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Abstract 

 

This study addresses the pressing global challenge of waste management and the crucial task of organic 

and recyclable waste classification. Specifically investigating transfer learning with the VGG-16 deep 

learning architecture, the approach integrates multiple diverse datasets into a comprehensive dataset. 

The paper offers a comparative analysis of models, including DenseNet121, DenseNet169, VGG16, 

VGG19, and ResNet18, highlighting innovations in architecture customization and strategic techniques 

like learning rate scheduling and early stopping, etc. The study not only holds practical significance in 

automating waste classification processes but also reduces reliance on manual sorting, thereby 

promoting sustainable waste management practices. Rigorous experimentation underscores achieving 

a peak accuracy of 95.59% with VGG-16 and transfer learning, contributing to substantial 

enhancements in model performance, reliability, and generalizability. This contribution aligns with the 

broader global agenda of sustainable development. 

 

 

Keywords: Waste management, deep learning, vgg16, image classification, sustainable 

development. 

 

1 Introduction 

Effective waste management is critical in the ever-increasing concern for environmental 

sustainability. The importance of this topic arises from the escalating environmental challenges 

posed by improper waste disposal. With conventional methods characterized by labour-

intensive and error-prone processes proving insufficient, leveraging advanced technologies, 

particularly convolutional neural networks (CNNs), stands out as a promising solution to 

enhance the efficiency of waste classification. 

 

This research was motivated by the pressing need to address inefficiencies in existing waste 

management systems. As environmental concerns grow, the need for clever, waste management 

systems become evident. The proposed waste classification model is a technological 

intervention that would improve waste sorting accuracy, reduce labour, and lead to more 

sustainable and environmentally friendly waste management ecosystem. 

 

Beyond its practical applications in waste management, this research holds substantial merit 

from an academic and learning standpoint. Developing a deep learning-based waste 

classification model provides an opportunity for learners and researchers to delve into the 

complexities of advanced machine learning techniques. The study encompasses data 

preparation, model architecture development, training, optimisation, and evaluation. The 

application of deep learning methods in a real-world scenario not only improves technical skills 



 
 

but also fosters a deeper understanding and awareness of the convergence between technology 

and environmental sustainability. 

 

Contribution to Sustainable Development Goals (SDGs): 

This research aligns with several Sustainable Development Goals (SDGs), providing a 

comprehensive approach to address environmental challenges. 

 

Fig. 1. Sustainable Development Goals (SDGs) relevant to the waste management and Image 

classification 

 

This research focuses on waste classification, specifically differentiating between organic and 

recyclable waste using deep learning methods.  

 

The concept of iterative experimentation resonates with the decision to revisit the challenge of 

Organic and recyclable waste classification using deep learning, wherein we continuously 

refine the research based on insights gained from previous experiments, showcasing 

commitment to enhancing the accuracy and efficiency of waste classification models. The 

choice to revisit this challenge stems from the belief that initial solutions, while effective, can 

benefit from refinement to address emerging complexities and boost overall performance.  

The primary contribution of this research lies in the development and implementation of an 

enhanced waste classification model using advanced machine learning techniques. We employ 

a Convolutional Neural Network (CNN) architecture, specifically VGG16, known for its 



 

 
 

 

success in image classification tasks. Transfer learning from pre-trained models and data 

augmentation techniques contribute to the technical robustness of the proposed WasteVGG16 

model along with some architecture customizations, aiming to overcome the limitations of 

traditional and existing methods.  

 

CNNs are well-suited for waste classification, excelling in image analysis with the ability to 

automatically learn spatial hierarchies and distinguish intricate features within diverse waste 

images. Their feature abstraction capability ensures accurate categorization of materials in a 

waste stream, particularly related to organic and recyclable materials.  

 

The rest of the structure of the paper is organized as follows: The Literature Review that 

provides a comprehensive overview of existing knowledge and research relevant to the study. 

The Methodology section introduces the proposed research methodology, outlining the step-

by-step approach taken in the study. The Design and Implementation specifications section 

explores the technical aspects of the study, detailing design considerations and implementation 

specifics. The Evaluation presents experiments and results analysis, offering insights into the 

outcomes and model performance. Finally, the Conclusion and Discussion summarizes 

findings, draws conclusions, and engages in a discussion about the implications and 

significance of the study. 

 

2 Literature review 

The rapidly increasing volume of urban household waste poses a critical environmental and 

resource threat, necessitating effective waste management strategies. Notably, garbage 

recycling and automatic sorting have emerged as practical solutions. While conventional image 

classification methods have succeeded in addressing waste image classification issues, they 

often overlook spatial relationships between features, resulting in misclassifications. 

 

The authors [4] highlight the increasing urban waste production and stress the importance of 

waste separation. Deep learning, particularly convolutional neural networks (CNNs), has 

significantly enhanced image classification accuracy, enabling automated garbage sorting 

using vision technology. 

 

Despite progress, existing CNN studies exhibit limitations, primarily related to spatial 

relationships between features. CNNs tend to lose information about spatial relationships 

during pooling operations, leading to false positives. Addressing these limitations of CNNs, 

the authors propose the ResMsCapsule waste image classification algorithm, incorporating a 

residual module and a multi-dimensional capsule module in the capsule network structure.  

 

The ResMsCapsule model is evaluated on the TrashNet dataset, achieving a classification 

accuracy of 91.41%. Comparative analyses with other models, including AlexNet, Vgg16, and 

ResNet18, reveal superior performance and fewer parameters in ResMsCapsule. Notably, the 

proposed model outperforms SVM and Inception-ResNet, achieving the highest accuracy. 

 

The authors address misclassifications, particularly between plastic and glass objects, 

highlighting the challenge posed by the similarity in material and shape, especially in light 

https://doi.org/10.1007/s11356-023-27970-7


 
 

backgrounds. Future work is proposed to focus on additional data preprocessing steps to further 

condense features, reduce model parameters, and enhance performance. 

 

The research [5] addresses a critical issue in waste management, emphasizing the potential of 

automation to enhance efficiency. The study focuses on the development and evaluation of a 

waste sorting system employing Convolutional Neural Networks (CNNs), specifically 

ResNet18, for image classification. By utilizing a dataset comprising images from TrashNet 

and the authors' collection, the researchers aim to automate waste segregation, reducing the 

need for human intervention. 

 

The authors have employed transfer learning, utilizing pre-trained models like ResNet and 

VGG, to address the challenges associated with training deep neural networks on limited data. 

Results showcase the effectiveness of the ResNet18 model, exhibiting a validation accuracy of 

87.8%. However, the study acknowledges the need for further research, emphasizing data 

augmentation and model fine-tuning as possibilities for improvement. 

 

The paper [6] introduces a Waste classification method employing a Multilayer Hybrid 

Convolutional Neural Network (MLH-CNN) to enhance waste categorization accuracy and 

efficiency. Experimentation on the TrashNet dataset illustrates MLH-CNN's superiority over 

Vgg16, AlexNet, and ResNet50, achieving a notable 92.6% classification accuracy, surpassing 

existing methods by 4.18% to 4.6%. Despite these advancements, several limitations and 

research gaps are the dependence on the TrashNet dataset raises concerns about limited 

diversity in waste scenarios. With only 2527 images, the dataset's small size prompts questions 

about generalizability.  

 

The simplified occlusion tests may not capture real-world complexities, and the absence of 

real-world deployment considerations, including computational constraints and hardware 

scalability, is a notable limitation. While reporting high accuracy, a detailed analysis of metrics 

such as precision, recall, and F1-score is crucial. Additionally, the lack of comparison with non-

neural network approaches and unexplored real-time processing considerations further 

highlights possibilities for future research, aiming to fortify the proposed method's real-world 

applicability and performance robustness. 

 

This study [7] explores the state of the art in waste classification systems, with a focus on 

intelligent systems using deep learning, particularly Convolutional Neural Networks (CNN) 

and Support Vector Machines (SVM). The paper proposes an automated waste material 

classification system to streamline waste separation processes, reduce human involvement, and 

enhance the efficiency of waste management. The proposed solution involves intelligent waste 

material classification, utilizing a combination of ResNet-50 pre-trained CNN as an extractor 

and SVM for waste classification. The paper employs a trash image dataset, consisting of four 

waste categories: glass, paper, metal, and plastic. The small dataset size is acknowledged, 

emphasizing the need for data augmentation techniques to maximize diversity. 

 

Results from the experiments are presented, showcasing an 87% accuracy on the trash image 

dataset. The training process using Stochastic Gradient Descent with Momentum is outlined, 

along with key parameters and their impact on the system's performance. The authors suggest 

https://doi.org/10.48550/arXiv.2004.02168.
https://doi.org/10.3390/app11188572
https://www.sciencedirect.com/science/article/pii/S2351978919307231


 

 
 

 

possibilities for future improvements, including expanding the dataset for enhanced accuracy 

and the potential for categorizing additional waste items. 

 

Waste management is a critical global challenge due to the escalating volume of waste, 

especially in urban areas. This paper [8] proposes an automated waste classification system 

using deep convolutional neural networks (CNNs) to categorize waste into organic and solid 

classes (glass, metal, plastic). The OrgalidWaste dataset, comprising 5600 images from various 

waste datasets, facilitates model training. The study compares the performance of different 

CNN architectures, including 3-layer CNN, VGG16, VGG19, Inception-V3, and ResNet50. 

 

This paper contributes by focusing on a four-class classification (organic, glass, metal, plastic) 

and using a novel dataset. The proposed approach aims to address the challenges of manual 

waste sorting, offering a cost-effective solution through automation. The proposed 

OrgalidWaste dataset, augmented with real-world waste images, provides a valuable resource 

for training robust waste classification models. The study demonstrates the efficacy of VGG16, 

achieving an accuracy of 88.42%, and highlights the potential for automating waste 

management processes. Future work could involve expanding the dataset and integrating the 

developed model into practical waste management applications. 

 

The research [9] underlines the pressing challenges of landfills due to population growth and 

stresses the need for robust waste management solutions. Existing research, such as the 

suggested waste classification method, which employs CNN, VGG16, and ResNet50 models, 

demonstrates breakthroughs in accurate waste classification. The paper specifically emphasizes 

the superior accuracy of ResNet50, reaching 93.35%. Furthermore, the literature reveals a gap 

in the integration of waste classification with broader waste regulation strategies. While the 

proposed models offer notable accuracies, there's a critical evaluation of the dataset's impact 

on training, suggesting the importance of dataset expansion. These results highlight the 

continuous search for effective waste management systems and point to future research 

possibilities in dataset quality enhancement, model integration, and overall waste regulation 

strategies. 

 

The paper [12] presents a real-world dataset named GIGO, aiming to facilitate algorithm 

development and benchmarking for the multimodal classification of urban waste in street-level 

imagery. The dataset comprises 25k images from Amsterdam, collected to aid cities in 

sustainable garbage collection. The paper introduces challenges such as visually heterogeneous 

garbage categories and varying environmental conditions. The research emphasizes the 

importance of multimodal approaches in urban waste management, leveraging real-time street-

level imagery. The authors provide open data statistics about the geographic area, encouraging 

experimentation with multimodal techniques. State-of-the-art baselines using ResNet, 

EfficientNet, VisionTransformers, and SwinTransformers are presented, with the 

VisionTransformer architecture yielding the best results. 

 

The unique challenges of fine-grained multimodal garbage classification, including dynamic 

backgrounds, varying object sizes, and spatial-temporal dynamics, are discussed. The authors 

propose a multimodal graph neural network (GNN) that leverages geospatial information to 

https://d.docs.live.net/93f274e5599d1e64/Desktop/10.1109/R10-HTC53172.2021.9641560
https://d.docs.live.net/93f274e5599d1e64/Desktop/10.1109/ICAECIS58353.2023.10170501
https://d.docs.live.net/93f274e5599d1e64/Desktop/10.1109/IEIT59852.2023.10335519


 
 

enhance classification performance. The GIGO dataset is released with annotations, contextual 

data, and baseline experiments, fostering research in sustainable urban waste management. 

 

The paper concludes by highlighting the potential for further improvements, suggesting the 

incorporation of additional information about the surroundings using techniques like graph 

neural networks and transformers.  

 

3 Methodology 

The research aims to develop a robust waste classification system using deep learning methods 

for distinguishing between organic and recyclable waste. The study includes a comprehensive 

comparison of various convolutional neural network (CNN) architectures, namely VGG16[22], 

ResNet18[23], VGG19[22], DenseNet169[24], DenseNet121[24], and a simple CNN for waste 

classification. 

 

1. Data Collection 

1.1 Dataset 

▪ The dataset is a combination of various datasets, resulting in  a larger and more 

comprehensive dataset that consists of  27,603 images of organic and recyclable waste 

items collected from Kaggle.  

▪ The dataset is split into training, validation and testing sets, ensuring a balanced 

distribution of classes to avoid bias in model training. The training set is used to train 

the models, the validation set helps in tuning hyperparameters, and the test set 

evaluates the model's performance on unseen data. 

 

 

 

 

 

 

 

 

 

Fig. 2. Waste images distribution into recyclable and organic waste 

 

1.2 Data Pre-processing Techniques 

▪ Dataset Loading: 

Images of organic and recyclable waste items are sourced and organized into training 

and testing datasets. 

 

▪ Labelling: 

Each waste image is associated with a corresponding label, indicating whether it 

belongs to the organic or recyclable category. 

 

▪ Data Transformation 

Data Augmentation: 

49%51%

Recyclable Organic



 

 
 

 

Data augmentation is applied to the training set using transformations such as random 

resizing, centre cropping, horizontal flipping, random rotation, and colour jittering. This 

enhances the model's ability to generalize by exposing it to diverse variations of the 

input data and the dataset is enriched with diverse representations of waste items. This 

variety is crucial for training a robust model capable of accurately classifying different 

types of organic and recyclable waste. 

i. Resizing the Image: Images in the dataset are adjusted to have a consistent size of 

256x256 pixels. This ensures uniformity and aids in model training. 

ii. Horizontal Flipping: To diversify the dataset, some images are horizontally flipped 

randomly. This mimics the natural variability in the orientation of waste items. 

iii. Random Rotation: Introducing a degree of randomness, images undergo random 

rotations of up to 15 degrees. This augmentation simulates different angles at which 

waste items might be captured. 

iv. Centre Cropping: Images are centrally cropped to a size of 224x224 pixels. This 

focuses the model's attention on the central region, capturing the most relevant 

features. 

v. Conversion to RGB Format: Ensuring a consistent colour representation, all images 

are converted to the RGB format. This helps maintain uniformity in colour channels. 

vi. Conversion to Tensor: Images are transformed into a format compatible with deep 

learning models, specifically tensors. This facilitates efficient processing by the neural 

network. 

vii. Normalization: Normalization adjusts the pixel values of the images to a standardized 

scale. This aids in stable and efficient training by bringing all features to a similar 

range. 

 

 Waste Image Dataset 

Train set 

example 

images 

 

 

Image 1. Organic waste 1 Image 2. Organic waste 2 

 

 

 Image 3. Recyclable waste 1 Image 4. Recyclable waste 2 



 
 

Test set 

example 

images 

  

Image 5. Organic waste 1 Image 6. Organic waste 2 

 

 

 Image 7. Recyclable waste 1 Image 8. Recyclable waste 2 

 

 

           

 

 

 

 

 

 

 

         

 
Image 9. Sample image ‘Organic waste’        Image 10. Sample image ‘Recyclable waste’ 

 

Visual inspection plays a crucial role throughout the development process. It ensures the 

effectiveness of data preprocessing and augmentation techniques by identifying and correcting 

anomalies during the data quality check. Examining augmented images aids model 

interpretability, providing insights into how the model generalizes to diverse data variations, 

showcasing its robustness. In instances of suboptimal model performance, visual analysis of 

sample images helps identify issues like misclassifications or unexpected patterns. Visual 

examples derived from sample images enhance understanding, making it easier to grasp the 

nature of problems and comprehend the model's performance across various scenarios. Visual 

inspection, integrated at different stages of model development, provides both qualitative and 

quantitative insights into data and model behavior. 



 

 
 

 

2. Model Implementation 

 

CNN Architectures 

The study compares VGG16[22], ResNet18[23], VGG19[22], DenseNet169[24], 

DenseNet121[24], and a simple CNN for waste classification. The selection of each 

architecture is based on a trade-off between complexity, interpretability, and efficiency. 

DenseNet architectures are chosen for their parameter efficiency and feature reuse, ResNet for 

addressing vanishing gradient, and VGG16 as a straightforward baseline. The Simple CNN is 

included for simplicity and ease of understanding. Each architecture is implemented leveraging 

pre-trained models for feature extraction. 

 

Fig. 3. A CNN architecture 

A. VGG16 

The adoption of the VGG16 architecture in this study is founded on its well-established 

reputation as a Convolutional Neural Network (CNN) design, widely acknowledged for its 

effectiveness in tasks related to image analysis. 

 

The reason behind selecting VGG16 precedes the detailed exploration of its role in the study. 

This choice is rooted in the model's simplicity, making it an accessible and interpretable tool 

for waste classification. By incorporating VGG16 as a pivotal model, the study establishes a 

benchmark for evaluating the performance of more complex architectures. Furthermore, the 

application of transfer learning emphasizes on the knowledge embedded in VGG16 during its 

pretraining on ImageNet, thereby enhancing its proficiency as a feature extractor tailored to the 

specific challenges posed by waste classification. 

 

B. Working 

Fig. 4. VGG16 architecture (Customized) 



 
 

 

Forward Pass 

The pre-processing steps (refer section 1.2) ensure that the input adheres to the format expected 

by the model. The pre-processed image is then passed through the VGG16 backbone which 

consists of multiple convolutional layers that automatically learn hierarchical features from the 

image. 

 

Feature extraction  

Convolutional layers extract low-level features like edges and textures; Neurons in these layers 

respond to patterns within small receptive fields. As the filters build over the input image, they 

create feature maps that represent localized information. As the image data progresses through 

the network, it encounters deeper convolutional layers. These layers build on the low-level 

features detected in earlier layers and combine them to recognize more complex patterns and 

structures. Features extracted in deeper layers become more abstract and include larger spatial 

arrangements.  

 

Pooling layers, usually max pooling, come after convolutional layers. Pooling aids in the 

achievement of translation invariance, which means that the model becomes less sensitive to 

the precise position of features. This improves the network's capacity to recognise patterns no 

matter where they appear in the input. 

 

VGG16's final fully connected layers integrate the abstracted features from the convolutional 

layers to make predictions. The network learns to weight characteristics that are more 

representative of the target classes. The convolutional layer output is flattened and sent to a 

fully connected layer. This layer oversees integrating the obtained features and predicting. The 

model's prediction is generated by the final fully linked layer. Because the objective is binary 

classification (Organic or Recyclable), the output has two nodes, and raw scores are often 

converted into probabilities using a softmax activation function. 

 

The output of the model is a probability distribution over the classes. For example, the model 

might output [0.8, 0.2], indicating an 80% probability of being Organic and a 20% probability 

of being Recyclable. A threshold is applied to convert the probabilities into class labels. For 

instance, if the threshold is set at 0.5, predictions with a probability above 0.5 are assigned to 

the positive class (O - Organic), and those below are assigned to the negative class (R - 

Recyclable). The threshold here has been chosen based on experimental observations, to make 

a balanced decision for both the classes (O and R) as well as using a threshold of 0.5 implies 

that both false positives and false negatives are considered equally important in the 

experimentation. 

 

To compute the loss, the model's predictions are compared to the ground truth labels (the 

image's actual class). The loss indicates how well or poorly the model performs on the given 

task. The determined loss is utilised to update the weights and biases of the model. 

Backpropagation is utilised to do this, in which the gradients of the loss with respect to each 

parameter in the model are computed and used to alter the parameters. 

 

Backpropagation and optimisation techniques (here, Adam optimizer) are used to change the 

weights of the convolutional filters and fully connected layers throughout the training phase. 



 

 
 

 

This refines the network's ability to recognise characteristics relevant to the classification. The 

entire process (forward pass, backward pass, and parameter updates) is performed over and 

over for numerous epochs (the model is rigorously trained on multiple epochs ranging from 5 

to 50 epochs). The model will learn and increase its ability to accurately classify images over 

time. 

 

Following training, the model's performance is evaluated on a separate test dataset. Classes are 

predicted using the same forward pass approach. The trained model may be used to infer new, 

previously unseen pictures. The pre-trained weights enable the model to foresee images it 

hadn't encountered before during training. 

 

This entire process of forward and backward passes, training, evaluation, and inference is 

orchestrated by the underlying deep learning framework. The model, through the learning 

process, becomes adept at distinguishing between Organic and Recyclable waste based on the 

features it has learned from the training data. 

 

Customization to the architecture: 

▪ The customization of the architecture for the waste classification task involves 

alterations to the last fully connected layer. The number of output features in the last 

fully connected layer has been changed to 2, indicating the model is designed for binary 

classification (two classes), specifically distinguishing 'Organic' from 'Recyclable.' 

▪ Dropout Added (0.5): Dropout is a regularization technique where, during training, 

randomly selected neurons are ignored, or "dropped out."  

▪ Training the model on the waste classification task leverages the CrossEntropyLoss in 

conjunction with the softmax activation function. 

▪ The purpose of adaptive average pooling is to adaptively adjust the spatial dimensions 

of the data to a predefined size. 

 

During the training process, several techniques and strategies have been implemented to 

optimize the performance of the neural network. These include the use of the Adam optimizer, 

a learning rate scheduler, and early stopping. The explanation behind these choices and detailed 

configurations will be elaborated in the next section. 

 

4 Design and Implementation Specifications 

 
A. Model Selection 

The Waste Classification task utilizes the VGG16 architecture as the foundational 

Convolutional Neural Network (CNN). VGG16 is chosen for its simplicity, making it 

interpretable and serving as a baseline for performance comparison with more complex 

architectures like ResNet and DenseNet. Transfer learning is leveraged, with the pretraining of 

VGG16 on ImageNet, enhancing its capability as a feature extractor. 

 

The table provides an overview of the architecture of the proposed Waste Classification model 

based on a customized VGG16 architecture. It outlines each layer's characteristics: 

 



 
 

 

Layer Input Size Output Size Kernel Size Stride Padding Activation Type 

Conv1 3x224x224 64x224x224 3x3 1 1 ReLU Convolution 

Conv2 64x224x224 64x224x224 3x3 1 1 ReLU Convolution 

MaxPool1 64x224x224 64x112x112 2x2 2 0 - Max Pooling 

Conv3 64x112x112 128x112x112 3x3 1 1 ReLU Convolution 

Conv4 128x112x112 128x112x112 3x3 1 1 ReLU Convolution 

MaxPool2 128x112x112 128x56x56 2x2 2 0 - Max Pooling 

Conv5 128x56x56 256x56x56 3x3 1 1 ReLU Convolution 

Conv6 256x56x56 256x56x56 3x3 1 1 ReLU Convolution 

Conv7 256x56x56 256x56x56 3x3 1 1 ReLU Convolution 

MaxPool3 256x56x56 256x28x28 2x2 2 0 - Max Pooling 

Conv8 256x28x28 512x28x28 3x3 1 1 ReLU Convolution 

Conv9 512x28x28 512x28x28 3x3 1 1 ReLU Convolution 

Conv10 512x28x28 512x28x28 3x3 1 1 ReLU Convolution 

MaxPool4 512x28x28 512x14x14 2x2 2 0 - Max Pooling 

Conv11 512x14x14 512x14x14 3x3 1 1 ReLU Convolution 

Conv12 512x14x14 512x14x14 3x3 1 1 ReLU Convolution 

Conv13 512x14x14 512x14x14 3x3 1 1 ReLU Convolution 

MaxPool5 512x14x14 512x7x7 2x2 2 0 - Max Pooling 

AdaptiveA

vgPool 

512x7x7 512x7x7 Adaptive - - - Avg Pooling 

FC1 512x7x7 4096 - - - ReLU Fully 

Connected 

Dropout1 4096 4096 - - - - Dropout 

FC2 4096 4096 - - - ReLU Fully 

Connected 

Dropout2 4096 4096 - - - - Dropout 

FC3 4096 2 - - - Softmax Fully 

Connected 

Table 1. Customized VGG16 Architecture for Waste Classification 

 

B. Optimization Parameters 

 

The Adam Optimizer is a key component in enhancing model training. It is selected for its 

efficiency in convergence, requiring minimal hyperparameter tuning, suitable for tasks with 

substantial data and high-dimensional parameter spaces, well-suited in waste classification. For 

experimentation, Adam Optimizer is employed along with a loss function and customized beta 

values (0.95, 0.9995) for stability. 

 

To dynamically adjust the learning rate throughout the training process, a Step Learning Rate 

Scheduler is implemented. This scheduler, reducing the learning rate by a factor of 0.5 every 

two epochs, strikes a balance between rapid convergence and fine-tuning. This adaptability 

contributes to optimal convergence during the training of waste classification models [30] 

 

https://arxiv.org/abs/1412.6980


 

 
 

 

Furthermore, Early Stopping is incorporated as an important regularization strategy. By halting 

training when model performance on validation data deteriorates, overfitting is prevented. it 

set to 5 epochs without improvement. This strategy ensures that the model generalizes 

effectively to unseen waste data. 

 

 Binary Cross-Entropy Loss is selected as the loss function, suitable for binary classification 

tasks. Binary Cross-Entropy loss is mathematically defined as follows:  

Image 11. Binary Cross-Entropy Loss [32] 

 

In binary classification, the BCE loss encourages the predicted probabilities to be close to 0 for 

instances belonging to class 0 and close to 1 for instances belonging to class 1. The negative 

log-likelihood term penalizes deviations from the true labels. 

 

In terms of experimentation, the application of Dropout (0.5) during training serves as a 

regularization technique. Randomly ignoring neurons during training helps prevent overfitting, 

contributing to the model's ability to generalize well to diverse waste images. 

 

The determination of optimal parameters, including the choice of beta values, learning rate 

scheduling, and early stopping criteria, is rooted in iterative experimentation. Experimenting 

across multiple cycles of training and validation, modifying batch sizes, adjustments were 

made based on observed convergence patterns and performance metrics. These tailored 

parameter choices ensure that the model is finely tuned to the nuances of waste classification, 

demonstrating improved accuracy and robustness. Each iteration yields valuable insights into 

the model's behaviour, guiding further adjustments to achieve improved performance. 

 

C. Visualization: 

Seaborn and Matplotlib are used for visualizing results. The training and validation loss curves 

and the accuracy curve over epochs provide a concise overview of the model's learning process, 

showcasing trends in both training and validation performance. The loss curve helps identify 

convergence patterns, while the accuracy curve offers insights into the model's ability to 

correctly classify waste images. Confusion matrixes are visualized using Seaborn's heatmap 

functionality. The confusion matrix illustrates the model's performance on the test set, 

presenting a clear depiction of predicted versus true labels for both organic and recyclable 

waste classes. 

 

 

 



 
 

D. Software Environment: 

▪ Programming Language: Python 3.8 

▪ Libraries and Frameworks: 

a. PyTorch, NumPy, Pandas: Essential for deep learning, numerical operations, 

and data handling. 

b. Matplotlib, Seaborn: Utilized for result visualization. 

c. ReportLab: Employed for PDF report generation. 

 

E.  Deployment: 

▪ Environment: Jupyter Notebook, Google colab. 

▪ Hardware: The model is designed to run on a GPU-enabled environment for accelerated 

training. 

 

F. Computational Efficiency 

▪ GPU Utilization: 

The model training was conducted on Jupyter and Google Colab as well as utilizing an 

RTX 3050 GPU for acceleration. The GPU acceleration significantly expedited the 

training process compared to CPU-only implementations. 

 

▪ Training Time: 

The training time is influenced by several factors, including the complexity of the 

model architecture, dataset size, and the computational power of the hardware, etc. 

i. VGG16 with Transfer Learning and Customizations: 

Training Time: Approximately 175 to 225 minutes (20-50 epochs). This approach 

significantly reduces training time compared to default VGG16 settings, making it a 

best suitable choice for image classification task. 

ii. Default VGG16 Configuration: Training Time - Approximately 250-372 minutes. 

iii. ResNet18: Training Time - Approximately 189 to 243 minutes. 

iv. Simple CNN:  Training Time - Approximately 90-170 minutes. A simplified CNN 

architecture demonstrates faster training times, albeit with potential trade-offs in 

complexity. 

 

The choice of utilizing VGG16 with transfer learning and customizations enhances 

efficiency. The reduced training time makes it a practical solution for the waste 

classification task, striking a balance between model complexity and computational 

efficiency. 

 

G. User Interaction 

An interactive component allows users to upload images for real-time classification. 

The model predicts whether the waste in the images is recyclable or organic, providing 

probabilities for transparency. 

 

H. Challenges and Constraints: 

Training deep learning models, especially large architectures like VGG16, demands 

substantial computational power. The nature of waste datasets may lead to 

imbalances in the distribution of classes (Organic vs. Recyclable). Annotating large 

datasets for waste classification is somewhat time-consuming and resource-



 

 
 

 

intensive. More complex architectures may require longer training times, impacting 

the speed of model development and iteration. 

 

5 Evaluation 

A. Model Performance 

After rigorous testing and experimentation, evaluation of various models for waste 

classification, the customized VGG16 model demonstrated outstanding performance, 

achieving an impressive accuracy of 95.59%. The comparison with other models is presented 

below: 

Model Test accuracy 

Vgg16 – customized with transfer learning 

(proposed)   

95.59% 

Vgg16 without transfer learning  84.63% 

Vgg16 with default values and parameters 54% 

ResNet18 92% 

Vgg19 88% 

DenseNet121 89.5% 

DenseNet169 88% 

Simple CNN 87% 

Table 2. Test accuracies for all the evaluated models and the performance 

 

B. Training and Validation Loss Analysis 

After repeated experiments and carefully analysing the training and validation loss curves 

reveal a balanced fit of the model. The training loss consistently decreases, indicating effective 

convergence during the training process. Simultaneously, the validation loss remains low, 

demonstrating the model's ability to generalize well to unseen data. This balanced fit suggests 

that the model is not overfitting to the training set. 

 

C. Overall Testing Accuracy 

The customized VGG16 architecture demonstrates exceptional performance, achieving the 

highest testing accuracy of 95.5911%. Its simplicity enhances interpretability, making it 

suitable for waste classification. Leveraging transfer learning from ImageNet provides the 

model with valuable hierarchical features, benefiting various computer vision applications. The 

success of the customized VGG16 is attributed to its simplicity, tailored binary classification 

design, regularization techniques, and superior overall performance compared to alternative 

architectures. These factors collectively contribute to the model's effectiveness in classifying 

waste images into 'Organic' and 'Recyclable' categories. 

 

Test Accuracy: 0.9559 

Test Precision: 0.9813 

Test Recall: 0.9554 

Test F1 Score: 0.9682 

Table 3. Metric Result for the proposed Vgg16 (Customized) model 

 



 
 

D. Integration of Model Testing Results: 

To assess the versatility and effectiveness of the proposed waste classification model, extensive 

testing was conducted on diverse datasets beyond the training and validation sets. The model 

demonstrated exceptional performance across different datasets sourced from various waste 

management scenarios. Notably, the accuracy in distinguishing between 'Organic' and 

'Recyclable' waste remained consistently high. 

 

The success of the model across varied datasets attests to its adaptability and potential for 

broader applicability in real-world waste management systems. Moreover, the accuracy 

achieved in predicting the waste category instils confidence in the model's reliability, 

substantiating its potential for deployment in practical waste management scenarios.  

 

E. Evaluation Metrics 

Confusion Matrix 

A confusion matrix is a matrix that evaluates a machine learning model's performance on a set 

of test data. It is frequently used to assess the performance of classification models, which are 

designed to predict a category label for each input occurrence. The matrix shows how many 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) the 

model produced on the test data. 

 

Accuracy: Accuracy is used to measure the performance of the model. It is the ratio of Total 

correct instances to the total instances [12]. 

 
Precision: Precision is a measure of how accurate a model’s positive predictions are. It is 

defined as the ratio of true positive predictions to the total number of positive predictions made 

by the model [12]. 

 
Recall: Recall measures the effectiveness of a classification model in identifying all relevant 

instances from a dataset. It is the ratio of the number of true positive (TP) instances to the sum 

of true positive and false negative (FN) instances [12]. 

 

 
F1-Score: F1-score is used to evaluate the overall performance of a classification model. It is 

the harmonic mean of precision and recall [12]. 

 

 
 

 

 

 

 

https://www.geeksforgeeks.org/precision-and-recall-in-information-retrieval/
https://www.geeksforgeeks.org/precision-and-recall-in-information-retrieval/


 

 
 

 

F. Results 

 

Confusion Matric results for different models for which experiments have been performed 

Fig. 5. Confusion matrix for Vgg16 – customized with 

transfer learning (proposed)   
Fig. 6. Confusion matrix for ResNet18 

 

 
 

Fig. 7. Confusion matrix for Vgg16 with default 

values and parameters 

 

 

Fig. 8. Confusion matrix for Simple CNN 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Confusion matrix for DenseNet model 

 

 

Training and Validation loss curves for different models that are experimented and 

implemented during the research 

Fig 10. Training and Validation loss – Vg, g16 – customized with transfer learning (proposed) 

Fig 11. Training and Validation loss - Vgg16 with default values and parameters 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12. Training and Validation - Vgg16 without transfer learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13. Training and Validation loss – ResNet18 

 

 

Accuracy Curves for different models: 

Fig 14. Accuracy curve 

Vgg16 – customized with transfer learning 

Fig 15. Accuracy curve 

ResNet18  



 
 

Fig 16. Accuracy curve 

Vgg16 with default values and parameters  

Fig 17. Accuracy curve 

DenseNet121  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 18. Accuracy curve 

Simple CNN with few layers 

5. Conclusion and Discussion  

The research addresses limitations observed in prior studies on waste image classification, 

leveraging a dataset comprising over 27K images, significantly surpassing the sample sizes of 

previous studies. The model does not overfit and the accuracy of 95.59% is indicative of its 

robust generalization to unseen data, overcoming concerns related to dataset generalizability 

and diversity. To enhance spatial relationship handling, a customized VGG16 architecture is 

employed, incorporating transfer learning, early stopping, a learning rate scheduler, dropout 

layers, and other optimizations. The evaluation metrics such as precision, recall, and F1-score, 

contributes to a more thorough performance assessment. Notably, the experimentation phase 

involves the implementation and analysis of multiple architectures, aiming to select the most 

suitable model for the waste image classification task. These advancements highlight the 

novelty of this research in the field of waste management and classification. 

 

The model's effectiveness across multiple data sets demonstrates its adaptability and the robust 

performance encourages the reuse of the model. While the model exhibits promising 

performance, it is crucial to acknowledge certain limitations. One notable consideration is the 

model's dependency on hardware resources, particularly a larger GPU for optimal performance. 



 

 
 

 

This hardware requirement could pose a limitation for users with constrained computational 

resources. The model's performance heavily relies on the quantity and diversity of the training 

data. A larger and more diverse dataset could further enhance its generalization capabilities and 

performance accuracy. If the dataset has a significant class imbalance, the model may show a 

bias towards the majority class. Addressing class imbalance could improve overall model 

performance. 

 

Future work could focus on hyperparameter optimization, utilizing larger datasets, and 

implementing advanced strategies such as ensemble learning techniques for ongoing 

improvements in waste classification systems, with possibilities for real-world applications.
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