ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSCAIL1 JAN23, Master of Science in Artificial Intelligence

Onur Bayram
Student 1D: x22186662

School of Computing
National College of Ireland

Supervisor: Muslim Jameel Syed

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee

Ireland

School of Computing

Student (O] o TU] ol =11V =1 o o FO SO PRPRUU PR
Name:
StUAENT ID: X22186662.....cceoiiiieiiieciee ettt e e e e e st e sra e ate e s teesnteenteessreesseeente s s eeeenens
Programme: Master of Science in Artificial Intelligence Year: January 2023..
Module: MSc Research PraCtiCum.........cccoooiiiiie it
Lecturer: MUSlim JameEel SYE ... s
Submission
Due Dat@: 31/01/2024.... ettt et nrae et naeennes
Project Spelling and Grammatical Error Detection for Informal Turkish Texts
Title: with Morphologically Sensible Models
Word Count: 1095........ccoiee. Page Count: 8.

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 3170172024 e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project X
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Onur Bayram
Student ID: x22186662

1 Introduction

Turkish is a morphologically rich language with unique characteristics such as agglutination
and vowel harmony. This makes it challenging to create efficient spelling and grammatical
error detection models for informal Turkish texts. Existing perspectives in deep learning are
not enough to consider the unique characteristics of Turkish language, especially for informal
written texts, leading to poor precision. In this research, the project proposes to develop and
discuss a sequential deep learning models to aim informal text classification, and spelling and
grammatical error detection for informal Turkish texts. The proposed models are recurrent
neural networks (RNN), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM),
Bidirectional GRU (Bi-GRU), and Bidirectional LSTM (Bi-LSTM); these models are all
types of neural network architectures, especially designed for handling sequential data. They
benefit for informal Turkish-specific tasks. The proposed models are trained and tested equal
to two million rows dataset, consisting of both formal and informal Turkish sentences and
labels from Turkish news, Wikipedia, and Twitter. Each of the models has an accuracy of
97%. Detailed results of the 5 proposed models are presented in the paper based on
classification report, confusion matrix accuracy-loss plots, and discussion. The proposed
models are highly effective to fill the void in Turkish natural language processing and
improving the accuracy of informal Turkish text classification. The research also analyses
and displays misspelled words for the implemented informal written Turkish texts with 5 text
experiments, one case study for each of the proposed models, in the implementation section.
These experiments are effective to show spelling and grammatical error detection in informal
Turkish texts.

This configuration manual contains fine-tune instructions on how to use a deep learning
model to reproduce the experimental setup for a text classification project. In this study, a
model is trained to distinguish between formal and informal Turkish text. TensorFlow and
Keras, two well-known deep learning packages, are used in this project’s Python code.
Python is the predominant programming language for artificial intelligence and machine
learning development because of its user-friendly nature, clarity, and vast collection of
modules and packages. The generation of each model involved the development of complex
code modules, using Python programming language along with a variety of specialized
machine learning libraries. To efficiently handle and preserve several separate Python
environments, along with their corresponding packages, the project utilized the widely
accepted Anaconda distribution of Python (Silberztein et al., 2018).

2 System Requirements and Experimental Setup

See that the following prerequisites are installed before trying to replicate the experimental
setup:

Python Environment: Python (3.6 or higher), Anaconda Distribution (latest version).
Required Libraries: TensorFlow (2.0 or higher), Keras (2.3 or higher), NumPy (latest
version), Pandas (latest version), Matplotlib (latest version), Seaborn (latest version), Jupyter
Notebook (for running the code interactively).

The design specification approach for this study project and literature has been fully
accomplished with an Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz DELL
personal computer running on Windows 10 Pro. You can find all the related files in the ICT
Solution Artefact’s code and datasets folders.

You can open and check the Formal Data.csv and Informal twitter data.csv from the
datasets folder. "Formal_Data.csv" and "Informal_twitter_data.csv" are the two datasets used
in the project. The files "Formal_Data.csv" and "Informal_twitter_data.csv" are where the
formal and informal datasets are loaded, respectively. Make sure these datasets are accessible
and formatted correctly. Using Pandas library, the code reads the data and preprocesses it to
produce a composite dataset for testing and training.

You should be able to successfully complete the text classification project and duplicate the
experimental setup by following these guidelines.

3 Instructions

These are a step-by-step explanation and instructions of the research project’s Python code
and the replication.

You can run all the steps via Turkish_Informal_Text_Analysis_Spelling_Error_Detection
final Python code files by using Anaconda Navigator’s Jupyter Notebook, respectively.

~ Jupyter

Files Running Clusters
Select items to perform actions on them
Jo =«

m / Desktop / PRACTICUM_NCI / ICT Solution Artefact /| code /| code_python_jupytersourcefile_ipynb

D.

O
L]

] I BidirectionalGRU_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayram_x22186662.ipynb
BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayram_x22186662_ipynb
0O & GRU_Turkish_Informal_Text_Analysis_5Spelling_Error_Detection_Onur_Bayram_x22186662.ipynb

(& LSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayram_x22186662.ipynb

O & RNN_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayram_x22186662.ipynb

Figure 1. Jupyter Notebook http://localhost:8889/tree
2

Step 1: Import Anaconda Navigator Distribution, Create and Activate Conda Environment,
Install and Import Python Libraries

By using Jupyter Notebook, the code starts by importing the necessary python libraries.
These libraries will be used for data processing, model training, and evaluation.

: 'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling Error_Detection_Onur_Bayra... (autosaved) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python 3 (ipykernel) O
B+ 5 & B 4 % PR B C W» Coe v =

In [1]: dmport numpy as np
import pandas as pd
import tensorflow as tf
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Embedding, Bidirectional, LSTM, Dropout
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences

Figure 2. Jupyter Notebook Bidirectional LSTM code example 1

Step 2: Load and Combine Data

The code loads two datasets, Formal Data.csv and Informal_twitter data.csv, containing
formal and informal text examples, respectively. It concatenates these datasets into a single
DataFrame and splits the data into training and testing sets.

. 'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) (o Logout

File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 (ipykernel) O
B+ = &1 B 4 ¥ PRin B C W Code =]

In [2]: datal = pd.read csv('Formal_Data.csv', encoding='utf-8')
datal=datal.drop(["id"], axis=1)
datal = datal[:10ee0e0]
datal.tail()

out[2]:
text label

999995 1961'de insa edilen Berlin Duvari ile Dogu Alm... 1

999996 Berlin Duvari, Soguk Savas'in simgesi haline g

1
999997 Her nasilsa Bati ve Dogu Almanya arasindaki ge... 1
999998 Bu yeniden birlesmeyi hizlandirdi 1
999999 Sonucta iki Ulke birlesti 1

In [3]: data2 = pd.read_csv('Informal_twitter_data.csv', encoding="utf-8',low memory=False)
data2.drop('id",axis=1,inplace=True)
data2 = data2.drop(columns="static_link")
data2 = data2.drop(columns="retweets")
data2 = data2.drop(columns="favorites")
data2 = data2.drop(columns="class™)
data2 = data2.drop(columns="created_at")
data2 = data2.drop(columns="user_name")
data2["label"]=0
data2 = data2[:1000000]
dataz.tail()

out[3]:
text label
999995 Bence super dizi olur ahahahah :)))\n\nKurtulu.. 0
999996 (@GumushAerospace ‘e pas attim ki ASELSAT ve Kl]
999997 Sen mutluysan sorun yok o zaman keyfini cikar 0
999998 muziksiz yagayamam mi sandi akrepler -)))))))) 0
999999 Yani yani..:))) 0

Figure 3. Jupyter Notebook Bidirectional LSTM code example 2

Step 3: Data Preprocessing

The code creates a tokenizer object to process the text data. It converts each text example into
a sequence of integers representing the corresponding words in the vocabulary. The
maximum length of the sequences is also determined to ensure consistent representation.

’ 'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) A Logout

File Edit View Insert Cell Kernel Widgets Help rusted | Python 3 (ipykernel) O

B+ = & B 4+ ¢ PRin B C P Cod v E

In [5]: target = data new['label’].values.tolist()
datas = data_new["text'].astype(str).tolist() # text data

In [6]: import random
data_target_pairs = list(zip(datas, target))
random.shuffle(data_target_pairs)
separation = int(len(data_target_pairs) * ©.80)
Split the shuffled data into training and testing sets

x_train, y_train = zip(*data_target_pairs[:separation])
x_test, y_test = zip(*data_target_pairs[separation:])

In [7]: num words = 10008
keras tokenizer
tokenizer = Tokenizer(num words=num words)

In [8]: tokenizer.fit on_texts(datas)

In [9]: import pickle

with open('bilstmfinal tokenizer_ Informal.pickle', ‘wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)

In [1@]: import pickle

with open('bilstmfinal tokenizer_ Informal.pickle', 'rb') as handle:
tokenizer = pickle.load(handle)

In [11]: x_train_tokens = tokenizer.texts_to_sequences(x_train)
x_test_tokens = tokenizer.texts_to_sequences(x_test)

Figure 4. Jupyter Notebook Bidirectional LSTM code example 3

Step 4: Model Definition

The code defines a deep learning model using Keras. The model consists of an embedding
layer, a simple deep learning model layer, a dropout layer, and a final dense layer with a
sigmoid activation function to predict the formality of the text.

'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) €2 Logout

File Edit View Insert Cell Kernel Widgets Help rusted ‘ Python 3 (ipykernel) O

B + 5 & B 4 ¥+ PRin B C P Coe v =

In [20]: # Bidirectional LSTM network MODEL

model = Sequential()

embedding size = 100

model. add(Embedding(input_dim=num_words,
output_dim=embedding_size,
input_length=max_tokens,
name="embedding_layer'))

model.add(Bidirectional(LSTM(32)))

model. add(Dropout(@.2))

Dense layer: fully connected Layer
model.add(Dense(1, activation='sigmoid'))
from tensorflow.keras.optimizers import Adam
Adam optimizer

optimizer = Adam(learning rate=le-3)
model.compile(loss="binary crossentropy’,
optimizer='adam’,

metrics=["accuracy'])

In [21]: model.summary()

Model: "sequential®

Layer (type) Output Shape Param #
embedding_layer (Embedding) (None, 39, 100) 1000000
bidirectional (Bidirectiona (None, 64) 34048
1

dropout (Dropout) (None, 64) 4]
dense (Dense) (None, 1) 65

Total params: 1,034,113

Figure 5. Jupyter Notebook Bidirectional LSTM code example 4

Step 5: Model Compilation and Training

The code compiles the deep learning model using the Adam optimizer and binary cross-
entropy loss function. It trains the model for 5 epochs with a batch size of 256 on the training
set.

'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) a Logout

File Edit View Insert Cell Kernel Widgets Help rusted ‘ Python 3 (ipykernel) O

B+ = @& B 4 ¢ PFRin B C P Cod v =2

In [22]: batch_size=256
x_train_pad = np.array(x_train_pad)
y_train = np.array(y_train)
x_test pad = np.array(x_test_pad)
y_test = np.array(y_test)

history= model.fit(x_train pad, y_train, batch_size=batch_size, epochs=5, validation data=(x_test pad, y_test))

Epoch 1/5
6250/6258
y: 0.9692
Epoch 2/5
6250/6258
y: 0.9706
Epoch 3/5
6250/6250
y: 0.9710
Epoch 4/5
6250/6250
y: 8.9710
Epoch 5/5
6250/6250
v: 8.9710

] - 248s 38ms/step - loss: ©.8983 - accuracy: ©.9629 - val loss: ©.8819 - val accurac

2255 36ms/step - loss: ©.8776 - accuracy: ©.9708 - val loss: ©.6782 - val accurac

] - 201s 32ms/step - loss: @.@7@4 - accuracy: ©.9736 - val_loss: ©.0777 - val_accurac

2025 32ms/step - loss: ©.0648

accuracy: ©.9757 - val loss: ©.0786 - val accurac

207s 33ms/step - loss: ©.0596

accuracy: ©.9777 - val loss: ©.0802 - val accurac

Figure 6. Jupyter Notebook Bidirectional LSTM code example 5

Step 6: Model Evaluation
The code evaluates the trained deep learning model on the testing set and calculates the
accuracy and loss metrics and results showcase classification report and confusion matrix.

“:Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) A Logout

File Edit View Insert Cell Kemel Widgets Help Trusted ‘Pylhunf!(ipykemel) o]
B+ = A B 4 % FRin B C W Coe v =
Loss Accuracy
0.100 A
—&— Training 0978 —a— Training
Validation Vvalidation
0.095 0976
0.090
0.974
0.085 4
0.972
0.080 A
0.970
0.075
0.968
0.070 4
0.966
0.065
0.964
0.060 4
T T T T T T T T T T T T r
0.0 0.5 1o 15 2.0 2.5 3.0 35 4.0 0.0 0.5 10 15 2.0 2.5 3.0 35 4.0

In [24]: x_test pad = np.array(x test_pad)
y_test = np.array(y_test)
result = model.evaluate(x_test_pad, y_test, batch_size=batch_size)
result

- 185 1lms/step - loss: @. - accuracy: @.
1563/1563 18s 1ims/step 1 @.e882 y: 8.9718

Out[24]: [©.08019891381263733, ©.9789749817848206]

In [25]: from sklearn.metrics import classification_report, confusion_matrix

y_pred = model.predict(x_test_pad)
y_pred = (y_pred > 8.5).astype(int).ravel()

Calculate confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:™)
print(conf_matrix)

12500/12580 [] - 48s 4ms/step
Confusion Matrix:
[[19556@ 48@5]
[6205 102838]]

Figure 7. Jupyter Notebook Bidirectional LSTM code example 6

Step 7: Model Saving and Loading
The code saves the trained deep learning model and tokenizer to disk using Pickle to enable
future use without retraining.

’ 'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) 2 Logout

File Edit View Insert Cell Kernel Widgets Help ‘ Python 3 (ipykernel) O

B+ = & B 4+ % PRin B C P Code v =

In [27]: report = classification_report(y test, y pred)
print("\nClassification Report:")
print(report)

Classification Report:

precision recall fil-score support

2] 0.97 ©0.98 0.97 200365

1 6.98 8.97 8.97 199635

accuracy .97 400000
macro avg 8.97 8.97 8.97 400000
weighted avg 0.97 0.97 0.97 4100000

In [28]: model.save(BiLSTMFinal MODEL INFORMALTR.h5")
print("saved model to disk")

Saved model to disk

Figure 8. Jupyter Notebook Bidirectional LSTM code example 7

Step 8: Model Prediction

The code loads the saved model and tokenizer and demonstrates the model's ability to
classify new text examples as formal or informal. You can change ‘textexample’ variable
with new sentences, then you can give new predictions directly.

| 'Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_B... (unsaved changes) #2 Logout

File Edit View Insert Cell Kernel Widgets Help rusted | & | Python 3 (ipykernel) O

B+ x @& B 4 % PRin B C W Code v | @

In [31]: # Turkish Informal Text Detection
textexample = "Eve dondiigmde bilgsyarimi okulda unuttugmu farketim."
english: "when I got home from school yesterday, I realised that I had Left my computer at school."
texts = [textexample]
tokens = tokenizer.texts_to_sequences(texts)
tokens_pad = pad_sequences(tokens, maxlen=max_tokens)
model.predict(tokens_pad)
for i in model.predict(tokens_pad):
if i < @.5:
print("informal™)
file = open('passagebilstmfinal.txt’,'w’, encoding="utf-8")
file.write(textexample)
file.close()
elif i »>= @.5:
print("formal™)

1/1 [] - @s l4ms/step
1/1 [] - @s 23ms/step
informal

Figure 9. Jupyter Notebook Bidirectional LSTM code example 8

Step 9: Spelling Error Detection Implementation

The code defines functions to load a dictionary of Turkish words and a text file, extract words
from the text, find misspelled words using the dictionary, and print the list of misspelled
words. You can write the inputs ‘dictionary.txt’ and any text file in your computer, then you
can check the misspelled Turkish words in the text file directly.

: Jupyter BidirectionalLSTM_Turkish_Informal_Text_Analysis_Spelling_Error_Detection_Onur_Bayra... (autosaved) A Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 (ipykemel) O
B o+ 3 & B 4+ ¥ pRin B C W Code v =

In [4]: # Turkish Spelling Error Detection
def readDictionaryFile(dictionaryFilename):

words = []
inputFile = open(dictionaryFilename, "r", encoding="utfg")
for line in inputFile:

wordsOnline = line.strip().split()

for word in wordsOnline:

viords . append(word. strip(".,!-/:;7812345678%").lower())

inputFile.close()
return words

de

-

readTextFile(textFilenama):
words = []
inputFile = open(textFilename, "r", encoding="utfs")
for line in inputFile:

wordsOnline = line.strip().split()

for word in wordsOnline:

vords.appand(word. strip("., -/ ;2"). lower())

inputFile.close()
return words

def findErrors(dictionaryWords, texthords):
misspelledWords = []
for word in textWords:
if word not in dictionarybords:
misspelledwords.append(word)
return misspelledwords

def printErrors(errorList):
print("The misspelled words are: ")
for word in errorList:
print(word)

print("Turkish Spelling Error Detection")

dictionaryFile = input("Please enter the dictionary file:")
textFile = input(“Please enter the text file:")
dictionarylist = readDictionaryFile(dictionaryFile)
textlist = readTextFile(textFile)

print(textList)

errorList = findErrors(dictionarylist, textList)
printErrors(errorList)

Turkish Spelling Error Detection

Please enter the dictionary file:dictionary.txt

Please enter the text file:epassagebilstmfinal.txt

['eve’, 'dondigmde’, 'bilgsyarimi’', 'okulda’, 'unuttugmu', ‘farketim']
The misspelled words are:

déndiigmde

hilgsyarim

Figure 10. Jupyter Notebook Bidirectional LSTM code example 9

References

Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., & Meziane, F. (2018) Natural
language processing and information systems: 23rd International Conference on
Applications of Natural Language to Information Systems, NLDB 2018, Paris, France, June
13-15, 2018, Proceedings, in Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., &
Meziane, F. (eds.), Natural Language Processing and Information Systems, Switzerland:
Springer.

