~

“—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Artificial Intelligence

Ramanathan Arunachalam
Student ID: x22142401

School of Computing
National College of Ireland

Supervisor: Prof. Abdul Razzaq

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ramanathan Arunachalam
Student ID: x22142401
Programme: Artificial Intelligence
Year: 2023
Module: MSc Research Project
Supervisor: Prof. Abdul Razzaq
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 453
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ramanathan Arunachalam
x22142401

1 Introduction

The configuration handbook details how to carry out the research topic “Enhancing
Fake News Detection with Federated Learning and Word Embedding” step by step. The
upcoming sections will explain the details about software and hardware requirements for
implementation of this project. By following the steps in order to replicate the outputs
that are shown. Machine Learning algorithms such as LSTM, CNN, BERT, ect are
discussed in this manual

2 System Requirements

This part outlines the system requirements for successfully performing the project, and it
is always necessary to have prior knowledge of the system specification before conducting
tests

2.1 System Specification
e Platform: Google Colaboratory

e Runtime: GPU/TPU
RAM: 12.7GB

Disc: 107.7 GB

System RAM Disk
10.1/12.7 GB 27.4/107.7 GB

Figure 1: Colab Runtime

3 Code

3.1 Dataset

This program uses five data source of different dimensions. The below table show the
overview of the data used.

Dataset Name Rows | Columns
Truth_Seeker (2023) 134199 | 8
Kaggle Fake News Data 1 | 44920 | 4

LIAR 10239 | 14
WEFL 72134 | 4
Kaggle Fake News Data 2 | 6335 4

Table 1: Datasets Shape

3.2 Data Loading

The below image show a brief view of how the code is structured.

Enhancing Fake News Detection with Federated Learning and Word Embedding

Data Load and Libraries Import
Import Functions

Data Analysis and Understanding on all 5 Datasets
|— Dataset 1 - Truth Seekers Dataset
L word cloud
Dataset 2 - Kaggle
L— word cloud
F—— Dataset 3 - Kaggle
| L— word cloud
|— Dataset 4 - LIAR Dataset
| L'— word cloud
L— pataset 5 - WEFL
L— word cloud

|— word Embeddings and ML Model

F— s
— word2vec
Glove
FastText
Doc2vec

F— cnn Model

|
|
|
|
|
| Word2vec
|
|
|
|
L

BERT Model

L rederated Learning
} 3 Client Architecture
L 5 client Architecture

Figure 2: Code Workflow

1. Access the data from your specified location by mounting the Google Drive in
Google Colab. Unzip the dataset saved on the drive to the chosen directory.

2. Import the required libraries, if throws an error please pip install few dependencies
and restart the session.

t pandas as pd
t matplotlib.pyplot as plt
t seaborn
m sklearn.metr: t classification_report

sklearn.feature_extraction.text i CountVectorizer, TfidfVectorizer
earn.mode lection import train_test_split
wordcloud import WordCloud

t re
m nltk.corpus opwords
m nltk.stem.porter rt Pojferstsmmer‘

t nltk
tk.download("
1tk.download("
t gensim
t gensim.utils
1 gensim.models ort Word2Vec, FastText, Doc2Vec, KeyedVectors

1 gensim.parsing.prepros preprocess_string
1 gensim.models.doc2vec TaggedDocument, Doc2Vec
tensorflow.keras.preprocessing.sequence import pad_sequences
Sequential
t Embedding, ConviD, MaxPoolinglD, Flatten, Dense, Dropout

t tensorflow as tf
m tensorflow.keras.laye
t gensim.downloader a

Figure 3: Import Statement

3. Load all the 5 data as dataframes.

Figure 4: Data Load

4. Data Cleaning is important because we are handling text data and need for clutter
free word corpus is important for analysis.

rt re
nltk.tokenize i t word_tokenize
nltk.corpus i t stopwords

m nltk.stem imp PorterStemmer

VR W e

preproc ext(text):

stop_words (stopwords.word
tokens = [word word in tokens word not in stop words]

stemmer = PorterStemmer()
tokens = [stemmer.stem(word) for word in tokens]

rn tokens

Figure 5: Data Clean Function

3.3 Modeling

The code first does LSTM modeling with for embeddings and then do CNN model with
same four embedding on 5 different datasets.

word2vec lstm accuracy loss(dataset X, dataset Y):
word2vec_model = gensim.models.Word2Vec(
dataset X, vector :
)
word2vec_model.save(

word_index = {w: word2vec_model.wv. i [w] w in word2vec model.wv.index to key}
X = [[word_: < word in sent if word in word index] ~ sent in dataset X]

max_len = max([len(x
X 1 = pad_sequences(X, maxlen-max_len, padding

y = np.array(dataset_Y)

X_train, X_test, y_train, y_test = train_t plit(X_ 1, y, test size=8.2, random_state

model = Ssquential():[

model . add (Embedding(len(word_index) + 1, 188, input_length-max_len))
model . add(SpatialDropoutiD(®©.2))

model.add(LSTM(64, dropout=8. recurrent_dropout=0.2, kernel_regulariz
model.add(Dense(1, activatio d'))

model.compile(loss= C 0 i , metrics

fit(X_train, y train, epochs=5, batch_size=32, validation_data=(X_test, y_test), verbose=1)

uracy = model.evaluate(X_test, y_test, verbose
[accuracy*180:.2f}%")

Figure 6: LSTM

This is how the function call is made for each function

Figure 7:

These are the results are as follows

1 word2vec_lstm accuracy_l
Epoch 1/5
87ms/step

82ms/step

s 85ms/step -
Epoch
3355/33; 84ms/step -
89ms/step -
[/step - loss:
acy: 99.99%
0.002490422921255231

O clove Lstn(dfa

WARNING: tensorflow:Layer lstm will not u

, dfi["target'])

uDNN kernels since

[64] fasttext_lstm model(dfa['y , dfa
Found 8711
WARNING: te
Epoch 1/5
256/256 [~
Epoch 2/5
256/256 [~
Epoch

1stm will not use CuDNN kernel

orflow: Laye

10425

- 10255

: 0.6650 -

0.5752
quential.Sequential at

: 0.0067

: 0.0040

0.6717

i 0.6671

.0527
accuracy:
0080 - accuracy: @
accuracy:

o

the criteria. It will use a generic GPU kernel as

accuracy: 0.9649

0.1096 - accur

o it doesn't meet the criteria. It will use a ge

accuracy: 0.5717
accuracy:
- accuracy

accuracy

- accuracy:

0.9899

0.9999 -

val_loss: 0.0030

val_loss: 0.0059

- val_loss: 0.0244 - val .

val_loss: 0.0025

val _loss: 0.0025

- val_lo o714 -

- val_loss: 0.0413 - val_accuracy: 0.9928

val_loss: 0.0462 - val_accuracy:

val_loss: 0.
val_loss:

val_accuracy: 0.9947

eric GPU kernel
val_accuracy: 0.5654

0.6801 - val accuracy: 0.5679

0.6670 - val_accuracy: 0.5659
val_accuracy: @

val_accuracy:

Figure 10: LSTM-FastText

Similarly as next step we are calling an CNN function.

val__ y:

val_accuracy:

val_accuracy:

Word2Vec Function Call for different datasets

val_accuracy: 0

uracy: @

0.9998

[

fallback when running on GPU.

s fallback when running on GPU.

word2vec_cnn_accuracy loss(dataset X, dataset_¥Y):

word2vec_model = gensim.models.Word2Vec(
dataset_X, vector_siz 80, window=5, min_count=1, workers=4

word_index [w: word2vec_model.wv.key to _index[w] for w in word2vec model.wv.index to key}
X = [[word _index[word] for word in sent if word in word_index] for sent in dataset X]

word_index = {w: word2vec_model.wv.key_to_index[w] for w in word2vec_model.wv.index to key}
print(e ." %len(word_inde

y = dataset Y

r.word_index) + 1
print(” lary » vocabulary size)

embedding_matrix = np.zeros((vocabulary > EMBEDDING_DIM))
i in word_index.items():
embedding vector = embeddings index.get(word)
if embedding vector i :

BATCH_SIZE
EPOCHS
MAX_SEQUENCE_LENGTH = 38

Figure 11: CNN Function
The below are the outputs of CNN

° model A.summary ()

E) Model: “model™
Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 3@)]
embedding 1 (Embedding) (None, 3@, 100) 281200
dropout (Dropout) (None, 3@, 100))
convld (ConviD) (None, 128) 89728
convld_1 (ConvlD) (None, ! 128) 114816

global_max_poolingld (Glob (None, 1:)
alMaxPoolinglD)

dense 1 (Dense) (None,
dropout_1 (Dropout) (None,

dense 2 (Dense) (None,

Total params: 552305 (2.11 MB)
Trainable params: 271105 (1.03 MB)
Non-trainable params: 281200 (1.07 MB)

Figure 12: Parameters in CNN

—BATCH_SIZE, epochs=EPOCHS, validation_data=(X_test, y_test), callbac reduce_]

6ms/step ss: 0.2683 - accuracy: 0.8850 - val loss: 0.1511 - val

ceur:

6ms/step 0.1600 - accuracy: 0.9372 - val loss val_accurac

Sms/step : 0.1399 - accuracy: val_accuracy: 0.956!
Epoch 4/
1123/112: 0.1234 - accuracy: val_accuracy: 0.9624
Epoch 5/5

1143 - accuracy: .9 al_loss: val_accuracy: @
2.51 s, total: 3

Figure 13: CNN Training

Then we do BERT Modeling

random_state=42

tokenizer = BertTokenizer.from pretrained('bert-b
model - BertForsequenceClassification.from_pretrain

n_encodings = tokenizer(train 1 truncation=True, paddin
encodings = tokenizer(test texts, truncation- > padding=

train_labels = torch. tensor(train_labels)
test_labels = torch.tensor(test_label

Figure 14: BERT Model

After all these code we choose the best model among these and do the Federated
Learning.

global_model

simpleModel()

client1_data = doc2vec_ds1
client2 data = doc2vec_ds2
client3_data = glove ds1

round_num in range(3):
print(f"R {round_num + 1}:")

client_data in [clientl data, client2 data, client3 data]:
local_model = SimpleModel()
local model.load state dict(global model.state dict
optim.SGD(1local_model.parameters(), 1 1)
1_model, optimizer, client data)

state_dict - global_model.state_dict()
|_state_dict - local_model.state_dict()
key in global state dict.keys():
global_state_dict[key]

global_model.load_state_dict(global_state_dict)

Figure 15: Federated Learning

Similarly a 5 clinet architecture is done

clientl data = doc2vec dsl
client2_data = doc2vec_ds2
client3_data = glove ds1
client4_data - glove ds3
client5 data - fasttext df2

Ilcvbalimcndel - simplemodel ()

losses = []
for round_num in range(
print(ound {round_num + 1}:

client _data in [client1_data, client2 data, client3_data]:
local model = SimpleModel()
local model.load state dict(global model.state dict
optim.SGD(local_model.parameters(), lr=8.801)
client_train(local_model, optimizer, client_data)
losses.extend(loss)

global state dict - global model.state_dict()
local_state_dict = local_model.state_dict()
for key in global_state_dict.keys()

global state dict[key] += local state dict[key] / 3

global model.load state dict(global_ state_dict)

Figure 16: Federated Learning 5 Client Architecture

The Federated Learning gave this two loss function

Training Loss

12004 — Training Loss

1000

800

600

Loss

400 7

200

0 20 40 60 80
lterations

Figure 17: Federated Learning 3 Client Architecture

Training Loss

—— Training Loss
80004
6000 1
w
7]
S 4000
20004
04
T T T T T T T T
0 20 40 60 80 100 120 140
terations

Figure 18: Federated Learning 5 Client Architecture

These are the steps followed in executing this code.

	Introduction
	System Requirements
	System Specification

	Code
	Dataset
	Data Loading
	Modeling

