~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Jisha Joy
Student ID: 21240868

School of Computing
National College of Ireland

Supervisor: Dr. Shivani Jaswal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Jisha Joy
Student ID: 21240868
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Shivani Jaswal
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 649
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Jisha Joy

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Jisha Joy
21240868

1 Introduction

This document describes the requirements and steps to be performed for replicating the
CNN-LSTM with Attention Mechanism(CLAM) model for DNS-based data exfiltration
detection in cloud networks. It specifies the required tools, data processing, configuration
steps, and specific packages required in the model development.

2 Requirements

The main requirements for the model development are:

e Jupyter Notebook: Jupyter Notebook is an interactive platform used for writing
machine-learning codes and also used as a visualization platform for the developed
models. Jupyter Notebook is used as a local platform for model development.

e Anaconda: Anaconda is an open-source package environment for Python with
different packages and tools required to work on data. The Jupyter Notebook is
accessed from within the Anaconda Navigator.

e Google Colab: Google Colab is a cloud-hosted platform that allows the devel-
opment and visualization of a machine-learning model like Jupyter Notebook. It
provides computing resources like T4 GPU for running the machine learning code
in the cloud. Also, it reduces the effort of setting up the environment and has the
libraries and packages for machine learning models preinstalled.

3 Specification

The specifications of the system required for developing the model are given below:

3.1 Hardware

The model is developed locally on a Windows 10 machine. The hardware specification of
the system used for the development of the model is shown in figure

Device specifications

Device name DESKTOP-IA5GP90O

Processor Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz
Installed RAM 16.0 GB (15.9 GB usable)

Device ID 83C576FE-7EDB-42F6-BC24-CB66857F059E

Product ID 00325-96173-57942-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Copy

Rename this PC

Windows specifications

Edition Windows 10 Home

Version 22H2

Installed on 10/1/2022

OS build 19045.3693

Experience Windows Feature Experience Pack 1000.19053.1000.0
Copy

Figure 1: Hardware Specifications for model development

The specification of the Google Colab platform used for hosting the model in the
cloud platform is given in figure

RAM
T4 = w N
v Disk ——

Connected to

Python 3 Google Compute Engine
backend (GPU)

RAM: 0.80 GB/12.68 GB Disk: 26.89
GB/78.19 GB

Figure 2: Hardware Specifications of Google Colab platform

3.2 Software Specification

1. Anaconda Navigator

2. Python 3
3. Jupyter Notebook 6.5.2
4. Google Colab with T4 GPU

5

Python Libraries Used

. Pandas: Pandas is an open-source library in Python used for analyzing and per-

forming manipulation on datasets.

Matplotlib: Matplotlib is a Python visualization library used for data visualiza-
tion. This enables the plotting of graphs to represent the results of the machine-
learning model.

Tensorflow: Tensorflow is an open-source library used for performing numerical
computations on the dataset.

Numpy: Numpy is also an open-source Python library used for numerical calcu-
lations especially array and matrix-based tasks.

Seaborn: Seaborn is also a visualization tool used for plotting statistical graphs
representing the results of the machine learning model.

Installation

The local and cloud-based installation steps are mentioned below:

5.1

1.

2.

Local Installation

Install Anaconda Navigator for Windows 10
Open Jupyter Notebook from the different tools available in Anaconda Navigator
Select Python kernel for running the notebook

Install the required packages and libraries

pip install pandas

pip install matplotlib

pip install scikit-learn

pip install —upgrade scikit-learn

pip install scikit-learn==1.0

Upload the dataset

Cloud Installation

. Access Google Colab website

Open a new Jupyter Notebook
Connect to T4 GPU runtime
Upload the dataset to Google Drive

Grant permission to Colab for accessing Google Drive

3

6 Data Preprocessing

Data required for the research is obtained from the UNB website as an NSL-KDD data-
set.
https://www.unb.ca/cic/datasets/nsl.html

Python code for preprocessing the dataset is shown in figure
[] from sklearn.preprocessing import LabelEncoder
le list = [LabelEncoder() for 1 in range(0,full data.shape[1])]

for 1 in range(8,full data.shape[1]):
if full data.dtypes[i]=="object":
full data[i] = full data[i].astype('string’)
le list[i].fit(full data[full data.columns[1]])
full data[full data.colums[i]] = le list[i].transform(full data[full data.colums[i]])

Figure 3: Data Preprocessing for model development

7 Model Development

The code snippet for the CLAM training model development with 10 epochs is shown in
figure

import tensorflow as tf
from xggéggjlgﬂ;§55§£&;§x3£§ import Input, ConviD, LSTM, concatenate, Dense, Attention, GlobalAveragePoolinglD, Dropout, MaxPoolinglD, GRU

Input layer
input layer = Input(shape=(41, 1))

1D CNN branch

cnn_branch = ConviD(64, kernel size=3, activation='relu")(input_layer)
cnn_branch = MaxPooling1D()(cnn_branch)

cnn_branch = GlobalAveragePooling1D()(cnn_branch)

LSTM branch

1stm_branch = LSTM(128, activation="tanh', return_sequences=True)(input_layer)
1stm branch = Attention()([1lstm branch, lstm branch])

1stm _branch = GlobalAveragePoolinglD()(1stm branch)

1stm branch = tf.keras.layers.Reshape((128,))(1stm branch)

Concatenate the outputs from both branches
merged = concatenate(|cnn_branch, lstm branch]|)

https://www.unb.ca/cic/datasets/nsl.html

Dense layers with attention mechanism

attention = Dense(128, activation='tanh')(merged)

attention = tf.keras.layers.Reshape((1, 128))(attention)
attention = tf.keras.layers.Dense(1, activation='softmax')(attention)
attention = tf.keras.layers.Flatten()(attention)

attention = tf.keras.layers.Repeatvector(128)(attention)
attention = tf.keras.layers.Permute([2, 1])(attention)
attention = tf.keras.layers.Reshape((128,))(attention)

Apply attention to merged features

merged attention = concatenate([merged, attention])

dense 1 = Dense(64, activation="relu")(merged)

drop 1 = Dropout(®.1)(dense 1)

dense_2 = Dense(32, activation="relu")(drop 1)

drop 2 = Dropout(e.1)(dense 2)

dense 3 = Dense(32, activation="relu")(drop 2)

drop 3 = Dropout(@.1)(dense 3)

Qutput layer for classification

output_layer = Dense(n_outputs, activation="softmax')(dense 3)

Create the model
model = tf.keras.Model(inputs=input layer, outputs=output layer)

Compile the model
model.compile(optimizer="adam’, loss='categorical crossentropy', metrics=['accuracy'])

Figure 4: CLAM training model with 10 epochs

8 Comparison

The developed model was evaluated using the following models:

8.1 Basic Classification Models

The training accuracy of the classification models with the dataset was evaluated using
AutoML technique as shown in figure [5]

import ClassificationExperiment and init the class
from pycaret.classification import ClassificationExperiment
exp = ClassificationExperiment()

compare baseline models
best = compare models(include=['rf*, "dt', 'gbc’, "knn', 'xgboost’, 'mb*, 'Ir', 'svm'])

evaluate model(best)

Figure 5: Training basic classification models

8.2 Deep Learning Model

The training accuracy of a Convolutional Neural Network(CNN) and Long Short Term
Memory(LSTM) with the dataset is evaluated as represented in figure []

from tensorflow.keras import layers

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, Dropout,ConviD,MaxPoolingiD,Flatten
model = Sequential()

model.add(ConviD(filters=32, kernel size=4, activation="relu', input shape=(41,1)))
model.add(ConviD(filters=32, kernel size=4, activation='relu'))

model. add(Dropout(0.5))

model.add(MaxPooling1D(pool size=2))

model.add(Flatten())

model.add(Dense(160, activation="relu'))

model.add(Dense(n_outputs, activation='softmax"))

model.compile(loss="categorical crossentropy', optimizer="adam', metrics=['accuracy'])
print(model.summary())

from tensorflow.keras import layers

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, Dropout,LSTM,MaxPoolinglD,Flatten

model = Sequential()

model.add(LSTM(6,return_sequences=True,input shape=(41, 1)))

model.add(Dropout(@.5))

model.add(LSTM(4))

model.add(Dense(n outputs, activation="softmax"))

model.compile(loss="categorical crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())

Figure 6: Training CNN and LSTM models
References
https://www.tensorflow.org/tutorials/images/cn

https://www.geeksforgeeks.org/ml-handling-missing-values/?ref=1bp

https://www.tensorflow.org/tutorials/images/cn
https://www.geeksforgeeks.org/ml-handling-missing-values/?ref=lbp

	Introduction
	Requirements
	Specification
	Hardware
	Software Specification

	Python Libraries Used
	Installation
	Local Installation
	Cloud Installation

	Data Preprocessing
	Model Development
	Comparison
	Basic Classification Models
	Deep Learning Model

