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Abstract 

 

Turkish is a morphologically rich language with unique characteristics such as 

agglutination and vowel harmony. This makes it challenging to create efficient spelling 

and grammatical error detection models for informal Turkish texts. Existing perspectives 

in the field are not enough to consider the unique characteristics of Turkish language, 

especially for informal texts, leading to poor precision. In this research, the project 

proposes to develop and discuss a morphologically sensible sequential deep learning 

models to aim spelling and grammatical error detection for informal Turkish texts. The 

proposed models are recurrent neural networks (RNN), Gated Recurrent Unit (GRU), 

Long Short-Term Memory (LSTM), Bidirectional GRU (Bi-GRU), and Bidirectional 

LSTM (Bi-LSTM); the models are all types of neural network architectures, especially 

designed for handling sequential data. They benefit for informal Turkish-specific tasks. 

The models are trained and tested equal to two million rows dataset, consisting of both 

formal and informal Turkish texts from Turkish news, Wikipedia, and Twitter. Each of 

the proposed models has an accuracy of 97%. Detailed results of the 5 proposed models 

are presented in this paper based on classification report, confusion matrix, accuracy-loss 

plots, and discussion. The proposed models are highly effective to fill the void in Turkish 

natural language processing and improving the accuracy of spelling and grammatical error 

detection for informal Turkish texts. The research also checks and displays misspelled 

words for the put into practice informal texts with 5 text experiments, one case study for 

each of the proposed models, in the implementation section. 

Keywords: Natural Language Processing, Neural Network Architectures, Spelling and 

Grammatical Error Detection, Text Analysis, Turkish Language 

 

1 Introduction 
 

Natural language processing (NLP) activities utilize text supplied by users as input for various 

applications. The increasing utilization of the internet requires the creation of reliable natural 

language processing systems. While the quantity of valuable textual data increases daily due 

to microblog and social media platforms, most of the data gathered from these sources lacks a 

formal structure, posing challenges for its utilization in natural language processing systems. 

The primary challenge in NLP lies in effectively collecting the nuanced contextual information 

present in input data, which may consist of a single word, a sentence, or even a paragraph. 

While the terminology of natural language remains fixed, there are many potential 

interpretations for these phrases. For this reason, deeper understanding of a word's definition 

is inadequate; one must also catch the surrounding circumstances in which it is used. Various 
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neural network designs exist for representing textual context. Neural network-based 

architectures have been successfully utilized in various domains. They are delivering 

extraordinary outcomes (Batmaz, 2022). Texts written by users on internet platforms 

frequently deviate from conventional language norms and exhibit several instances of 

misspelled words. This can pose a challenge for natural language processing models to perform 

effectively. Text normalization is a technique used to rectify these issues and enhance the 

comprehensibility of the text for models. Additionally, it aids individuals with imperfect 

language proficiency in comprehending the material more effectively (Aytan and Sakar, 2023). 

Identifying and detecting spelling and grammatical errors is an essential part of text 

normalization. 

 

 
Figure 1. Diagram of Natural Language Processing 

 

The research conducted by Uz and Eryigit explores the difficulties associated with spell 

checking in Turkish language. In Turkish language, where words are created by combining a 

root with morphemes, due to the contextual dependence of word meaning, morphological 

analysis is necessary for spell checking. For spell checking systems, the intricate relationship 

between morphology and semantics poses unique challenges (Uz and Eryigit, 2023). 

Eryigit and Torunoglu-Selamet's article introduces a social media text normalization solution 

for Turkish language, Turkish language characterized by agglutination and distinctive 

normalization difficulties. The system partitions candidate generation into distinct cascaded 

modules, which target seven distinct error categories. Two manually standardized datasets for 

Turkish in the Web 2.0 domain were presented (Eryigit and Torunoglu-Selamet, 2017). Adali 

and Eryigit's article also address two significant issues, the restoration of vowels and diacritics, 

in the normalization of social media text. Their work proposes a hybrid approach to select one 

of the morphologically accurate outputs from the first stage by combining a language validator 

and a discriminative sequence classifier. They propose a model independent of language and 

does not require manual training set annotation. The efficacy of their methodology was 

evaluated using both synthetic data and real social media data (Adali and Eryigit, 2014). 

Even though many grammar and spell-checking tools work well, they still have trouble with 

agglutinative languages like Turkish, especially when it comes to informal writing. The aim of 

this research project is to investigate this question; How well can sequential deep learning 

models perform in detecting informal Turkish texts as a classification task, and how can these 
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models be optimized to handle the idiosyncratic features of Turkish language? In this project, 

a recurrent neural networks (RNN) model, a Gated Recurrent Unit (GRU) model, a Long Short-

Term Memory (LSTM) model, a Bidirectional GRU (Bi-GRU), and a Bidirectional LSTM (Bi-

LSTM) model is developed for text classification in informal Turkish texts. Beyond these deep 

learning models, the study also analyzed misspelled words in informal Turkish texts using a 

combination of dictionary-based method. 

The rest of this research paper is organized as follows. In Section 2, Related Work, the 

overview of the studies that focus on the detection of spelling and grammatical errors is 

demonstrated. Section 3 describes the Research Methodology. Section 4 presents Design 

Specification while Section 5 presents Implementation and Evaluation.  Lastly, Section 6 

discusses Conclusion and Future Work. 

 

2 Related Work 
 

An overview of research on the possible contributions of Turkish grammar and spell detection 

and text normalization towards attaining the aims is provided in this section. Multiple studies 

have been carried out on Turkish language. Over the past few years, there has been a significant 

advancement and numerous groundbreaking findings in study in this field. 

Sonmez and Ozgur discuss the challenges posed by the informal style of social media material 

in their research, highlighting its intricate nature when it comes to automated analysis using 

natural language techniques. Their proposed approach for unsupervised text normalization 

stands out because to its utilization of not only lexical, but also contextual and grammatical 

information obtained from a word association network created from an extensive unlabeled 

social media text corpus. The authors highlight the effectiveness of their context-aware 

technique by achieving the highest F-score performance, surpassing traditional methods that 

depend on normalization dictionaries (Sonmez and Ozgur, 2014). Marsan et al. contribute to 

the subject of linguistic resource development by introducing a novel method for converting 

dependencies to constituencies, tailored specifically for Turkish language. They make the 

method work better by adding a bootstrap aggregating meta-algorithm and using a 

morphological analyzer and a feature-based machine learning model. The work provides 

evidence for a useful and effective conversion procedure, which promotes the development of 

new constituency treebanks and serves as excellent training material for natural language 

processing resources (Marsan et al.,2022). 

Taylan et al. offer valuable insights in their study on grammar pedagogy, specifically focusing 

on the challenges of instructing non-native speakers in English writing proficiency. The authors 

provide a writing tool that utilizes a deep learning model to provide immediate feedback on 

grammatical issues in student writing, specifically emphasizing the precision of form and rule 

acquisition (Taylan et al., 2019). Yildirim and Yildiz analyze the essential requirement for text 

normalization in the context of short-text messages, emphasizing the limitations imposed by 

Turkish language's morphologically complex and agglutinative structure. Their proposed 

architecture for unsupervised text normalization incorporates a range of techniques, including 

lexical similarity and n-gram language modeling. The techniques employed develop from basic 

to more sophisticated solutions. Their approach, which integrates both lexical and semantic 

similarity for Turkish text normalization, is demonstrated to be effective through rigorous 
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evaluation using high-quality corpora, morphological parsers, and dictionaries. (Yildirim and 

Yildiz, 2015).  

Buyuk, Erden, and Arslan present a sequence-to-sequence deep neural network approach to 

emphasize the impact of context on the correctness of correction. The authors introduce a 

foundational system that handles misspelled and reference words in an isolated manner, 

without considering their surrounding context. To improve the system's effectiveness, they 

incorporate both the context before and after misspelled words. The authors report a significant 

absolute enhancement in rectification performance by employing a context-dependent model, 

utilizing a substantial text corpus, and introducing substitution, deletion, and insertion errors 

(Buyuk, Erden, and Arslan, 2019). 

Aydan and Sakar have made a noteworthy advancement by introducing a two-step deep 

learning model that can accurately identify and repair misspelled words. The researchers have 

incorporated a false positive reduction model to mitigate errors arising from foreign 

terminology and acronyms frequently prevalent in online platforms. The study shows the 

remarkable efficacy of the proposed Bi-LSTM-based model when used with the BPE tokenizer 

and various tokenization techniques, including character-based, syllable-based, and byte-pair 

encoding. The study also highlights the success of their innovative approach in improving 

precision without sacrificing recall in identifying misspelled words, utilizing LSTM and Bi-

directional Bi-LSTM networks (Aydan and Sakar, 2023). Arikan, Gungor, and Uskudarli 

provide significant contributions, specifically focusing on the difficulties associated with clitic 

errors in Turkish language. The authors propose a neural sequence tagger model to address the 

constraints of vocabulary-based methods and the inadequacy of existing tools for languages 

with limited resources. The model's objective is to identify and rectify errors related to using 

"de/da" clitic. Their approach, which involves using an artificially created dataset, 

demonstrates a remarkable F1 score of 86.67%, outperforming existing spelling correction 

algorithms on a meticulously chosen dataset of challenging samples (Arikan, Gungor, and 

Uskudarli, 2019). Ozge, Bozal, and Ozge propose a novel method for rectifying diacritics in 

Turkish, acknowledging the importance of precise diacritic utilization in disentangling word 

meanings in natural language processing tasks. Instead of using traditional approaches for 

restoring diacritics in one direction, the authors propose a character-level sequence-to-

sequence model that considers the context and translates diacritical letters to their ASCII 

equivalents in both forward and backward directions. Significantly, their language-agnostic 

model, which exclusively utilizes word embeddings, obtains an impressive 4.7% enhancement 

in F1 score for terms with multiple meanings and an overall improvement of 1.24% when 

assessed against a benchmark dataset of Turkish tweets (Ozge, Bozal, and Ozge, 2022).  

Aydogan and Karci emphasize crucial significance of text processing, specifically pointing out 

the lack of language-specific research, especially for Turkish, in the fields of word embedding 

and deep neural networks. The authors offer significant contributions by constructing two 

Turkish datasets and training word vectors on a large unlabeled corpus using the Word2Vec 

methodology. The study uses advanced deep neural network designs, such as CNN, RNN, 

LSTM, and GRU. It concludes that the GRU and LSTM techniques surpass the others, leading 

to a notable improvement of 5% to 7% in accuracy when utilizing pre-trained word vectors 

(Aydogan and Karci, 2020). Goker and Can discuss the challenge of text normalization, a 

necessary pretreatment step for successful natural language processing, within the context of 
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the ever-changing and casual character of social media content. The authors propose two 

innovative alternatives: contextual normalization employing distributed word representations, 

and sequence-to-sequence normalization utilizing neural encoder-decoder models (Goker and 

Can, 2018). 

Ince emphasizes the significance of incorporating morphological analysis and mathematical 

foundations into software development to effectively tackle the specific challenges posed by 

Turkish in spell checking and error correction. The project is around Turkish language and 

presents an application that utilizes the nZemberek tool, a Turkish corpus, and morphological 

structure to provide efficient spell checking and error correction. The program demonstrates 

the importance of language-specific features in developing effective spell-checking systems 

for Turkish. It attains a 95% success rate in spell checking and an 86% success rate in 

suggesting precise corrections (Ince, 2017). 

 

3 Research Methodology 
 

The research methodology from Preliminary Literature Analysis and Initial Proposal to Model 

and Experiments Implementation and Thesis Writeup is illustrated in Figure 2. 

 

 
Figure 2. Diagram of Research Process  

 

The research methodology consists of six main steps: data loading and preprocessing, 

tokenization, padding sequences, model building, training, and evaluation, model prediction 

and text classification, and solution as illustrated in Figure 3. 
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Figure 3. Research Methodology  

 

Data Loading and Preprocessing is the initial stage where the dataset is loaded for research 

project purposes. Subsequently, the dataset undergoes preprocessing to eliminate any 

extraneous information. These steps may involve eliminating stop words, punctuation, and 

converting all text to lowercase. In this project, this phase is employed Pandas package in 

Python to import and read two CSV files ('Formal_Data.csv' and 'Informal_twitter_data.csv') 

into distinct data frames. Each dataset is limited to one million rows. Afterward, the two data 

frames are merged into a new data frame named data_new. The 'text' column is retrieved as the 

features, while the 'label' column is used as the targets. The data is later combined into pairs of 

features and targets, then randomly shuffled, and split into training and testing sets using a ratio 

of 80-20. This method produced x_train, y_train, x_test, and y_test variables that can be used 

in the text classification models in the study. 

Throughout the time of Tokenization process, the preprocessed text data is divided into smaller 

units called tokens. Tokens are the fundamental units of text, representing individual words. 

Keras Tokenizer in Python is utilized to transform the text data into sequences of numerical 

tokens. The variable num_words variable is assigned a value of 10,000, which signifies the 

upper limit for the number of words to retain depending on their frequency. The tokenizer is 

applied to the training data, and the resulting tokenizer is serialized and stored using the pickle 

module. The previously saved tokenizer is reloaded into the script in due course. 

At Padding Sequences step, the text data entries exhibited varying lengths. However, when it 

comes to modeling, it is crucial to provide data that has the same shape. Consequently, shorter 

sequences are augmented with zeros to align with the length of the longest sequence. Once the 

text data has been divided into sequences using Keras Tokenizer, the sequences are adjusted to 

have a consistent length for input into the model by either adding padding or truncating. It is 

crucial to perform this preparatory step to train deep learning models that require input of a 

specific size. 

Model Building and Training step consisted of the model that develops the capacity to associate 

unique token patterns with preprocessed data and distinct classes. The procedure commenced 

with an embedding layer that transforms the input sequences, represented as integers, into 

compact vectors of a predetermined embedding_size=100. The proposed model layer, 

comprising 32 units, is employed to collect contextual information from both the forward and 

backward orientations in the input sequences. To address the issue of overfitting, a dropout 

layer is included with a dropout rate of 0.2. The last layer comprised a dense layer with a single 

unit and utilizes a sigmoid activation function, which is well-suited for addressing binary 

classification tasks. The model is trained using the binary cross entropy loss function and the 

Adam optimizer with a learning rate of 1e-3. The summary of the model architecture is shown, 

and the training is performed using the fit method with a batch size of 256, for a total of 5 

epochs, using the provided training and validation data. The training history is stored in the 
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variable 'history' for further analysis and evaluation. During the Evaluation phase, following 

the completion of model training, it is imperative to assess its performance. Usually, this is 

accomplished by using a validation set that the model has not previously experienced. To 

evaluate the model's performance, the predictions are compared to the actual values. After 

training the deep learning model, its performance is evaluated using the evaluate technique, 

which measures the loss and accuracy on the test set. The results are stored in the variable 

named 'result'. Following this, the model that has undergone training generates predictions on 

the test dataset. The predictions are transformed into binary predictions by applying a threshold 

of 0.5. Afterwards, the confusion matrix and classification report functions are employed. This 

robust evaluation allowed for the assessment of the model's effectiveness in classifying textual 

data into the specified categories. 

In Model Prediction and Text Classification step, a highly trained model can be used to generate 

precise predictions on new, unseen data. The model categorized the text using the information 

it has gained via training. The trained model is saved on the disk in the HDF5 format using the 

save approach. Following that, the script reloaded the stored model and the tokenizer that was 

previously saved using the pickle module. The loaded tokenizer is used to tokenize a provided 

sample text, which is later padded to conform with the model's anticipated input size. 

Afterwards, the pre-trained model is used to predict the likelihood of each category for the 

provided input text. The prediction is discretized using a threshold of 0.5, and depending on 

the result, the text is classified as either "informal" or "formal." The casual text is stored in a 

file named 'epassage.txt'. 

The proposed methodology also involved a solution incorporating Turkish spelling error 

detection into the text classification project. The solution process is created a program to read 

a dictionary file with correctly spelled words and a text file with informal texts that needed to 

be spell and grammar checked.  

Every one of these steps is crucial in the process for researching text classification projects. It 

should be emphasized that the precise particulars, parameters, preferences and methods 

employed in each stage may vary based on the research criteria. 

 

4 Design Specification 
 

The design specification approach for this research project has been fully accomplished with 

an Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz DELL personal computer 

running on Windows 10 Pro. Deep learning models are built on Anaconda Navigator’s Jupyter 

notebook utilizing Python programming language, and its libraries and frameworks such as 

Tensorflow, Keras, and Sci-kit learn. 

The project utilized two datasets, namely "Formal_Data" and "Informal_twitter_data," which 

were obtained from Github.com (Fixy-TR, 2020). The dataset files consist of more than 

1,000,000 input data points, each including columns converted and named "label" and "text." 

The column labelled "label" indicates the class of the sentences, with 1 being formal sentences 

and 0 representing informal sentences. The column labeled "Text" gives a description of 

Turkish sentences written in the target language. 
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Table 1. Sample text and label examples from the dataset 

 

Text  Label 
Clay Matematik Enstitüsü ilk doğru çözüme 1 milyon dolar vadetmişti 

ancak Perelman ödülü kabul etmedi (English: The Clay Mathematical 

Institute had promised $1 million for the first correct solution, 

but Perelman declined the prize) 

 

1 (Formal) 

 

Gel beni izle diyor resmeeen :) (English: It's likeee she's saying 

come and watch me :)) 

 

0 (Informal) 

 

The datasets comprise Turkish texts obtained from Turkish news sources, Wikipedia, and 

Twitter. Each used dataset has precisely 1,000,000 sentences as data points. Figure 4 shows the 

sentence count for each category, providing a visual depiction of the datasets with an equal 

distribution of 1,000,000 texts per category. 

 

 
Figure 4. Count of Informal and Formal in final dataset 

 

This guarantees that the models are trained on a diverse range of Turkish texts, enhancing their 

capacity to accurately predict informal language usage and morphological patterns inside 

Turkish sentences. 

 

4.1 Deep Learning Text Classification Models 
 

Deep learning enables the creation and use of many models to extract significant insights and 

predictions from complex datasets. The objective of this project is to evaluate the performance 

and effectiveness of suitably created the deep learning text classification models. This section 

examines five well-known deep learning models that selected for this study: RNN, LSTM, 

GRU, Bi-LSTM, and Bi-GRU. 
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Figure 5. The Basic Architecture of the proposed deep learning models 

 

RNN, a specialized type of neural network created to process sequential input, exhibits 

excellent performance in natural language processing’s classification tasks. RNNs possess a 

feedback loop that enables them to store information from prior inputs. This allows them to 

efficiently document and comprehend the chronological connections within the material. GRU, 

an adapted variant of the conventional RNN, incorporates gating mechanisms to control the 

flow of information within the network. The design of GRU architecture is especially aimed at 

addressing the issue of vanishing gradients that occur in conventional RNNs. GRUs enhance 

the model's ability to grasp distant dependencies in sequential data, while still assuring effective 

computing efficiency. LSTM is a type of RNN that tackles the problem of the vanishing 

gradient by integrating a more intricate memory cell structure. LSTMs possess the capacity to 

retain information throughout extended sequences, rendering them exceptionally efficient in 

scenarios were understanding context and preserving associations over prolonged durations is 

paramount. Bi-GRU architecture improves upon the GRU model by analyzing input sequences 

in both the forward and backward directions. The bidirectional technique enhances the model's 

ability to capture dependencies from both preceding and succeeding contexts, enabling a more 

comprehensive understanding of sequential patterns, and improving performance in 

classification tasks that require context-aware processing. Bi-LSTM, like Bi-GRU, augments 

the capabilities of LSTM by examining input sequences in both the forward and backward 

directions. This model's bidirectional structure enables it to gather dependencies from both 

preceding and subsequent elements in the sequence, and this helps understanding of the context 

and temporal connections within the data. This improves its efficiency in the tasks. 

 

4.2 Turkish Spelling and Grammatical Error Detection 
 

Misspelled words can be categorized into two main groups: non-word errors and real-word 

errors. Non-word errors arise when an erroneous word is not acknowledged as a legitimate 

component of the language's dictionary. For instance, the incorrect spelling of "cement" as 

"sement" or "chicken" as "chiken" exemplifies this specific type of mistake. To address these 

problems algorithmically, one can employ string distance metrics to compare the misspelled 

words with the language's word corpus, facilitating their straightforward correction. On the 

other hand, faults that occur in real-world situations pose a more challenging barrier when it 
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comes to detection. These faults comprise words that are grammatically correct but 

thematically unsuitable for the given context. In the given phrase "The men power required for 

this job...", the term "manpower" has been mistakenly replaced with "men". Considering that 

both "man" and "men" are valid words in the dictionary, it is crucial to thoroughly analyses the 

sentence's context to identify and rectify this error (El Gayar et al., 2022). 

 
 

Figure 6. Python code of the Turkish dictionary-based spelling error detection 

 

In this project, there is a straightforward and efficient implementation of a spelling error 

detection system as illustrated in Figure 6 that relies on a Turkish dictionary text file. The code 

is organized into multiple functions, each serving a distinct purpose, along with a primary 

execution block. The function readDictionaryFile(dictionaryFilename) is used to read a file 

that includes a dictionary. Each line of the file represents a single word. The function 

readTextFile(textFilename) is analogous to the readDictionaryFile function. It reads a text file, 

analyses each line, and provides a collection of words in the form of a list. The distinction is in 

the specific characters that are removed from each word, except numerical digits. The function 

findErrors(dictionaryWords, textWords) accepts two lists of words as input, one derived from 

the dictionary and the other from the text file. It verifies each word in the text file by comparing 

it to the dictionary. The function printErrors(errorList) accepts a list of incorrectly spelled 

words as its input and proceeds to display them individually. The main code block prompts the 

user to provide the filenames for the dictionary file and the text file. 
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This method represents a direct approach to implementing a spelling error detection system. 

Nevertheless, it is important to acknowledge that the current version is rudimentary and there 

exist numerous possibilities for its expansion. 

 

5 Implementation and Evaluation 
 

Python is the predominant programming language for artificial intelligence and machine 

learning development because of its user-friendly nature, clarity, and vast collection of modules 

and packages. The generation of each model involved the development of complex code 

modules, using the versatile programming language Python along with a variety of specialized 

machine learning libraries. To efficiently handle and preserve several separate Python 

environments, along with their corresponding packages, the project utilized the widely 

accepted Anaconda distribution of Python (Silberztein et al., 2018).  

The performance of the proposed deep learning models is evaluated throughout both the 

training and validation stages. The loss graphs illustrated the model's loss with time, with the 

x-axis representing the number of epochs and the y-axis representing the loss value. Both lines 

should exhibit a decline with time, signifying that the model is acquiring knowledge and 

enhancing its forecasts, while the accuracy graphs illustrated the model's precision as time 

progresses. Both lines should have an upward trend, signifying that the model is progressively 

generating more accurate predictions as it acquires knowledge. Both graphs depict the training 

phase with a blue line and the validation phase with an orange line. The training phase 

encompasses the process in which the model acquires knowledge from the given train data, 

while the validation stage evaluates the model's performance using previously unseen test data. 

A confusion matrix (an error matrix) is a structured table that provides a visual representation 

of the effectiveness of an algorithm, usually one that involves supervised learning. The 

confusion matrix is a valuable tool since it provides both an understanding of the mistakes 

made by your classifier and the specific types of mistakes produced. Such an elevated level of 

detail enables the implementation of more refined optimization and model selection 

procedures. The confusion matrixes are a tabular form with dimensions of 2x2, which include 

four combinations of predicted and actual values. True Positives (TP) are occasions where the 

model correctly predicted the positive class, showing that the actual class was positive, and the 

model appropriately classified it as positive. True Negatives (TN) are instances where the 

model correctly predicted the negative class, showing that the actual class was negative, and 

the model appropriately classified it as negative. False Positives (FP) arise when the model 

incorrectly predicts that instances are positive when they are negative. This is typically known 

as a Type I error. False Negatives (FN) occur when the model incorrectly classifies a positive 

instance as negative. This occurrence is frequently denoted as a Type II error. 

The following figures show a comparison of the five deep learning models based on their 

accuracy and loss. The loss and accuracy plots offer a distinct representation of the model's 

performance throughout each optimization iteration (epoch). Consequently, a model is 

considered superior when it has a lesser loss.  The results of the project demonstrate the 

potential of each model, with the highest maximum average accuracy of 97% and the lowest 

minimum average loss function of 8% for informal Turkish text classification task, derived 

from the calculated values. 
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Figure 7. Loss and Accuracy Plots of the proposed RNN model 

 

After 5 epochs, the results of the proposed RNN model during its training and validation 

phases, the calculated accuracy is 0.967 and the calculated loss of 0.087 for informal Turkish 

text task based on the datasets. 

 

 
 

Figure 8. Confusion Matrix of the proposed RNN model 

 

The confusion matrix of the proposed RNN model is presented, the value of TP is 195,235, 

indicating that the model accurately identified 195,235 data points belonging to informal class, 

the value of TN is 191,886, indicating that the model accurately identified 191,886 data points 

belonging to formal class. FP value is 5,035, indicating that the model erroneously identified 

5,035 data points from formal class as belonging to informal class. FN value is 7,844, indicating 

that the model mistakenly identified 7,844 data points from informal class as belonging to 

formal class. RNN classifier demonstrated exceptional performance on the dataset, as indicated 

by the numerous instances of true positive and true negative values. This indicates that the 

model proficiently differentiates between accurate and inaccurate forms. 
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Figure 9. Loss and Accuracy Plots of the proposed LSTM model 

 

After 5 epochs, the results of the proposed LSTM model during its training and validation 

phases, the calculated accuracy is 0.970 and the calculated loss of 0.082 for informal Turkish 

text task based on the datasets. 

 

 
Figure 10. Confusion Matrix of the proposed LSTM model 

 

The confusion matrix of the proposed LSTM model is presented, TP value is 195,339, 

indicating that the model accurately identified 195,339 data points belonging to informal class. 

The value of TN is 192,765, indicating that the model accurately identified 192,765 data points 

belonging to formal class. FP value is 4,723, indicating that the model erroneously identified 

4,723 data points from formal class as belonging to informal class. FN value is 7,173, indicating 

that the model erroneously identified 7,173 data points from informal class as belonging to 

formal class. LSTM classifier had excellent performance on the dataset, as indicated by the 

considerable number of true positive and true negative values. This indicates that the model 

proficiently differentiates between accurate and inaccurate forms. 
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Figure 11. Loss and Accuracy Plots of the proposed GRU model 

 

After 5 epochs, the results of the proposed GRU model during its training and validation 

phases, the calculated accuracy is 0.970 and the calculated loss of 0.080 for informal Turkish 

text task based on the datasets. 

 

 
Figure 12. Confusion Matrix of the proposed GRU model 

 

The confusion matrix of the proposed GRU model is presented, TP value is 194,203, indicating 

that the model accurately identified 194,203 data points belonging to informal class. The value 

of TN is 192,720, indicating that the model accurately identified 192,720 data points belonging 

to formal class. FP value is 5,877, indicating that the model erroneously identified 5,877 data 

points from formal class as belonging to informal class. The value of FN is 7,200, indicating 

that the model misclassified 7,200 data points from informal class as belonging to formal class. 

GRU classifier had excellent performance on the dataset, as indicated by the high number of 

true positive and true negative values. This indicates that the model proficiently differentiates 

between accurate and inaccurate forms. 
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Figure 13. Loss and Accuracy Plots of the proposed Bi-LSTM model 

 

After 5 epochs, the results of the proposed Bi-LSTM model during its training and validation 

phases, the calculated accuracy is 0.970 and the calculated loss of 0.080 for informal Turkish 

text task based on the datasets. 

 

 
Figure 14. Confusion Matrix of the proposed Bi-LSTM model 

 

The confusion matrix of the proposed Bi-LSTM model is presented, the value of TP is 195,560, 

indicating that the model accurately identified 195,560 data points belonging to informal class. 

The value of TN is 192,830, indicating that the model accurately identified 192,830 data points 

belonging to formal class. FP value is 4,805, indicating that the model erroneously identified 

4,805 data points from formal class as belonging to informal class. FN value is 6,805, indicating 

that the model erroneously identified 6,805 data points from informal class as belonging to 

formal class. Bi-LSTM classifier had excellent performance on the dataset, as indicated by the 

high number of true positive and true negative values. This indicates that the model proficiently 

differentiates between accurate and inaccurate forms. 
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Figure 15. Loss and Accuracy Plots of the proposed Bi-GRU model 

 

After 5 epochs, the results of the proposed Bi-GRU model during its training and validation 

phases, the calculated accuracy is 0.970 and the calculated loss of 0.082 for informal Turkish 

text task based on the datasets. 

 

 
Figure 16. Confusion Matrix of the proposed Bi-GRU model 

 

The confusion matrix of the proposed Bi-GRU model is presented, TP value is 195,358, 

indicating that it accurately identified 195,358 data points belonging to informal class. The 

value of TN is 192,800, indicating that the model accurately identified 192,800 data points 

belonging to formal class. FP value is 4,416, indicating that the model erroneously identified 

4,416 data points from formal class as belonging to informal class. FN value is 7,426, indicating 

that the model erroneously identified 7,426 data points from informal class as belonging to 

formal class. Bi-GRU classifier had excellent performance on the dataset, as indicated by the 

high number of true positive and true negative values. This indicates that the model proficiently 

differentiates between accurate and inaccurate forms. 

5.1 RNN Informal Text Experiment / Case Study 1 
 

This is a text classification experiment that uses a pre-trained proposed RNN model to classify 

a given text as either formal or informal. 
 



17 
 

 

 
 

Figure 17. Result of the proposed RNN model’s Informal Text Experiment  

 

The pre-trained RNN model is loaded from a file named 

'RNNfinal_MODEL_INFORMALTR.h5'. The file named 'rnnfinal_tokenizer_Informal.pickle' 

is utilized to transform the input text into sequences of numbers, which can then be inputted 

into the model. The input text "Enerjimi bir türlü atamadım yaa" is segmented into tokens using 

the tokenizer that has been loaded. Subsequently, the sequence of numbers is extended to a 

length of 39, which corresponds to the model's maximum expected length. The predict method 

of the RNN model is invoked using the padded sequence as input. This function generates a 

forecast for the provided input text. The prediction is printed to the console. If the predicted 

value is below 0.5, the text is categorized as informal, and the input text is saved in a file named 

'epassagernnfinal.txt'. If the forecast is equal to or above 0.5, the text is categorized as formal. 

The outcome demonstrates that RNN model possesses the ability to differentiate between 

formal and informal text, relying on the training it has undergone. This has the potential to be 

applied in the field of Turkish spelling and grammatical error detection. However, additional 

experiments should be conducted to assess the model's efficacy by testing it on various sorts of 

text. 

 

 
 

Figure 18. Result of Spelling Error Detection for Informal Text Experiment Case Study 1 

 

Turkish spelling error detection tool for this project verifies an informal text by comparing it 

to a dictionary of accurately written words. The application prompts the user to input a 

dictionary file, which we have designated as 'dictionary.txt'. This file comprises a compilation 

of accurately spelled Turkish words. Subsequently, the program prompts the user to provide a 

text file for the purpose of detecting spelling problems. We have provided the file 

'epassagernnfinal.txt', which was used in the prior Python code. The program parses the text 
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file and dissects it into discrete words, also known as tokens. Subsequently, the algorithm 

verifies each token against the dictionary. When a token is not included in the dictionary, it is 

classified as a misspelled word. In this instance, the term 'yaa' is absent from the dictionary and 

is thus identified as an erroneous word. This type of detection can be highly advantageous for 

natural language processing tasks, such as context analysis and grammar correction. 'Yaa' is an 

informal Turkish interjection that may not be included in an verifiable dictionary. These 

sentences need attention. 

5.2 LSTM Informal Text Experiment / Case Study 2 
 

This is a text classification experiment that uses a pre-trained proposed LSTM model to classify 

a given text as either formal or informal. 

 

 
 

Figure 19.  Result of the proposed LSTM model’s Informal Text Experiment 

 

The pre-trained LSTM model is imported from the file named 

'LSTMfinal_MODEL_INFORMALTR.h5'. The file 'lstmfinal_tokenizer_Informal.pickle' is 

utilized to convert the input text into sequences of integers, which are then inputted into the 

model. The input text "Onur iyi hissetöiyor" is segmented into tokens using the loaded 

tokenizer. The content is categorized as informal, and the input text is saved to a file entitled 

'epassagelstmfinal.txt'. The outcome demonstrates that LSTM model possesses the ability to 

differentiate between formal and informal writing, relying on the training it has undergone. 

However, additional experiments need be conducted to assess the model's efficacy by testing 

it on various text genres. 

 

 
 

Figure 20. Result of Spelling Error Detection for Informal Text Experiment Case Study 2 
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We have included the file 'epassagelstmfinal.txt', which was previously written to in the Python 

code that was shared. The program parses the text file and dissects it into discrete words, also 

known as tokens. Subsequently, the algorithm verifies each token against the dictionary. When 

a token is not included in the dictionary, it is classified as a misspelled word. In this instance, 

the term 'hissetöiyor' is absent from the dictionary, resulting in its identification as an erroneous 

word. 

5.3 GRU Informal Text Experiment / Case Study 3 
 

This is a text classification experiment that uses a pre-trained proposed GRU model to classify 

a given text as either formal or informal. 
 

 
 

Figure 21. Result of the proposed GRU model’s Informal Text Experiment 

 

GRU model that has been pre-trained is loaded from the file named 

'GRUfinal_MODEL_INFORMALTR.h5'. The file 'grufinal_tokenizer_Informal.pickle' is 

utilized to transform the input text into sequences of numbers that can be inputted into the 

model. The loaded tokenizer is used to tokenize the input text "Mutluluk hiiiç bana göre 

değil!!!". The content is categorized as informal, and the input text is saved to a file entitled 

'epassagegrufinal.txt'. The outcome demonstrates that GRU model possesses the ability to 

differentiate between formal and informal writing, relying on the training it has undergone. 

However, additional experiments need be conducted to assess the model's efficacy by testing 

it on various text genres. 

 

 
 

Figure 22. Result of Spelling Error Detection for Informal Text Experiment Case Study 3 
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We have included the file 'epassagegrufinal.txt', which was previously written to in the Python 

code that was published. In this instance, the term 'hiiiç' is not present in the dictionary and is 

consequently identified as an erroneous word. 

5.4 Bi-LSTM Informal Text Experiment / Case Study 4 
 

This is a text classification experiment that uses a pre-trained proposed Bi-LSTM model to 

classify a given text as either formal or informal. 

 

 
 

Figure 23. Result of the proposed Bi-LSTM model’s Informal Text Experiment 

 

The pre-trained Bi-LSTM model is loaded from the file named 

'BiLSTMfinal_MODEL_INFORMALTR.h5'. The file named 

'bilstmfinal_tokenizer_Informal.pickle' is utilized to transform the input text into sequences of 

numbers, which can then be inputted into the model. The input text "Eve döndüğümde 

bilgisayarımı okulda unuttuğumu fark ettim" is tokenized using the loaded tokenizer. The text 

is categorized as informal, and the input text is saved to a file entitled 'epassagebilstmfinal.txt'. 

The outcome demonstrates that Bi-LSTM model can differentiate between formal and informal 

text, relying on the training it has undergone. Nevertheless, additional tests must be conducted 

to assess the model's efficacy across various text genres and appraise its performance. 

 

 
 

Figure 24. Result of Spelling Error Detection for Informal Text Experiment Case Study 4 
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We have provided the file 'epassagebilstmfinal.txt', which was previously written in the shared 

Python code. In this instance, the words 'döndüğmde', 'bilgsyarımı', 'unuttuğmu', and 'farketim' 

are not included in the dictionary, therefore being identified as misspelled words. 

5.5 Bi-GRU Informal Text Experiment / Case Study 5 
 

This is a text classification experiment that uses a pre-trained proposed Bi-GRU model to 

classify a given text as either formal or informal. 

 

 
 

Figure 25. Result of the proposed Bi-GRU model’s Informal Text Experiment 

 

The pre-trained Bi-GRU model is loaded from the file named 

'BiGRUfinal_MODEL_INFORMALTR.h5'. The file named 

'bigrufinal_tokenizer_Informal.pickle' is utilized to transform the input text into sequences of 

numbers, which can then be inputted into the model. The input text "Kafalar karışmasın mı?" 

is segmented into tokens using the tokenizer that has been loaded. The content is categorized 

as informal, and the input text is saved in a file entitled 'epassagebigrufinal.txt'. The outcome 

demonstrates that Bi-GRU model possesses the ability to differentiate between formal and 

informal writing, because of the training it underwent. Nevertheless, additional experiments 

should be conducted to assess the model's efficacy by testing it on various text genres. 

 

 
 

Figure 26. Result of Spelling Error Detection for Informal Text Experiment Case Study 5 

 

We have provided the file 'epassagebigrufinal.txt', which was used in the prior Python code. In 

this instance, each word inside the text is present in the dictionary, and there are no words that 

have been spelled incorrectly. Nevertheless, Bi-GRU classifier successfully identified the text 
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as casual. When a native Turkish speaker enforces it, this sentence becomes an informal text 

in Turkish. 

5.6 Results and Discussion 
 

The project covered a complete presentation of the performance results using evaluation 

metrics such as classification reports, confusion matrices, and accuracy-loss plots. These 

metrics allowed for a thorough understanding of all the model’s performance. The proposed 

models aimed to address particularly focusing on improving the accuracy of detection informal 

Turkish texts. Additionally, the study conducted five text experiments with different Turkish 

sentences —one case study for each proposed model, to validate the models' effectiveness. The 

project also involved checking and displaying misspelled words in the dictionary-based 

implementation of informal text case studies. This practical plan added an extra layer of 

validation by applying the models to real-world scenarios. The project has created a structure 

that allows all the proposed models to be tested in an unlimited way with many different formal 

and informal Turkish texts. 

The detailed results of five different models; RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU are 

shown in Table 2 as a classification report. 

 

Table 2. Results of classification report using the proposed deep learning models 

 

Model Accuracy Class Precision Recall F1-Score 

RNN 0.97 
Informal 0.96 0.97 0.97 

Formal  0.97 0.96 0.97 

LSTM 0.97 
Informal 0.96 0.98 0.97 

Formal  0.98 0.96 0.97 

GRU 0.97 
Informal 0.97 0.97 0.97 

Formal  0.97 0.97 0.97 

Bi-LSTM 0.97 
Informal 0.97 0.98 0.97 

Formal  0.98 0.97 0.97 

Bi-GRU 0.97 
Informal 0.96 0.98 0.97 

Formal  0.98 0.96 0.97 

 

Table 2 highlights the robust capabilities of the proposed models within the scope of the job 

under investigation. 

RNN model has a 0.97 accuracy, indicating that it accurately identified 97% of the occurrences. 

LSTM model exhibits a 0.97 accuracy, suggesting a comparable performance to RNN model. 

GRU model achieves a comparable level of performance to RNN and LSTM models, 

demonstrating an accuracy of 0.97. Bi-LSTM model maintains the trend by achieving an 

accuracy of 0.97. Bi-GRU model achieves a precision of 0.97. Nevertheless, RNN, LSTM and 

Bi-GRU exhibit a little reduced precision for the informal class in comparison to the other two 

models. 

Bi-GRU model’s precision achieves 0.96 for informal class and 0.98 for formal class that 

means that when the model predicts a Turkish text as informal, it is correct 96% of the time, 
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and when predicting a Turkish text as formal, it is correct 98% of the time. Bi-GRU model’s 

recall achieves 0.98 for Informal class and 0.96 for Formal class that means that the model 

captures 98% of actual informal Turkish texts and 96% of actual formal Turkish texts. Bi-

LSTM model’s precision achieves 0.97 for informal class and 0.98 for formal class that means 

that when the model predicts a Turkish text as informal, it is correct 97% of the time, and when 

predicting a Turkish text as formal, it is correct 98% of the time. Bi-LSTM model’s recall 

achieves 0.98 for Informal class and 0.97 for Formal class that means that the model captures 

98% of actual informal Turkish texts and 97% of actual formal Turkish texts. GRU model’s 

precision achieves 0.97 for informal class and 0.97 for formal class that means that when the 

model predicts a Turkish text as informal, it is correct 97% of the time, and when predicting a 

Turkish text as formal, it is correct 97% of the time. GRU model’s recall achieves 0.97 for 

Informal class and 0.97 for Formal class that means that the model captures 97% of actual 

informal Turkish texts and 97% of actual formal Turkish texts. LSTM model’s precision 

achieves 0.96 for informal class and 0.98 for formal class that means that when the model 

predicts a Turkish text as informal, it is correct 96% of the time, and when predicting a Turkish 

text as formal, it is correct 98% of the time. LSTM model’s recall achieves 0.98 for Informal 

class and 0.96 for Formal class that means that the model captures 98% of actual informal 

Turkish texts and 96% of actual formal Turkish texts. RNN model’s precision achieves 0.96 

for informal class and 0.97 for formal class that means that when the model predicts a Turkish 

text as informal, it is correct 96% of the time, and when predicting a Turkish text as formal, it 

is correct 97% of the time. RNN model’s recall achieves 0.97 for Informal class and 0.96 for 

Formal class that means that the model captures 97% of actual informal Turkish texts and 96% 

of actual formal Turkish texts. In terms of precision, all different models perform well, with 

scores ranging from 0.96 to 0.98. This indicates an important level of accuracy in identifying 

both informal and formal texts. In terms of recall, with scores ranging from 0.96 to 0.98, all the 

different models capture a massive portion of actual informal and formal texts. Bi-LSTM and 

GRU models exhibit a balanced performance with high precision and recall for both classes. 

LSTM, Bi-GRU, and RNN models also exhibit a still effective performance with high precision 

and recall. However, without additional context, it is difficult to draw definitive conclusions.  

Precision, Recall, and F1-Score metrics indicate that all models are performing near perfect, 

demonstrating their ability to accurately classify text as either formal or informal. Nevertheless, 

in the absence of other context or evidence, it is challenging to reach conclusive inferences. 

Overall, the findings indicate that all models are exhibiting satisfactory performance. Still, the 

performance of the model should be repeatedly tested by conducting many different 

experiments. 

In the context of the main challenges the project faced and addressed, the dataset is 

preprocessed to eliminate any extraneous information and converted “text” and “label” 

columns. The final dataset was limited my final dataset to two million rows, one million each, 

this size was enough for training reliable models, especially with the proposed deep learning.  

models. The developed and trained models were resource-efficient and environmentally 

sustainable. The datasets combined Turkish texts from diverse sources, including Twitter. This 

combination introduced noise and inconsistencies. Before the research project started, we 

checked the overall quality of the datasets to lead to a more robust model in detail. Checking 

with informal text structure was hard. Words were spelled wrongly, or there were abbreviations 
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also emojis. If not managed well, the model could have difficulty understanding and classifying 

informal text accurately. Another challenge was that there should not be a significant difference 

in the number of formal and informal sentences. If not balanced, the model could have gotten 

biased towards the more common class, making it less effective at identifying the less frequent 

class. Another challenge was deciding how many words to consider during tokenization. If set 

too low, important words could have been left out, affecting the model's ability to comprehend 

and learn from my final dataset. The study tried to find and set the optimum num_words and 

tokenizer.fit_on_texts. Turkish sentences can vary in length. The study also tried to adjust 

sentences (padding sequences), this impacted how well the model understands the text data.  

Preprocessing, tokenizing, handling led to gain of information or necessary additions, 

impacting the model's performance. The final dataset’s diversity helped capture unique styles 

of language, enhancing the representativeness of the dataset. While the dataset is diverse, it is 

essential to control specific language characteristics and biases and ethical engagement. We 

checked most of Turkish sentences of the datasets to lead to a more unbiased and neutral model 

in detail. We also shuffled the final dataset after combining formal and informal texts to help 

mitigate potential biases introduced during data preparation and data target pairs. Then the 

dataset was split into training and testing sets, that helped the final dataset do not overly 

influence the model's training and evaluation. It can be advantageous to address potential biases 

to continue monitoring the model's performance on different datasets with new data sources 

and contemplating extra preprocessing processes tailored to informal language nuances. 

 

6 Conclusion and Future Work 
 

The research project investigated five specific deep learning models and their methodologies 

designed for classifying informal Turkish writing and detecting informal Turkish writing’s 

spelling and grammatical errors. These methodologies incorporated deep learning models as 

well as a combination of dictionary-based implementation methods. To summarize, the results 

showed that the proposed models have strong skills in the given task, which confirms their 

potential as a powerful tool for conducting experiments and applications incorporating formal 

and informal Turkish texts. 

We acknowledge the possibility of making additional improvements, such as automatically 

expanding the size of the training set, integrating self-training methods, and using weighted 

finite-state language and error models to tackle concerns related to memory consumption. In 

future research, it would be beneficial to explore the use of other languages, considering the 

language-agnostic nature of our models. 

Although our text detection algorithms achieved an important level of accuracy when applied 

to Turkish social media data, there is still potential for further enhancement and expansion. 

Subsequent studies can examine the efficacy of neural normalization strategies in more 

agglutinative languages. The researchers can prioritize the enhancement of discretization and 

vowel tasks, by integrating sophisticated approaches such restricted Viterbi algorithms in the 

decoding phase. This work establishes the fundamental basis for future progress in spelling 

correction and text normalization, thereby making a valuable contribution to the wider domain 

of natural language processing. 
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