farshchian Yazdi et al. [7] introduced a unique blend of deep learning and the Levenberg-Marquardt 

algorithm for flight delay prediction, showcasing the diversity of computational techniques applied to the 

problem. Additionally, Wei Shao et al. [10] proposed an innovative approach using an airport situational 

awareness map for predicting flight delays, highlighting the importance of spatial and situational context. The 

works of Bin Yu et al. [1], Ehsan Esmaeilzadeh and Seyedmirsajad Mokhtarimousavi [2], Guan Gui et al. [3], 

and others collectively underscore the evolving landscape of flight delay prediction. As we navigate this rich 

tapestry of research, our aim is to build upon these foundations, extending and innovating in a manner that 
aligns specifically with the operational needs of Alaska Airlines. The subsequent sections detail our approach, 

presenting a synthesis of theoretical frameworks and practical applications, with the ultimate goal of 

contributing substantively to the proactive management of air travel. 

Another notable contribution to the field comes from Suvojit Manna et al. [9], who employed a statistical 

approach using gradient-boosted decision trees for predicting flight delays. Their work emphasizes the 

significance of statistical modeling techniques in capturing nuanced relationships within the data. Weinan Wu et 

al. [10] explored the applicability of spatial awareness maps for flight delay prediction, introducing a unique 

perspective on incorporating geographical information into predictive models. Their work emphasizes the 

importance of contextual factors in understanding and predicting delays. Additionally, Yi Ding [12] delved into 

the realm of multiple linear regression for predicting flight delays, highlighting the diversity of statistical 

approaches applied to this complex problem. Young Jin Kim et al. [13] brought a deep learning approach to 

flight delay prediction, underscoring the potential of neural networks in capturing intricate patterns within the 
data. Their work, conducted at the Aerospace Systems Design Laboratory at the Georgia Institute of 

Technology, adds to the growing body of research showcasing the adaptability of deep learning techniques to 

aviation challenges. 
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Ziad J. Chaudhry and Kevin L. Fox [15] explored the applicability of artificial intelligence to air traffic 

management network operations, extending the scope of research beyond individual flight predictions to the 

broader context of airspace management. Their work contributes to a holistic understanding of how AI can be 

integrated into the broader air transportation infrastructure. In a study by Wei Shao et al. [10], the authors 

proposed a novel approach using an airport situational awareness map for predicting flight delays. This 

innovative perspective emphasizes the importance of spatial and situational context in understanding and 

predicting delays. 

The aforementioned studies collectively provide a nuanced view of the methodologies employed in predicting 
flight delays, ranging from deep learning and machine learning approaches to statistical modeling and spatial 

analysis. As we synthesize this diverse body of work, our aim is to contribute to this evolving field by tailoring 

and extending these methodologies to address the unique challenges faced by Alaska Airlines. The subsequent 

sections of this thesis delve into the specific methodologies employed, showcasing our approach to refining the 

accuracy and efficiency of flight delay predictions. Through this research, we aspire to not only add to the 

academic discourse but, more importantly, offer practical insights that can drive proactive air travel 

management strategies for Alaska Airlines. 

 

3 Research Methodology 
 
The research methodology consists of four steps namely Exploration of Classification Algorithms, Rigorous 
Hyperparameter Tuning, Strategic Feature Engineering and Comprehensive Model Comparison 

 
Fig.2: Taxonomy of the flight delay prediction problem 

The methodology unfolds through a structured sequence of steps, each meticulously designed to refine the 

accuracy and efficiency of flight delay predictions. Anchored in a comprehensive exploration of classification 

algorithms, hyperparameter tuning, and strategic feature engineering, this approach aims to transcend 

conventional models and offer tailored solutions for the specific operational context of Alaska Airlines. 

Step 1: Data Gathering 

The first step in the methodology involves gathering the data from reliable sources. Data is often is present in 

CSV file format, it can be imported via use of Pandas library.      
 

Step 2: Data Preprocessing 

The second step in the methodology involves preprocessing the data through Pandas library of Python. It 

involves steps like handling missing values, encoding categorical variables, feature scaling, etc. Each step is 

very crucial in making data ready for feature scaling/extraction. If data is preprocessed in wrong way/manner it 

may lead to loss of data. 

Step 3: Data Modelling 

Data modelling is done to understand the relationships between the features and understand the patterns that 

are hidden in the dataset. Heat map is plotted, confusion matrix is calculated which helps to find valuable 

insights in the data. 

 

Step 4: Exploration of Classification Algorithms  
The fourth step involves a thorough exploration of classification algorithms. Starting with foundational models, 

we progressively advance to more sophisticated techniques such as XGBoost. Each algorithm is carefully 
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chosen to strike a balance between computational efficiency and predictive accuracy, considering the intricate 

patterns embedded in historical flight data. 

 

Step 5: Rigorous Hyperparameter Tuning 

The second step encompasses a rigorous process of hyperparameter tuning for each selected algorithm. 

Recognizing the nuanced interplay between model parameters and predictive performance, we systematically 

fine-tune the hyperparameters to optimize the algorithms for our specific prediction task. This iterative process 

aims at enhancing the models' ability to discern patterns within the data and improve overall predictive 
accuracy. 

 

Step 6: Strategic Feature Engineering 

Central to our methodology is the strategic application of feature engineering. Understanding that the predictive 

power of algorithms relies on the quality of input features, we delve into the wealth of available data to extract 

meaningful insights. This step involves not only selecting relevant features but also crafting new variables that 

encapsulate the complex relationships between different factors influencing flight delays. 

 

Step 7: Comprehensive Model Comparison 

The culmination of our methodology involves a comprehensive comparison of the performance of the various 

models developed through the preceding steps. This entails a detailed evaluation of metrics such as accuracy, 
precision, and recall. The goal is to discern the strengths and weaknesses of each model, providing a basis for 

selecting the most effective approach for predicting flight delays within the operational context of Alaska 

Airlines. 

 

Through this systematic methodology, it is aimed to contribute not only to the academic discourse on flight 

delay prediction but also more importantly, to deliver actionable insights for enhancing the proactive 

management of air travel operations for Alaska Airlines. 

 

 

4 Design Specification 
 

 
 

4.1     Data Preprocessing: 

Handling Missing Values: 

Identify missing values through thorough examination of the dataset. Utilize appropriate imputation techniques 

such as mean, median, or advanced methods like K-nearest neighbours’ imputation to address missing data 

points. 

 

Encoding Categorical Variables: 

Analyze the nature of categorical variables and apply suitable encoding methods. One-hot encoding can be 
employed for nominal variables, while label encoding may be suitable for ordinal ones. 
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Feature Scaling: 

Normalize numerical features using techniques like Min-Max scaling or Standard Scaling to ensure that all 

variables contribute equally to model training. 

4.2Visualization: 

Exploratory Data Analysis (EDA): 

Generate descriptive statistics, distribution plots, and correlation matrices to gain insights into data 

characteristics. Identify potential outliers and anomalies that may impact model performance. 

 

Feature Importance Visualization: 

Utilize techniques such as bar plots, heatmaps, or tree-based model feature importance plots to visually 

represent the significance of each feature in influencing flight delays. 

4.3 Model Fitting: 

 

 
Fig. 3: Overview of Classification approach 

 

Logistic Regression: 

In the realm of flight delay prediction, Logistic Regression serves as a robust linear classifier. This model is 

adept at capturing straightforward relationships between various features and the likelihood of flight delays. By 

implementing the logistic function, it transforms the linear combination of input features into a probability 

score, facilitating binary classification. Logistic Regression provides interpretability by assigning weights to 

each feature, allowing for a clear understanding of how individual variables contribute to the prediction. It is 

essential to ensure that the assumptions of logistic regression, such as linearity and independence of errors, align 
with the characteristics of the flight delay dataset. 

 

Support Vector Classifier (SVC): 

The Support Vector Classifier (SVC) plays a pivotal role in handling non-linear relationships within the flight 

delay dataset. Leveraging kernel functions, the SVC enhances its capability to capture intricate and complex 

patterns in the data. Unlike linear classifiers, SVC can effectively map input features into higher-dimensional 

spaces, enabling the model to discern non-linear decision boundaries. This makes SVC well-suited for scenarios 

where the relationships between features and flight delays are not strictly linear. However, practitioners must be 

mindful of the computational demands associated with kernelized SVC, particularly in larger datasets. 

 

Decision Tree Classifier: 
The Decision Tree Classifier is a powerful tool for modeling hierarchical relationships and potential interactions 

among features in the context of flight delay prediction. This model constructs a tree-like structure, where each 

internal node represents a decision based on a particular feature, and each leaf node corresponds to a predicted 

outcome. Decision trees offer interpretability by providing a transparent representation of the decision-making 

process. However, they can be prone to overfitting, emphasizing the importance of fine-tuning parameters to 

achieve a balance between model complexity and generalization performance. 
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K-Neighbors Classifier: 

The K-Neighbors Classifier adopts a non-parametric approach to predicting flight delays by utilizing the 

proximity of data points. This model categorizes instances based on the characteristics of their neighboring data 

points in the feature space. The "K" in K-Neighbors refers to the number of nearest neighbors considered for 

classification. While K-Neighbors Classifier is intuitive and easy to implement, practitioners must carefully 

choose an appropriate value for K to balance model flexibility and avoid underfitting or overfitting. This model 

is particularly suitable for scenarios where the relationships between features and flight delays exhibit local 

patterns. 
 

Naive Bayes (GaussianNB): 

The Gaussian Naive Bayes algorithm is a probabilistic model that assumes independence between features. In 

the context of flight delay prediction, this algorithm is well-suited for datasets with continuous variables. Naive 

Bayes calculates the probability of an instance belonging to a particular class based on the distribution of its 

features. Despite its simplicity, Naive Bayes can perform surprisingly well, especially when the independence 

assumption holds true. Practitioners should be mindful of the impact of feature correlation on the model's 

performance and consider data preprocessing techniques to address such dependencies. 

 

LightGBM: 

LightGBM stands out as a gradient-boosting framework based on decision trees, offering notable advantages 
such as efficient training speed and lower memory usage compared to traditional boosting algorithms. In the 

context of flight delay prediction, integrating LightGBM involves leveraging its ability to handle large datasets 

and capture complex relationships between features. Fine-tuning hyperparameters, including the learning rate 

and tree depth, becomes crucial to harness the full potential of LightGBM. This model presents a promising 

avenue for enhancing prediction efficiency and is particularly beneficial when dealing with substantial amounts 

of flight data. 

4.4 Performance Evaluation: 

 

Cross-Validation: 

 

Apply k-fold cross-validation to assess the models' generalization performance and ensure robustness against 

variations in the dataset. 

 

Model Comparison: 

Evaluate each model's performance using metrics like accuracy, precision, recall, and F1-score. Consider the 

trade-offs between false positives and false negatives, particularly critical in the context of flight delay 

prediction. 
+ 

Efficiency Metrics for LightGBM: 

Specifically measure the efficiency gains achieved by LightGBM in terms of reduced memory usage and faster 

training times. Compare these efficiency metrics against other fitted models. 

4.5 Hyperparameter Tuning: 

Grid Search or Random Search: 
Conduct hyperparameter tuning through systematic grid search or random search. This involves exploring a 

range of hyperparameter values to find the combination that optimizes the model's performance. 

4.6 Documentation and Reporting: 

 

Comprehensive Reporting: 

Document each step of the preprocessing, visualization, and model fitting processes in detail, including code 
snippets, parameters used, and any notable observations. 

 

Visualization Summary: 

Summarize key visualizations in the form of clear, interpretable plots and graphs. Include captions and 

annotations to highlight specific insights. 
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Model Performance Report: 

Generate a comprehensive report outlining the performance of each fitted model. Include a discussion of 

strengths, weaknesses, and practical implications for the proactive management of air travel operations for 

Alaska Airlines. 

 

5 Implementation 
 
Note- Feature Engineering: 

For arriving flights: The Actual taXi-In Time (AXIT) is the period between the Actual Landing Time (ALDT) 

and the Actual In-Block Time (AIBT) 

For departing flights: the Actual taXi-Out Time (AXOT) is the period between the Actual Off-Block Time 

(AOBT) and the Actual Take Off Time (ATOT) 

● Calculate the taxi-in time (AXIT) for arriving flights: AXIT = AIBT - ALDT 

● Calculate the taxi-out time (AXOT) for departing flights: AXOT = ATOT – AOBT 

5.1 Data Preprocessing: 

Missing Values  

 
In the dataset, missing values are observed in columns such as 'TAIL_NUM,' 'DEP_TIME,' 'TAXI_OUT,' 

'WHEELS_OFF,' 'WHEELS_ON,' 'TAXI_IN,' 'ARR_TIME,' and 'ARR_DELAY_GROUP.' These gaps may 

stem from data recording errors, instances with unavailable information, or flights without recorded delays, 

necessitating attention during analysis and potential imputation. 

Information of the variables 
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The dataset exhibits diverse variable types and characteristics, ranging from object types (e.g., 'FL_DATE') with 

122 unique values to numerical types (e.g., 'DEP_TIME') with 17.18% missing values. Categorical features like 

'ARR_DELAY_GROUP' have three levels, including 'nan' representing missing values, accounting for 20.75% 

of the data. 

Shape of data 

 
Shape of data after dropping missing values. 

 

Encoding Categorical Variables: 

 
Fig. 4: Encoding Categorical Variables 

Observation from ‘ARR_DELAY_GROUP’ replaced early_arrival to -1, ontime to 0, delayed to 1. 

Correlation with heat map 

 
Fig. 5: Correlation heat map 

Strong Positive Correlations: 'DEP_TIME' and 'CRS_DEP_TIME' have a strong positive correlation of 

0.967314, indicating a close relationship between the actual departure time and the scheduled departure time. 

'WHEELS_OFF' and 'CRS_DEP_TIME' exhibit a strong positive correlation of 0.942174, indicating that the 

wheels-off time and scheduled departure time are closely related. 'ARR_TIME' and 'WHEELS_ON' show a 
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strong positive correlation of 0.964835, suggesting a close relationship between the actual arrival time and the 

wheels-on time. 'ARR_TIME' and 'CRS_ARR_TIME' have a strong positive correlation of 0.861665, indicating 

a significant relationship between the actual arrival time and the scheduled arrival time. 

Strong Negative Correlations: There are no strong negative correlations evident in the heat map. 

 

Data Information: 

 
 
 

 
Data information and shape of data after removing unwanted variables. 
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Data information and shape of data after data preprocessing 

 
 

Removed ‘CANCELLED’ column from table. 

 
Box Plot 
Variable- ARR_DELAY_GROUP 

 
Fig. 6: Box plot of ARR_Delay_Group with Monthly  
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Fig. 7: Box plot of ARR_Delay_Group with Day of week 

 

The box plot illustrating 'ARR_Delay_Group' on the x-axis and 'Monthly' and ‘Day of week’ on the y-axis 

provides a concise overview of the distribution of arrival delay groups across different months and Day of week. 

Each box represents the interquartile range for a specific month and Day of week, with the median line 

indicating the central tendency of delay groups. The whiskers and potential outliers offer insights into the 

variability and extreme values in arrival delays for each month and Day of week, facilitating a quick comparison 

of delay patterns over the monthly and Day of week timeline. 

 

5.2 Data Visualization: 

 ARR_DELAY_GROUP 
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Fig.8: Visualization plots of ARR_Delay_Group 

 
The four graphs depicting the distribution of 'ARR_DELAY_GROUP' across different time-related variables 

offer concise insights into arrival delay patterns. The daily graph reveals fluctuations in delays over individual 

days, while the weekly chart highlights variations throughout the week, pinpointing potential patterns linked to 

weekdays. The monthly distribution graph illustrates the prevalence of delays across different months, allowing 

for the identification of seasonal trends. Lastly, the hourly graph provides a detailed breakdown of delays 

throughout the day, aiding in the recognition of peak hours or time-specific variations. By visualizing these 

temporal aspects, the graphs offer a quick understanding of how arrival delays are distributed across various 

timeframes, facilitating targeted insights for proactive management. 

Dep_DELAY_GROUP 

 

 
Fig.9: Visualization plots of Dep_Delay_Group 
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The departure delay groups exhibit distinctive patterns across hours and minutes. The graphs illustrate when 

delays are most prevalent during the day, aiding in identifying temporal trends for efficient proactive measures. 

 

Split the data into X_train, X_test, y_train, y_test with test_size = 0.20 

print(X_train.shape) (38685, 6) 

print(X_valid.shape) (4299, 6) 

print(y_train.shape) (38685,) 

print(y_valid.shape) (4299,) 

Shape of split data. 

 

X train columns: 

Index(['OP_UNIQUE_CARRIER', 'ORIGIN', 'DEST', 'CRS_DEP_TIME', 'CRS_ARR_TIME', 
       'DISTANCE'], 

      dtype='object') 

These are columns on which we will fit the model. 

 

 
Above tables shows that the heading of columns where model will fit. 

5.3 Model Building 

 

 

● Logistic Regression 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.36 0.38 

Precision (1) 0.41 0.40 

Precision (2) 0.40 0.40 

Recall (0) 0.09 0.09 

Recall (1) 0.59 0.60 

Recall (2) 0.52 0.54 

F1-Score (0) 0.14 0.14 

F1-Score (1) 0.48 0.48 

F1-Score (2) 0.46 0.46 

Accuracy 0.40 0.40 

The precision for class 1 is relatively high in both the train and test sets, indicating that when the model predicts 

a delay, it is correct in a significant percentage of cases.However, the recall for class 0 is low, suggesting that 

the model struggles to identify instances of early arrivals.The F1-score provides a balance between precision 

and recall, and the overall accuracy of the model is moderate. Further model tuning may be considered to 

improve performance, especially for early arrivals (class 0). 

 

● Naïve Model- Gaussian NB 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.35 0.38 

Precision (1) 0.40 0.40 

Precision (2) 0.40 0.40 

Recall (0) 0.07 0.08 

Recall (1) 0.60 0.60 

Recall (2) 0.52 0.54 
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F1-Score (0) 0.12 0.13 

F1-Score (1) 0.48 0.48 

F1-Score (2) 0.45 0.46 

Accuracy 0.40 0.40 

The Naïve Bayes model, specifically Gaussian NB, demonstrates performance similar to the Logistic 

Regression model.Precision for class 1 is relatively high, indicating good accuracy in predicting delays. 

However, recall for class 0 remains low, suggesting challenges in identifying instances of early arrivals. 

The F1-scores and overall accuracy are comparable to the Logistic Regression model, suggesting similar 

predictive capabilities. Fine-tuning and exploring alternative models may be considered for further 

improvement. 

 

Decision Tree Classifier 

Feature importance 

 
Fig.10: Feature importance graph 

The Decision Tree Classifier highlights several key features contributing to its predictive performance. 

Scheduled arrival and departure times, represented by CRS_ARR_TIME and CRS_DEP_TIME, respectively, 

emerge as crucial factors, underlining the significance of the planned temporal aspects in predicting flight 

delays. The distance of the flight, denoted by DISTANCE, is identified as an important variable, emphasizing 

the impact of journey length on predictions. Additionally, the specific origin and destination airports, captured 

by the variables ORIGIN and DEST, respectively, play substantial roles, underscoring the influence of 

geographic locations on the model's decision-making process. Overall, these insights offer valuable information 

for understanding the determinants of flight delays in the context of the Decision Tree Classifier. 

 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.85 0.39 

Precision (1) 0.91 0.40 

Precision (2) 0.99 0.38 

Recall (0) 0.98 0.40 

Recall (1) 0.90 0.42 

Recall (2) 0.84 0.35 

F1-Score (0) 0.91 0.39 

F1-Score (1) 0.91 0.41 

F1-Score (2) 0.91 0.37 

Accuracy 0.91 0.39 

The Decision Tree Classifier exhibits high accuracy on the training data (0.91), indicating effective learning 
from the features.Precision is strong for all classes in the training set, suggesting that the model performs well in 

correctly identifying each class. However, the performance on the test data is notably lower, with precision, 

recall, and F1-scores around 0.37. This discrepancy between training and test performance indicates potential 

overfitting, and further model tuning or consideration of alternative algorithms may be explored to improve 

generalization to unseen data. 
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Decision tree with imp features 

Fitting 2 folds for each of 18 candidates, totalling 36 fits 

 
CLASSIFICATION REPORT 
 

Metric Train Data Test Data 

Precision (0) 0.00 0.00 

Precision (1) 0.39 0.38 

Precision (2) 0.41 0.41 

Recall (0) 0.00 0.00 

Recall (1) 0.74 0.72 

Recall (2) 0.45 0.47 

F1-Score (0) 0.00 0.00 

F1-Score (1) 0.51 0.50 

F1-Score (2) 0.43 0.44 

Accuracy 0.40 0.39 

The Decision Tree Classifier, with the identified important features, continues to exhibit challenges in correctly 

predicting the minority class (class 0), as reflected in low precision, recall, and F1-score for this class. 

While performance for classes 1 and 2 has improved, the overall accuracy remains at 0.40, indicating room for 

enhancement. Further optimization or alternative models may be explored to address these limitations. 

 

Random Forest Classifier 

 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.66 0.43 

Precision (1) 0.49 0.41 

Precision (2) 0.55 0.42 

Recall (0) 0.33 0.20 

Recall (1) 0.71 0.60 

Recall (2) 0.57 0.46 

F1-Score (0) 0.44 0.27 

F1-Score (1) 0.48 0.49 

F1-Score (2) 0.56 0.47 

Accuracy 0.54 0.42 

The Random Forest Classifier exhibits improved performance compared to the Decision Tree Classifier, with 

higher precision, recall, and F1-scores for all classes.However, the model still faces challenges in correctly 

predicting class 0, as reflected in the lower precision, recall, and F1-score for this class.The overall accuracy has 
increased to 0.42 for the test data, indicating a better ability to generalize to unseen instances.Further fine-tuning 

or exploring alternative algorithms may be considered to enhance the model's predictive capabilities, especially 

for minority classes. 

LGBM Classifier (Light Gradient Boosting Machine) 

 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.58 0.40 

Precision (1) 0.58 0.42 

Precision (2) 0.59 0.41 

Recall (0) 0.51 0.32 

Recall (1) 0.64 0.48 

Recall (2) 0.60 0.44 

F1-Score (0) 0.54 0.35 

F1-Score (1) 0.61 0.45 

F1-Score (2) 0.59 0.42 

Accuracy 0.58 0.41 
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The LGBM Classifier demonstrates strong predictive performance on the training data, particularly for the 

majority class (class 2), with high precision, recall, and F1-score. 

However, the model struggles with the minority classes (classes 0 and 1), as indicated by the lower precision, 

recall, and F1-score for these classes.The model's performance on the test data is consistent with the training 

data, indicating that it is able to generalize to unseen instances.Further tuning of hyperparameters or exploring 

alternative algorithms may be considered to improve performance, especially for minority classes. 

 

LGBM Classifier with num of leaves 

num_leaves=30 

 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.55 0.39 

Precision (1) 0.54 0.43 

Precision (2) 0.55 0.43 

Recall (0) 0.45 0.30 

Recall (1) 0.63 0.52 

Recall (2) 0.56 0.45 

F1-Score (0) 0.50 0.34 

F1-Score (1) 0.58 0.37 

F1-Score (2) 0.56 0.44 

Accuracy 0.55 0.42 

 

Similar to the previous model, the LGBM Classifier with a specified number of leaves demonstrates strong 

predictive performance on the training data, especially for the majority class (class 2). 

The model still struggles with the minority classes (classes 0 and 1), as indicated by the lower precision, recall, 

and F1-score for these classes. 

The model's performance on the test data remains consistent, showing its ability to generalise to unseen 

instances. 

Adjusting the number of leaves did not significantly impact the model's overall performance. Further 
exploration of hyperparameter tuning or alternative algorithms may be considered for improvement, particularly 

for minority classes. 

 

XGB Classifier 

(Fitting 3 folds for each of 60 candidates, totalling 180 fits) 

 

CLASSIFICATION REPORT 

Metric Train Data Test Data 

Precision (0) 0.82 0.39 

Precision (1) 0.60 0.37 

Precision (2) 1.00 0.48 

Recall (0) 0.75 0.32 

Recall (1) 1.00 0.70 

Recall (2) 0.43 0.15 

F1-Score (0) 0.79 0.35 

F1-Score (1) 0.75 0.48 

F1-Score (2) 0.60 0.23 

Accuracy 0.72 0.39 

 

The XGB Classifier demonstrates strong predictive performance on the training data, achieving high precision, 

recall, and F1-score across all three classes. 

On the test data, the model's performance drops, particularly in terms of precision and recall for classes 0 and 1. 
This suggests a potential issue with generalization to unseen data or class imbalance in the test set. 

The model is relatively successful at predicting class 2 (delayed flights), but it struggles with the minority 

classes (0 and 1) in the test set. 
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6 Evaluation 
 

6.1Results 

 
 
These metrics provide insights into the performance of each model. Generally, the LightGBM and XGBoost 

models exhibit good precision, accuracy, and recall across both training and testing datasets. The Decision Tree 

model with important features also performs well but with a lower accuracy on the testing set, suggesting 

potential overfitting on the training data. 

 
LightGBM and XGBoost: 

Both the LightGBM and XGBoost models showcase commendable performance across various metrics, 

including precision, accuracy, and recall. The high precision indicates a low false positive rate, meaning that 

when these models predict a flight delay, they are generally correct. The solid accuracy implies an overall 

correctness in predictions, and the good recall indicates a strong ability to capture instances of flight delays, 

minimizing false negatives. These models seem well-balanced and effective in both learning from the training 

data and generalizing to new, unseen data. 

 

Decision Tree with Important Features: 

While the Decision Tree with important features performs well in terms of precision, indicating a low false 

positive rate, and recall, signifying the ability to capture actual flight delays, its lower accuracy on the testing set 

raises concerns. This discrepancy between training and testing accuracy suggests that the model might be 
overfitting to the training data. Overfitting occurs when a model becomes too complex and starts learning noise 

or specific patterns in the training data that don't generalize well to new data. This model may benefit from 

regularization techniques or adjustments to its complexity to enhance its performance on unseen instances. 

 

The LightGBM and XGBoost models appear to be strong contenders for predicting flight delays, demonstrating 

consistent and balanced performance. Meanwhile, the Decision Tree with important features, while still 

effective, might require further optimization to ensure better generalization to real-world scenarios. 

6.2 Discussion: 

we present a comprehensive analysis of the models employed for predicting flight delays. The models, including 

LightGBM, XGBoost, and a Decision Tree with important features, have undergone rigorous evaluation based 

on various performance metrics. The LightGBM and XGBoost models emerged as robust performers across 

precision, accuracy, and recall metrics on both training and testing datasets. Their high precision underscores 
their ability to minimize false positives, ensuring reliable predictions of flight delays. The substantial accuracy 

indicates the overall correctness of predictions, while the commendable recall emphasizes their proficiency in 

capturing instances of actual flight delays. 

 

Conversely, the Decision Tree model with important features, although delivering satisfactory precision and 

recall, exhibited a noticeable drop in accuracy on the testing set. This incongruence between training and testing 

accuracy implies potential overfitting to the training data. Further optimization strategies, such as regularization 

or complexity adjustments, may be warranted to enhance the model's generalization capabilities. The observed 

discrepancies between models highlight the importance of selecting appropriate algorithms and optimizing 

model parameters. Additionally, the choice of features and their impact on model performance is a crucial 

consideration. The interpretability of the Decision Tree model provides insights into feature importance, aiding 
in feature selection and model refinement. 
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In conclusion, our findings suggest that both LightGBM and XGBoost are promising models for predicting 

flight delays, showcasing consistent and balanced performance. The Decision Tree model, while effective, 

requires careful fine-tuning to overcome potential overfitting. These insights contribute to the ongoing discourse 

on enhancing the accuracy and reliability of flight delay predictions, with implications for optimizing airline 

operations and passenger experiences. 
 
 

7 Conclusion and Future Work 
 

1.4 Conclusion: 

This thesis has delved into the realm of flight delay prediction, employing a range of machine learning models 

to forecast and understand the complexities associated with flight schedules. The comprehensive analysis of the 
models, including LightGBM, XGBoost, and a Decision Tree with important features, has provided valuable 

insights into their strengths and limitations. The results underscore the effectiveness of LightGBM and XGBoost 

in achieving high precision, accuracy, and recall, making them promising candidates for accurate flight delay 

predictions. The Decision Tree model, while competitive, demands careful consideration of potential overfitting, 

emphasizing the need for optimization strategies to enhance generalization. 

1.5 Future Work: 

As we look to the future, there are several avenues for further research and improvement in flight delay 

prediction: 
 

● Feature Engineering: Exploring additional features and refining existing ones could enhance model 

performance. Incorporating real-time weather data, air traffic conditions, and historical flight patterns 

may contribute to a more comprehensive predictive model. 

 

● Ensemble Techniques: Investigating ensemble techniques that combine the strengths of multiple 
models could potentially result in more robust and accurate predictions. Ensemble methods, such as 

stacking or bagging, may offer improved generalization and resilience. 

 

● Temporal Considerations: Incorporating temporal factors, such as time-of-day patterns, day-of-week 

variations, and seasonal trends, may further refine predictions. This could lead to a more nuanced 

understanding of the temporal dynamics influencing flight delays. 

 

● Explain ability and Transparency: Enhancing the interpretability of models remains a crucial aspect. 

Developing models that not only provide accurate predictions but can offer insights into the reasons 

behind predictions could instil greater confidence in the aviation industry. 

 

● Real-time Implementation: Transitioning from offline analysis to real-time implementation is vital for 

practical application. Developing systems that can provide timely predictions and proactive solutions to 

mitigate delays would be a valuable contribution to the aviation sector. 

 
In essence, this thesis lays the foundation for future endeavours in the dynamic field of flight delay prediction. 

By addressing these potential areas of improvement, we can strive towards creating more accurate, reliable, and 

actionable models that benefit both airlines and passengers alike. 
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