

Configuration Manual

MSc Research Project

MSCAI1_JAN23, Master of Science in Artificial Intelligence

Onur Bayram

Student ID: x22186662

School of Computing

National College of Ireland

Supervisor: Muslim Jameel Syed

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Onur Bayram………………………………………………………………………………………………

Student ID:

x22186662…………………………………………………………………………………………..………

Programme:

Master of Science in Artificial Intelligence

 Year:

January 2023..

Module:

MSc Research Practicum………………………………………………………………….………

Lecturer:

Muslim Jameel Syed ………………………………………………………………….………

Submission

Due Date:

31/01/2024………………………………………………………………………………………….………

Project

Title:

Spelling and Grammatical Error Detection for Informal Turkish Texts

with Morphologically Sensible Models

Word Count:

1095……………………………… Page Count: 8……………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

31/01/2024……………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

x

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Onur Bayram

Student ID: x22186662

1 Introduction

Turkish is a morphologically rich language with unique characteristics such as agglutination

and vowel harmony. This makes it challenging to create efficient spelling and grammatical

error detection models for informal Turkish texts. Existing perspectives in deep learning are

not enough to consider the unique characteristics of Turkish language, especially for informal

written texts, leading to poor precision. In this research, the project proposes to develop and

discuss a sequential deep learning models to aim informal text classification, and spelling and

grammatical error detection for informal Turkish texts. The proposed models are recurrent

neural networks (RNN), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM),

Bidirectional GRU (Bi-GRU), and Bidirectional LSTM (Bi-LSTM); these models are all

types of neural network architectures, especially designed for handling sequential data. They

benefit for informal Turkish-specific tasks. The proposed models are trained and tested equal

to two million rows dataset, consisting of both formal and informal Turkish sentences and

labels from Turkish news, Wikipedia, and Twitter. Each of the models has an accuracy of

97%. Detailed results of the 5 proposed models are presented in the paper based on

classification report, confusion matrix accuracy-loss plots, and discussion. The proposed

models are highly effective to fill the void in Turkish natural language processing and

improving the accuracy of informal Turkish text classification. The research also analyses

and displays misspelled words for the implemented informal written Turkish texts with 5 text

experiments, one case study for each of the proposed models, in the implementation section.

These experiments are effective to show spelling and grammatical error detection in informal

Turkish texts.

This configuration manual contains fine-tune instructions on how to use a deep learning

model to reproduce the experimental setup for a text classification project. In this study, a

model is trained to distinguish between formal and informal Turkish text. TensorFlow and

Keras, two well-known deep learning packages, are used in this project’s Python code.

Python is the predominant programming language for artificial intelligence and machine

learning development because of its user-friendly nature, clarity, and vast collection of

modules and packages. The generation of each model involved the development of complex

code modules, using Python programming language along with a variety of specialized

machine learning libraries. To efficiently handle and preserve several separate Python

environments, along with their corresponding packages, the project utilized the widely

accepted Anaconda distribution of Python (Silberztein et al., 2018).

2

2 System Requirements and Experimental Setup

See that the following prerequisites are installed before trying to replicate the experimental

setup:

Python Environment: Python (3.6 or higher), Anaconda Distribution (latest version).

Required Libraries: TensorFlow (2.0 or higher), Keras (2.3 or higher), NumPy (latest

version), Pandas (latest version), Matplotlib (latest version), Seaborn (latest version), Jupyter

Notebook (for running the code interactively).

The design specification approach for this study project and literature has been fully

accomplished with an Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz DELL

personal computer running on Windows 10 Pro. You can find all the related files in the ICT

Solution Artefact’s code and datasets folders.

You can open and check the Formal_Data.csv and Informal_twitter_data.csv from the

datasets folder. "Formal_Data.csv" and "Informal_twitter_data.csv" are the two datasets used

in the project. The files "Formal_Data.csv" and "Informal_twitter_data.csv" are where the

formal and informal datasets are loaded, respectively. Make sure these datasets are accessible

and formatted correctly. Using Pandas library, the code reads the data and preprocesses it to

produce a composite dataset for testing and training.

You should be able to successfully complete the text classification project and duplicate the

experimental setup by following these guidelines.

3 Instructions

These are a step-by-step explanation and instructions of the research project’s Python code

and the replication.

You can run all the steps via Turkish_Informal_Text_Analysis_Spelling_Error_Detection

final Python code files by using Anaconda Navigator’s Jupyter Notebook, respectively.

Figure 1. Jupyter Notebook http://localhost:8889/tree

3

Step 1: Import Anaconda Navigator Distribution, Create and Activate Conda Environment,

Install and Import Python Libraries

By using Jupyter Notebook, the code starts by importing the necessary python libraries.

These libraries will be used for data processing, model training, and evaluation.

Figure 2. Jupyter Notebook Bidirectional LSTM code example 1

Step 2: Load and Combine Data

The code loads two datasets, Formal_Data.csv and Informal_twitter_data.csv, containing

formal and informal text examples, respectively. It concatenates these datasets into a single

DataFrame and splits the data into training and testing sets.

Figure 3. Jupyter Notebook Bidirectional LSTM code example 2

4

Step 3: Data Preprocessing

The code creates a tokenizer object to process the text data. It converts each text example into

a sequence of integers representing the corresponding words in the vocabulary. The

maximum length of the sequences is also determined to ensure consistent representation.

Figure 4. Jupyter Notebook Bidirectional LSTM code example 3

Step 4: Model Definition

The code defines a deep learning model using Keras. The model consists of an embedding

layer, a simple deep learning model layer, a dropout layer, and a final dense layer with a

sigmoid activation function to predict the formality of the text.

5

Figure 5. Jupyter Notebook Bidirectional LSTM code example 4

Step 5: Model Compilation and Training

The code compiles the deep learning model using the Adam optimizer and binary cross-

entropy loss function. It trains the model for 5 epochs with a batch size of 256 on the training

set.

Figure 6. Jupyter Notebook Bidirectional LSTM code example 5

6

Step 6: Model Evaluation

The code evaluates the trained deep learning model on the testing set and calculates the

accuracy and loss metrics and results showcase classification report and confusion matrix.

Figure 7. Jupyter Notebook Bidirectional LSTM code example 6

Step 7: Model Saving and Loading

The code saves the trained deep learning model and tokenizer to disk using Pickle to enable

future use without retraining.

7

Figure 8. Jupyter Notebook Bidirectional LSTM code example 7

Step 8: Model Prediction

The code loads the saved model and tokenizer and demonstrates the model's ability to

classify new text examples as formal or informal. You can change ‘textexample’ variable

with new sentences, then you can give new predictions directly.

Figure 9. Jupyter Notebook Bidirectional LSTM code example 8

Step 9: Spelling Error Detection Implementation

The code defines functions to load a dictionary of Turkish words and a text file, extract words

from the text, find misspelled words using the dictionary, and print the list of misspelled

words. You can write the inputs ‘dictionary.txt’ and any text file in your computer, then you

can check the misspelled Turkish words in the text file directly.

8

Figure 10. Jupyter Notebook Bidirectional LSTM code example 9

References

Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., & Meziane, F. (2018) Natural

language processing and information systems: 23rd International Conference on

Applications of Natural Language to Information Systems, NLDB 2018, Paris, France, June

13-15, 2018, Proceedings, in Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., &

Meziane, F. (eds.), Natural Language Processing and Information Systems, Switzerland:

Springer.

