

Configuration Manual

MSc Research Project
MSCAI1 JAN23l – Research in Computing CA1

Rashi Dabhane

Student ID: 21176321

School of Computing
National College of Ireland

Supervisor: Mayank Jain

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Rashi Sunil Dabhane

Student ID:

X21173621

Programme:

MSCAI1 JAN23l – Research in Computing

CA1

Year:

2023

Module:

MSc Research Project

Lecturer:

Mayank Jain

Submission

Due Date:

14/12/2023

Project Title:

Organic and Recyclable waste classification using deep learning

methods

Word Count:

1838 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Rashi Sunil Dabhane

Date:

14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

✓

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

✓

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

✓

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Rashi Sunil Dabhane

Student ID: x21173621

Overview
This configuration manual provides detailed instructions for setting up and running the Waste

Classification project. The project aims to classify waste images into two categories: Organic

and Recyclable.

The script for the task uses PyTorch for deep learning tasks and leverages the VGG16

architecture for image classification.

Scope
The manual covers the entire project lifecycle, including data preparation, model training,

evaluation, and result analysis.

Target Audience
This manual is intended for developers, learners, researcher, data scientists, and system

administrators, etc.

The primary goals of this research are:

▪ Automated Waste Sorting

▪ Environmental Impact

▪ Educational Outreach

▪ Model Interpretability

Significance:
The Waste Classification research holds significance in addressing contemporary challenges

related to waste management and environmental conservation. The significance is

underscored by:

▪ Efficiency in Waste Management

▪ Reduced Environmental Footprint

▪ Technological Innovation for Sustainability

User Expectations:
By following the instructions provided in this manual, users can expect to achieve the

following outcomes:

1. Model Training and Evaluation:

▪ Understand the process of training a deep learning model for waste classification

using a pre-trained VGG16 architecture.

▪ Evaluate the model's performance on a test dataset, measuring accuracy, precision,

recall, and F1 score.

2. Visualization and Interpretation:

▪ Visualize the training and validation loss curves, providing insights into the model's

learning behavior.

2

▪ Interpret and analyze a confusion matrix, gaining a deeper understanding of the

model's classification performance.

3. Application to New Data:

▪ Extend the research by applying the trained model to new waste images, allowing

users to assess its generalization capabilities.

4. Interactive Image Upload and Prediction:

▪ Interactively upload images for waste classification and receive predictions from the

trained model, enhancing user engagement and understanding.

5. Documentation and Community Support:

▪ Access comprehensive documentation addressing common issues and solutions

during setup, training, and testing phases.

Uploading Dataset to Google Drive
To efficiently handle the dataset, we upload it to Google Drive.

Mounting Google Drive in Colab

Mounting Google Drive allows the Colab notebook to access files stored in your Google

Drive.

from google.colab import drive

drive.mount('/content/drive')

System Requirements
Hardware

▪ Adequate GPU resources (Used - NVIDIA GeForce RTX 3050)

▪ Memory: Minimum 8GB RAM (Used - 16GB)

▪ Storage: Disk space for dataset and model files (SSD – 1TB)

▪ System: 64-bit Operating system

▪ Operating System: Windows 11

Software

▪ Python 3.8 used for model building and implementation

▪ Required libraries (install using `pip install -r requirements.txt`):

a. Pillow: Image processing library used for opening, manipulating, and saving various

image file formats.

pip install Pillow

b. numpy: Fundamental package for scientific computing with Python, providing

support for large, multi-dimensional arrays and matrices, along with mathematical

functions to operate on these arrays.

pip install numpy

c. pandas: Data manipulation and analysis library, offering data structures like

DataFrame for efficient data handling and manipulation.

pip install pandas

3

d. matplotlib: 2D plotting library for creating static, animated, and interactive

visualizations in Python.

pip install matplotlib

e. scikit-learn: Machine learning library providing simple and efficient tools for data

mining and data analysis, including various algorithms for classification, regression,

clustering, and more.

pip install scikit-learn

f. reportlab: Library for creating PDF documents, enabling the generation of dynamic,

data-driven reports.

pip install reportlab

g. seaborn: Statistical data visualization library based on matplotlib, providing a high-

level interface for drawing attractive and informative statistical graphics.

pip install seaborn

h. torch (PyTorch): Deep learning framework for building and training neural networks,

offering flexibility and dynamic computation graphs.

pip install torch==1.10.0+cu111 torchvision==0.11.1+cu111

torchaudio==0.10.0+cu111 -f https://download.pytorch.org/whl/cu111.html

i. torchvision: PyTorch library providing utilities for computer vision tasks, including

image transformations and pre-trained models.

These libraries collectively facilitate tasks such as image processing, data analysis, machine

learning, deep learning, visualization, and report generation in the provided code.

Configuration Settings Loading and Preprocessing Dataset

Function to check if the file is a valid image

21173621_ Function to check if the file is a valid image

def is_valid_image(filename):

 try:

 # Attempt to open the image file

 img = Image.open(filename)

 # Close the image file

 img.close()

 return True

 except (IOError, UnidentifiedImageError):

 # Handle the case where the file is not a valid image

 return False

File Paths

Update the paths in the code to match the location of your dataset:

From the script,

21173621_ Load the train dataset

train = get_image_paths("/content/Waste dataset/DATASET/TRAIN")

4

21173621_ Load the test dataset

test = get_image_paths("/content/Waste dataset/DATASET/TEST")

21173621_ Convert string labels to binary values

conversion = {'O': 0, 'R': 1}

train.label = train.label.map(conversion)

test.label = test.label.map(conversion)

Creating Data Transformation Pipeline

Define the data transformation pipeline for image augmentation:

21173621_ Data transformation with augmentation

data_transform = transforms.Compose([

 transforms.Resize(256),

 transforms.RandomHorizontalFlip(),

 transforms.RandomRotation(degrees=15),

 transforms.CenterCrop(224),

 transforms.Lambda(lambda img: img.convert("RGB")),

 transforms.ToTensor(),

 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

])

Creating Dataset Instances

augmented_dataset = WasteData(train, transform=data_transform)

Splitting Dataset and Creating Data Loaders

21173621_ Split train dataset into training and validation sets

train_dataset = WasteData(train, data_transform)

train_size = int(0.9 * len(train_dataset))

valid_size = len(train_dataset) - train_size

train_dataset, valid_dataset = torch.utils.data.random_split(train_dataset, [train_size,

valid_size])

21173621_ Test dataset

test_dataset = WasteData(test, data_transform)

21173621_ Data loaders

batch_size = 64

train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)

5

Defining WasteVGG16 Model

21173621_ Model

class WasteVGG16(nn.Module):

 def __init__(self):

 super(WasteVGG16, self).__init__()

 self.vgg16 = vgg16(pretrained=True)

 num_ftrs = self.vgg16.classifier[6].in_features

 # 21173621_ Add dropout for regularization

 self.vgg16.classifier[6] = nn.Sequential(

 nn.Dropout(0.5),

 nn.Linear(num_ftrs, 2) # Change to 2 for two classes

)

 def forward(self, x):

 x = self.vgg16(x)

 return x

Setting up Loss, Optimizer, and Scheduler

21173621_ Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(net.parameters(), lr=0.0005, betas=(0.95, 0.9995)) #Adjusted

values

21173621_ Learning rate scheduler

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.5)

Training and Validation of the model

21173621_ Training loop

train_loss = []

val_loss = []

accuracy_list = []

best_val_loss = float('inf') # Initialize with a large value

best_epoch = 0

epochs = 20

for epoch in range(epochs):

 epoch_loss = 0.0

 epoch_loss_val = 0.0

 correct = 0

 total = 0

 running_loss = 0.0

 print(f'Epoch {epoch + 1}/{epochs}')

6

 # 21173621_ Training

 net.train()

 for i, data in enumerate(train_dataloader, 0):

 inputs, labels = data[0].to(device), data[1].long().to(device)

 optimizer.zero_grad()

 outputs = net(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 if i % 10 == 9:

 loss = running_loss / 10

 epoch_loss += loss

 print(f'\tIteration {i + 1}, Loss: {loss:.6f}')

 running_loss = 0.0

 # 21173621_ Validation

 net.eval()

 with torch.no_grad():

 for i, data in enumerate(valid_dataloader, 0):

 inputs, labels = data[0].to(device), data[1].long().to(device)

 outputs = net(inputs)

 loss = criterion(outputs, labels)

 epoch_loss_val += loss.item()

 # 21173621_ Calculate accuracy

 _, predicted = torch.max(outputs, 1)

 correct += (predicted == labels).sum().item()

 total += labels.size(0)

 accuracy = correct / total

 accuracy_list.append(accuracy)

 # 21173621_ Step the learning rate scheduler

 scheduler.step()

 Plotting Training and Validation loss curves and accuracy

curves

21173621_ Plot losses

plt.figure(figsize=(20, 6))

sns.lineplot(x=list(range(len(train_loss))), y=train_loss)

sns.lineplot(x=list(range(len(val_loss))), y=val_loss)

plt.legend(['Training loss', 'Validation loss'])

plt.title('Training and Validation Loss Curve')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.savefig('loss_curve.pdf', format='pdf', bbox_inches='tight')

7

21173621_ Plot accuracy

plt.figure(figsize=(8, 6))

sns.lineplot(x=list(range(len(accuracy_list))), y=accuracy_list)

plt.title('Accuracy Curve')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.savefig('accuracy_curve.pdf', format='pdf', bbox_inches='tight')

Fig 1. Training and Validation loss - Vgg16 – customized with transfer learning (proposed)

Fig 2. Training and Validation loss - Vgg16 with default values and parameters

Fig3. Training and Validation loss – ResNet18

8

Fig 4. Accuracy curve

Vgg16 – customized with transfer learning

Fig 5. Accuracy curve : ResNet18

Fig 6. Accuracy curve

Vgg16 with default values and parameters

Testing the model and Metrics Calculation

21173621_ Testing accuracy

correct = 0

total = 0

net.eval()

with torch.no_grad():

 all_labels = []

 all_preds = []

 for data in test_dataloader:

 images, labels = data[0].to(device), data[1].long().to(device)

 outputs = net(images)

9

 _, predicted = torch.max(outputs, 1)

 total += labels.size(0)

 correct += (predicted == labels).sum().item()

 # 21173621_ Collect data for metrics

 all_labels.extend(labels.cpu().numpy())

 all_preds.extend(predicted.cpu().numpy())

21173621_ Calculate metrics

test_accuracy = 100 * correct / total

test_precision = precision_score(all_labels, all_preds)

test_recall = recall_score(all_labels, all_preds)

test_f1 = f1_score(all_labels, all_preds)

conf_matrix = confusion_matrix(all_labels, all_preds)

21173621_ Print metrics

print(f'Test Accuracy: {test_accuracy:.4f}')

print(f'Test Precision: {test_precision:.4f}')

print(f'Test Recall: {test_recall:.4f}')

print(f'Test F1 Score: {test_f1:.4f}')

21173621_ Plot confusion matrix for the test set

plt.figure(figsize=(8, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Organic',

'Recyclable'], yticklabels=['Organic', 'Recyclable'])

plt.title('Test Confusion Matrix')

plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.show() # Show the plot

21173621_ Save confusion matrix plot as PNG

plt.savefig('conf_matrix.png', format='png', bbox_inches='tight')

21173621_ Create a PDF file

with PdfPages('result_summary.pdf') as pdf:

 # 21173621_ Add confusion matrix to PDF

 plt.figure(figsize=(8, 6))

 sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Organic',

'Recyclable'], yticklabels=['Organic', 'Recyclable'])

 plt.title('Test Confusion Matrix')

 plt.xlabel('Predicted Label')

 plt.ylabel('True Label')

 pdf.savefig()

 plt.close()

 # 21173621_ Attach metrics to the PDF

 pdf.attach_note("Metrics:")

 pdf.attach_note(f'Test Accuracy: {test_accuracy:.4f}')

 pdf.attach_note(f'Test Precision: {test_precision:.4f}')

10

 pdf.attach_note(f'Test Recall: {test_recall:.4f}')

 pdf.attach_note(f'Test F1 Score: {test_f1:.4f}')

21173621_ Download the PDF file in Colab

files.download('result_summary.pdf')

Fig 7. Confusion matrix for Vgg16 – customized with transfer learning (proposed)

Fig. 8. Confusion matrix for ResNet18

11

Fig. 9. Confusion matrix for Vgg16 with default values and parameters

File Upload and Prediction

Function to handle file upload and prediction

def handle_upload():

 # Updated: Allow users to upload an image from their local machine

 uploaded = files.upload()

 # Check if any file is uploaded

 if len(uploaded) > 0:

 # Use the first uploaded file

 name, data = list(uploaded.items())[0]

 # Load the image

 img = Image.open(io.BytesIO(data))

 # Get predictions

 predicted_label = predict_single_image(net, img, data_transform)

 # Updated: Provide more descriptive output

 waste_type = "Recyclable" if predicted_label == 1 else "Organic"

 print(f'Predicted Waste Type for User Image: {waste_type}')

 # Display the uploaded image

 plt.imshow(img)

 plt.axis('off')

 plt.title(f'Uploaded Image - Predicted Waste Type: {waste_type}')

 plt.show()

 else:

12

 print("No file uploaded.")

Trigger file upload and prediction

handle_upload()

