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Configuration Manual 
 

Rashi Sunil Dabhane 

Student ID: x21173621 
 

Overview 
This configuration manual provides detailed instructions for setting up and running the Waste 

Classification project. The project aims to classify waste images into two categories: Organic 

and Recyclable. 

 

The script for the task uses PyTorch for deep learning tasks and leverages the VGG16 

architecture for image classification. 

 

Scope 
The manual covers the entire project lifecycle, including data preparation, model training, 

evaluation, and result analysis. 

 

Target Audience 
This manual is intended for developers, learners, researcher, data scientists, and system 

administrators, etc. 

The primary goals of this research are: 

▪ Automated Waste Sorting 

▪ Environmental Impact 

▪ Educational Outreach 

▪ Model Interpretability 

 

Significance: 
The Waste Classification research holds significance in addressing contemporary challenges 

related to waste management and environmental conservation. The significance is 

underscored by: 

▪ Efficiency in Waste Management 

▪ Reduced Environmental Footprint 

▪ Technological Innovation for Sustainability 

 

User Expectations: 
By following the instructions provided in this manual, users can expect to achieve the 

following outcomes: 

1. Model Training and Evaluation: 

▪ Understand the process of training a deep learning model for waste classification 

using a pre-trained VGG16 architecture. 

▪ Evaluate the model's performance on a test dataset, measuring accuracy, precision, 

recall, and F1 score. 

 

2. Visualization and Interpretation: 

▪ Visualize the training and validation loss curves, providing insights into the model's 

learning behavior. 
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▪ Interpret and analyze a confusion matrix, gaining a deeper understanding of the 

model's classification performance. 

 

3. Application to New Data: 

▪ Extend the research by applying the trained model to new waste images, allowing 

users to assess its generalization capabilities. 

 

4. Interactive Image Upload and Prediction: 

▪ Interactively upload images for waste classification and receive predictions from the 

trained model, enhancing user engagement and understanding. 

 

5. Documentation and Community Support: 

▪ Access comprehensive documentation addressing common issues and solutions 

during setup, training, and testing phases. 

 

Uploading Dataset to Google Drive 
To efficiently handle the dataset, we upload it to Google Drive. 

 

Mounting Google Drive in Colab 

Mounting Google Drive allows the Colab notebook to access files stored in your Google 

Drive. 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

System Requirements 
Hardware 

▪ Adequate GPU resources (Used - NVIDIA GeForce RTX 3050) 

▪ Memory: Minimum 8GB RAM (Used - 16GB) 

▪ Storage: Disk space for dataset and model files (SSD – 1TB ) 

▪ System: 64-bit Operating system 

▪ Operating System: Windows 11  

 

Software 

▪ Python 3.8 used for model building and implementation 

▪ Required libraries (install using `pip install -r requirements.txt`): 

 

a. Pillow: Image processing library used for opening, manipulating, and saving various 

image file formats. 

pip install Pillow 

 

b. numpy: Fundamental package for scientific computing with Python, providing 

support for large, multi-dimensional arrays and matrices, along with mathematical 

functions to operate on these arrays. 

pip install numpy 

 

c. pandas: Data manipulation and analysis library, offering data structures like 

DataFrame for efficient data handling and manipulation. 

pip install pandas 
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d. matplotlib: 2D plotting library for creating static, animated, and interactive 

visualizations in Python. 

pip install matplotlib 

 

e. scikit-learn: Machine learning library providing simple and efficient tools for data 

mining and data analysis, including various algorithms for classification, regression, 

clustering, and more. 

pip install scikit-learn 

 

f. reportlab: Library for creating PDF documents, enabling the generation of dynamic, 

data-driven reports. 

pip install reportlab 

 

g. seaborn: Statistical data visualization library based on matplotlib, providing a high-

level interface for drawing attractive and informative statistical graphics. 

pip install seaborn 

 

h. torch (PyTorch): Deep learning framework for building and training neural networks, 

offering flexibility and dynamic computation graphs. 

pip install torch==1.10.0+cu111 torchvision==0.11.1+cu111 

torchaudio==0.10.0+cu111 -f https://download.pytorch.org/whl/cu111.html 

 

i. torchvision: PyTorch library providing utilities for computer vision tasks, including 

image transformations and pre-trained models. 

 

These libraries collectively facilitate tasks such as image processing, data analysis, machine 

learning, deep learning, visualization, and report generation in the provided code. 

 

Configuration Settings Loading and Preprocessing Dataset 
 

Function to check if the file is a valid image 

 

# 21173621_ Function to check if the file is a valid image 

def is_valid_image(filename): 

    try: 

        # Attempt to open the image file 

        img = Image.open(filename) 

        # Close the image file 

        img.close() 

        return True 

    except (IOError, UnidentifiedImageError): 

        # Handle the case where the file is not a valid image 

        return False 

 

File Paths 

Update the paths in the code to match the location of your dataset: 

From the script, 

 

# 21173621_ Load the train dataset 

train = get_image_paths("/content/Waste dataset/DATASET/TRAIN") 
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# 21173621_ Load the test dataset 

test = get_image_paths("/content/Waste dataset/DATASET/TEST") 

 

# 21173621_ Convert string labels to binary values 

conversion = {'O': 0, 'R': 1} 

train.label = train.label.map(conversion) 

test.label = test.label.map(conversion) 

 

Creating Data Transformation Pipeline 

Define the data transformation pipeline for image augmentation: 

 

# 21173621_ Data transformation with augmentation 

data_transform = transforms.Compose([ 

    transforms.Resize(256), 

    transforms.RandomHorizontalFlip(), 

    transforms.RandomRotation(degrees=15), 

    transforms.CenterCrop(224), 

    transforms.Lambda(lambda img: img.convert("RGB")), 

    transforms.ToTensor(), 

    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) 

]) 

 

Creating Dataset Instances 

augmented_dataset = WasteData(train, transform=data_transform) 

 

Splitting Dataset and Creating Data Loaders 

 

# 21173621_ Split train dataset into training and validation sets 

train_dataset = WasteData(train, data_transform) 

train_size = int(0.9 * len(train_dataset)) 

valid_size = len(train_dataset) - train_size 

train_dataset, valid_dataset = torch.utils.data.random_split(train_dataset, [train_size, 

valid_size]) 

 

# 21173621_ Test dataset 

test_dataset = WasteData(test, data_transform) 

 

# 21173621_ Data loaders 

batch_size = 64 

train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) 

test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) 

valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) 
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Defining WasteVGG16 Model 
 

# 21173621_ Model 

class WasteVGG16(nn.Module): 

    def __init__(self): 

        super(WasteVGG16, self).__init__() 

        self.vgg16 = vgg16(pretrained=True) 

        num_ftrs = self.vgg16.classifier[6].in_features 

        # 21173621_ Add dropout for regularization 

        self.vgg16.classifier[6] = nn.Sequential( 

            nn.Dropout(0.5), 

            nn.Linear(num_ftrs, 2)  # Change to 2 for two classes 

        ) 

 

    def forward(self, x): 

        x = self.vgg16(x) 

        return x 

 

Setting up Loss, Optimizer, and Scheduler 

 

# 21173621_ Loss and optimizer 

criterion = nn.CrossEntropyLoss() 

 

optimizer = torch.optim.Adam(net.parameters(), lr=0.0005, betas=(0.95, 0.9995)) #Adjusted 

values 

 

# 21173621_ Learning rate scheduler 

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.5) 

 

Training and Validation of the model 

 

# 21173621_ Training loop 

train_loss = [] 

val_loss = [] 

accuracy_list = [] 

best_val_loss = float('inf')  # Initialize with a large value 

best_epoch = 0 

 

epochs = 20 

 

for epoch in range(epochs): 

    epoch_loss = 0.0 

    epoch_loss_val = 0.0 

    correct = 0 

    total = 0 

    running_loss = 0.0 

    print(f'Epoch {epoch + 1}/{epochs}') 
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    # 21173621_ Training 

    net.train() 

    for i, data in enumerate(train_dataloader, 0): 

        inputs, labels = data[0].to(device), data[1].long().to(device) 

        optimizer.zero_grad() 

        outputs = net(inputs) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

        running_loss += loss.item() 

        if i % 10 == 9: 

            loss = running_loss / 10 

            epoch_loss += loss 

            print(f'\tIteration {i + 1}, Loss: {loss:.6f}') 

            running_loss = 0.0 

 

    # 21173621_ Validation 

    net.eval() 

    with torch.no_grad(): 

        for i, data in enumerate(valid_dataloader, 0): 

            inputs, labels = data[0].to(device), data[1].long().to(device) 

            outputs = net(inputs) 

            loss = criterion(outputs, labels) 

            epoch_loss_val += loss.item() 

 

            # 21173621_ Calculate accuracy 

            _, predicted = torch.max(outputs, 1) 

            correct += (predicted == labels).sum().item() 

            total += labels.size(0) 

 

    accuracy = correct / total 

    accuracy_list.append(accuracy) 

 

    # 21173621_ Step the learning rate scheduler 

    scheduler.step() 

 

 Plotting Training and Validation loss curves and accuracy 

curves 
 

# 21173621_ Plot losses 

plt.figure(figsize=(20, 6)) 

sns.lineplot(x=list(range(len(train_loss))), y=train_loss) 

sns.lineplot(x=list(range(len(val_loss))), y=val_loss) 

plt.legend(['Training loss', 'Validation loss']) 

plt.title('Training and Validation Loss Curve') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.savefig('loss_curve.pdf', format='pdf', bbox_inches='tight')   



7 
 

 

# 21173621_ Plot accuracy 

plt.figure(figsize=(8, 6)) 

sns.lineplot(x=list(range(len(accuracy_list))), y=accuracy_list) 

plt.title('Accuracy Curve') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.savefig('accuracy_curve.pdf', format='pdf', bbox_inches='tight')    

 

Fig 1. Training and Validation loss - Vgg16 – customized with transfer learning (proposed) 

 

Fig 2. Training and Validation loss - Vgg16 with default values and parameters 

 

 

 

 

 

 

 

 

 

 

 

 

Fig3. Training and Validation loss – ResNet18 
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Fig 4. Accuracy curve 

Vgg16 – customized with transfer learning  

 

Fig 5. Accuracy curve : ResNet18  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Accuracy curve 

Vgg16 with default values and parameters  

  

 

Testing the model and Metrics Calculation 
 

# 21173621_ Testing accuracy 

correct = 0 

total = 0 

net.eval() 

with torch.no_grad(): 

    all_labels = [] 

    all_preds = [] 

 

    for data in test_dataloader: 

        images, labels = data[0].to(device), data[1].long().to(device) 

        outputs = net(images) 
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        _, predicted = torch.max(outputs, 1) 

        total += labels.size(0) 

        correct += (predicted == labels).sum().item() 

 

        # 21173621_ Collect data for metrics 

        all_labels.extend(labels.cpu().numpy()) 

        all_preds.extend(predicted.cpu().numpy()) 

 

# 21173621_ Calculate metrics 

test_accuracy = 100 * correct / total 

test_precision = precision_score(all_labels, all_preds) 

test_recall = recall_score(all_labels, all_preds) 

test_f1 = f1_score(all_labels, all_preds) 

conf_matrix = confusion_matrix(all_labels, all_preds) 

 

# 21173621_ Print metrics 

print(f'Test Accuracy: {test_accuracy:.4f}') 

print(f'Test Precision: {test_precision:.4f}') 

print(f'Test Recall: {test_recall:.4f}') 

print(f'Test F1 Score: {test_f1:.4f}') 

 

# 21173621_ Plot confusion matrix for the test set 

plt.figure(figsize=(8, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Organic', 

'Recyclable'], yticklabels=['Organic', 'Recyclable']) 

plt.title('Test Confusion Matrix') 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.show()  # Show the plot 

 

# 21173621_ Save confusion matrix plot as PNG 

plt.savefig('conf_matrix.png', format='png', bbox_inches='tight') 

 

# 21173621_ Create a PDF file 

with PdfPages('result_summary.pdf') as pdf: 

    # 21173621_ Add confusion matrix to PDF 

    plt.figure(figsize=(8, 6)) 

    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Organic', 

'Recyclable'], yticklabels=['Organic', 'Recyclable']) 

    plt.title('Test Confusion Matrix') 

    plt.xlabel('Predicted Label') 

    plt.ylabel('True Label') 

    pdf.savefig() 

    plt.close() 

 

    # 21173621_ Attach metrics to the PDF 

    pdf.attach_note("Metrics:") 

    pdf.attach_note(f'Test Accuracy: {test_accuracy:.4f}') 

    pdf.attach_note(f'Test Precision: {test_precision:.4f}') 
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    pdf.attach_note(f'Test Recall: {test_recall:.4f}') 

    pdf.attach_note(f'Test F1 Score: {test_f1:.4f}') 

 

# 21173621_ Download the PDF file in Colab 

files.download('result_summary.pdf') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Confusion matrix for Vgg16 – customized with transfer learning (proposed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Confusion matrix for ResNet18 
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Fig. 9. Confusion matrix for Vgg16 with default values and parameters 

 

File Upload and Prediction 
 

# Function to handle file upload and prediction 

def handle_upload(): 

    # Updated: Allow users to upload an image from their local machine 

    uploaded = files.upload() 

 

    # Check if any file is uploaded 

    if len(uploaded) > 0: 

        # Use the first uploaded file 

        name, data = list(uploaded.items())[0] 

 

        # Load the image 

        img = Image.open(io.BytesIO(data)) 

 

        # Get predictions 

        predicted_label = predict_single_image(net, img, data_transform) 

 

        # Updated: Provide more descriptive output 

        waste_type = "Recyclable" if predicted_label == 1 else "Organic" 

        print(f'Predicted Waste Type for User Image: {waste_type}') 

 

        # Display the uploaded image 

        plt.imshow(img) 

        plt.axis('off') 

        plt.title(f'Uploaded Image - Predicted Waste Type: {waste_type}') 

        plt.show() 

 

    else: 
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        print("No file uploaded.") 

# Trigger file upload and prediction 

handle_upload() 


