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Dynamic Resource Scaling for Microservices: A
Machine Learning-driven Predictive Approach

Akshay Joshi
22137696

Abstract

In my research on ”Dynamic Resource Scaling for Microservices: A Machine
Learning-driven Predictive Approach,” the focus is on optimizing microservice-
based applications by predicting and adjusting resource needs using cloud auto-
scaling mechanisms. The machine learning models, including Multinomial Logistic
Regression and Linear Regression, are trained on historical workload data, specific-
ally the Netflix NDbench dataset.

Following the training, microservices are deployed on AWS Lambda with AWS
API Gateway and a Load Balancer for efficient management. The machine learning
outcomes categorize CPU usage into High, Normal, and Low, stored for subsequent
actions. To operationalize these predictions, a dedicated webpage is developed,
displaying machine learning results and Lambda function details through AWS
SDK.

The critical component of the research involves autoscaling by dynamically up-
dating the concurrency of the Lambda function. When the machine learning model
predicts high CPU utilization, the concurrency is increased, allowing the Lambda
function to handle a higher number of simultaneous requests. Conversely, during
low CPU usage, the concurrency is decreased to optimize resource allocation.

For an in-depth exploration of the autoscaling methodology and its integra-
tion with machine learning predictions, further details are provided in subsequent
sections.

1 Introduction

In the software development, microservices play a crucial role. Rather than construct-
ing a single large application, developers create small, specialized components known as
microservices, each dedicated to specific tasks such as user authentication, email send-
ing, or payment management. These microservices collaborate like a team, collectively
contributing to the functionality of the application. Visualize a group of efficient, spe-
cialized workers (microservices) in a company, each handling distinct tasks swiftly. Their
workload is dynamic, making it challenging to predict when they’ll be busy or idle.

To address this challenge, it becomes imperative to allocate the right resources to
these microservices at the right time. Traditional approaches involved servers reacting to
past workloads, akin to driving a car while only seeing what’s behind and not anticipating
what lies ahead. Microservices, designed for easy adjustment and independent growth,
offer scalability and efficiency. Interviews in the software/IT field revealed that 90% of
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respondents emphasized easy scaling and independent extension, while only 15% cited
the ability to reuse microservices as a primary motivator.Zhou et al. (2023)

Microservices, although providing flexibility, create variable workloads on servers,
especially during sudden spikes in usage. The conventional method of adjusting server
resources proves inefficient. This research seeks to address this inefficiency using machine
learning. The goal is to create a system capable of predicting when microservices will be
busy or idle, enabling proactive resource allocation and avoiding unnecessary expenses.
The proposed solution, termed ”Dynamic Resource Scaling for Microservices” (DRSM),
acts as an intelligent traffic manager for servers, ensuring optimal resource allocation for
incoming tasks.Hossain et al. (2023)

The key challenge is predicting future workloads and preparing servers in advance
without incurring unnecessary expenses or causing delays when additional resources are
required. The research aims to establish a predictive framework for efficient resource
scaling, enhancing company efficiency and cost savings in the long run.

My goal is to use machine learning to identify a better approach to handle this. I have
developed a system that can anticipate busy periods and provide intelligent workers with
the necessary resources in advance. By doing this, I can make sure they always have what
they need to perform at their best work and prevent wasting money on extra tools. In the
long run, I think this will improve a company’s operations and result in cost savings. But
how can I accomplish it without spending money on unnecessary instruments or holding
up their needs for additional assistance?

I have a creative method for predicting future workloads and preparing equipment
ahead of time in order to overcome this difficulty. The solution to this problem is ”Dy-
namic Resource Scaling for Microservices” (DRSM). It’s similar to having an extremely
intelligent manager overseeing the servers, ensuring they have the appropriate equipment
to complete every work. The main goals of this research are to increase programme
efficiency, reduce costs, and make it work smarter.

1.1 Research question

Research Question:- How can a microservice-based architecture with machine learning
algorithms be utilized to predict and adjust resource demands of microservices in a cloud
environment, enabling proactive and efficient autoscaling in response to dynamic traffic
on backend systems?

1.2 Research objectives

The main goal of this project is to create and put into practice a microservice-based
architecture that incorporates machine learning methods in order to forecast and modify
microservice resource demands in a cloud environment. Enabling a proactive and effective
autoscaling method that adapts dynamically to variations in backend system traffic is the
main goal. Particular objectives consist of:

1. Architectural Design: Designing a microservice-based architecture that accom-
modates the integration of machine learning algorithms for resource prediction and
autoscaling.

2. Machine Learning Model Development: Developing robust machine learning
algorithms capable of accurately predicting resource demands based on dynamic
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traffic patterns and workload variations.

3. Autoscaling Implementation: Implementing a proactive autoscaling mechanism
that leverages the machine learning predictions to dynamically adjust the allocation
of resources to microservices, both vertically (hardware resources) and horizontally
(microservice replicas).

1.3 Document Structure

This research report is divided into several sections. in 2 i have reviewed the related paper,
In secction 3 I have explain about Normalization and Classification of System Metrics
, Data Preparation , Architecture for Load Management and Prediction in Serverless
Environments , In section 4 I have talked about which machine learning model I have
used. In section 5 I have explain how I have did the end-to-end process of my research.
In section 6 I hav discuss about the case study Finally in section 7 I have successfully
answer my research question.

2 Related Work

Xu et al. (2022) examines the difficulties with load balancing and auto-scaling in cloud-
based container microservices in detail. The significance of these methods in enhancing
user performance and Quality of Service (QoS) is covered. The article discusses container
microservices, cloud-based microservices, and microservice architecture. It highlights how
load balancing and auto-scaling strategies must be integrated to get the best performance
and resource use out of microservices.

Xu et al. (2022) focuses on analysing previous research and giving an in-depth explan-
ation of the difficulties with managing load and auto-scaling in cloud-based container mi-
croservices. There are no new ideas or contributions to load balancing and auto-scaling in
this work. Rather, it gathers and evaluates already published research in the area. Real-
istic ApplicationXu et al. (2022)provides future work on load balancing and auto-scaling
hybrid capabilities, but it lacks of case studies or specific examples of real-world imple-
mentations. Comparative Analysis: Because the research does not compare various load
balancing and auto-scaling strategies, evaluating their efficacy in particular situations is
difficult. nevertheless, in contrast Xu (2022) presents CoScal, a cutting-edge multifaceted
scaling technique for microservices in cloud computing environments. To handle resource
scaling issues, it incorporates brownout approaches, vertical scaling, and horizontal scal-
ing. The advantages of each technique, such as fine-grained control, self-adaptability, and
high availability, are leveraged in this study. CoScal employs precise workload prediction
for effective resource management and a scaling technique based on reinforcement learn-
ing for adaptive decision-making. The usefulness of the suggested method for enhancing
resource scalability in cloud data centres is assessed using realistic traces and a prototype
system. Xu (2022) focuses on introducing CoScal, a novel multifaceted scaling solution
that employs reinforcement learning-based decision-making to tackle the resource scaling
issue in microservices. In order to provide adaptability in dynamic contexts, the study
provides a novel method of merging multiple scaling strategies and utilising reinforcement
learning for optimised decision-making. To ensure practical relevance, the paper offers
assessments using realistic traces from Alibaba and a prototype system. As though Xu
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(2022) draws attention to the differences from earlier work; yet, a more thorough com-
parison with current scaling methodologies and algorithms would be beneficial.

Comparison and Conclusion: While they both discuss scaling issues with cloud-
based microservices, the papers’ contributions and areas of attention differ. Xu et al.
(2022) gives a thorough analysis of the research that has already been done on load bal-
ancing and auto-scaling without proposing any new methods. On the other hand,Xu
(2022) presents CoScal, a revolutionary multifaceted scaling technique that makes use of
reinforcement learning to make decisions and accurately estimate workloads. Xu (2022)is
more beneficial because of its creative methodology and useful analysis. Both papers
advance our knowledge of microservices scaling strategies and offer suggestions for future
study and development directions.

Papers offer original strategies to deal with particular problems in their fields. Chung
(2023) concentrates on task-based parallel applications’ load balancing, while Xu (2022)
addresses the scaling of resources in microservices.

Both publications use assessments and experiments to demonstrate the advantages of
their suggested methodologies. To show how effective their approaches are, they provide
the outcomes of their experiments. Both articles emphasise how critical it is to base
evaluations on actual traces or benchmarks and take into account real-world events.

Domain and Problem Scope:
Chung (2023): It focuses on load balancing in distributed memory machines task-

based parallel applications. Xu (2022): In cloud computing environments, it deals with
resource scaling in microservices.

Approach and Techniques: Chung (2023): The authors suggest a proactive method
of load balancing that makes use of prediction models and task characterization to inform
balancing strategies as they execute. Xu (2022) In order to optimise resource scaling for
microservices, the authors present a comprehensive scaling approach called CoScal, which
includes brownout approaches, vertical scaling, and horizontal scaling.

Methods and Algorithms: Chung (2023): The proactive load balancing approach
in Xu (2022) is based on characterizing task features, learning load values, and predict-
ing execution times. Xu (2022): In CoScal makes use of scaling methods based on rein-
forcement learning to maximise the performance of microservices according to different
criteria.

Use Cases: Chung (2023): Micro-benchmark experiments and a practical applica-
tion of adaptive mesh refinement simulation are included in the evaluation Xu (2022)
The evaluation is performed using a prototype system and realistic traces derived from
Alibaba.

Conclusion:-Both papers address load balancing and resource scaling issues and of-
fer innovative solutions to their respective fields. As though Chung (2023) suggests a
proactive method for parallel task applications, Xu (2022) presents a complex method of
microservices scaling in cloud environments. Both papers use experiments to show the
effectiveness of their methods, but they each have certain aspects that might be improved
upon, such going into greater detail on how to implement them, talking about their lim-
itations, and doing thorough comparisons with other methods already in use. All things
considered, both articles make significant contributions to their domains and establish
the groundwork for future study and developments in load balancing and microservices
scalability.
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On the other hand, Goli et al. (2021) introduces Waterfall, a predicted autoscaling
method for microservice applications based on machine learning. It makes use of data-
driven performance models to forecast how microservices will behave and interact with
one another. The strategy is to minimise the amount of activities needed for autoscaling
while maintaining application performance. Empirical evidence of Waterfall’s efficacy in
comparison to an industry-standard autoscale is provided by the evaluation of the system
using Teastore.

The primary advantages of waterfall include its consideration of mutual implications
on other services and its use of machine learning models for precise and effective autoscal-
ing decisions. Waterfall can minimise unneeded load shifts and bottlenecks by optimising
autoscaling activities through data-driven forecasts. An accurate and useful appraisal of
Waterfall’s performance is given by using Teastore for evaluation.

There are certain restrictions on the paper. Its evaluation is restricted to a single
microservice application, raising concerns about its generalizability to other contexts,
and it lacks precise details on the specific machine learning algorithms used to train the
performance models. Furthermore, the constraints and possible difficulties of applying
Waterfall in practical microservice systems are not covered in detail in the study.

Goli et al. (2021) offers a viable method for using data-driven models and machine
learning to autoscale microservice applications. To test its efficacy in many contexts
and tackle potential implementation obstacles, more research is required. Nevertheless,
there is a lot of room for improvement in the resource management and overall efficiency
of micro-service-based systems thanks to Waterfall’s capacity to forecast behaviour and
optimise autoscaling processes.

Luo et al. (2022) discusses Madu, a unique tool that enhances the functionality of
microservice applications. It accomplishes this by projecting the amount of work that
each microservice will require and then allocating resources appropriately. Using actual
data gathered from Alibaba, the researchers trained Madu to forecast each microservice’s
workload using machine learning techniques.

Madu’s proactive approach means that it anticipates and prepares for tasks ahead
of time, which streamlines operations. It makes use of application-specific data and
intelligent algorithms to optimise resource management and accelerate microservice de-
velopment.

But Madu is not without its restrictions. Further research is required to enhance
it because it is unable to achieve perfect resource efficiency given specific needs. It’s
also difficult to determine how well Madu actually performs in comparison to other tools
because the researchers didn’t compare it with any other similar tools. Finally, the study
mostly discusses Madu’s technical aspects with little to no discussion of how it would
function in practical settings. Madu has the ability to improve the proactive scaling
of microservices. It can expedite services and enhance cluster resource utilisation. To
completely comprehend its efficacy and the range of scenarios in which it can be employed,
more research is required.

Xu et al. (2022a) - ”Difficulties with Auto-Scaling and Load Balancing in Cloud-Based
Container Microservices”:

offers a thorough analysis of previous research on microservices load balancing and
auto-scaling. lacks creative ideas or fresh insights on the field. Although load balancing
and auto-scaling hybrid capabilities are described, there are no case studies or real-world
examples provided. does not contrast various auto-scaling and load balancing methods.
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Goli et al. (2021) - ”CoScal: A Multi-Faceted Scaling Approach for Microservices in
Cloud Computing”:

presents CoScal, a cutting-edge multifaceted scaling strategy that blends brownout,
vertical, and horizontal scaling methods. makes use of reinforcement learning for flexible
decision-making and precise workload forecasting for effective resource allocation. uses
realistic traces and a prototype system to evaluate the suggested method and show how
well it improves resource scalability. offers a novel strategy with useful assessments, but
a more thorough comparison with current methods is required. Chung (2023) - ”Load
Balancing in Task-Based Parallel Applications”:

focuses on load balancing in distributed memory machines task-based parallel applic-
ations. suggests a proactive method for runtime balancing methods that makes use of
task characterisation and prediction models. employs micro-benchmarks and a practical
application of adaptive mesh refinement simulation to assess the methodology. Goli et
al. (20 21) - ”Waterfall technique: A Machine Learning-Based Predictive Auto-Scaling
Approach for micro service architecture Applications” :

introduces Waterfall, a predictive auto-scaling method for microservices based on
machine learning. utilises data-driven performance models to forecast the behaviour of
microservices and their reciprocal effects on other services. uses Teastore to assess Wa-
terfall and compares its efficacy to an industry-standard autoscale. confines examination
to a single microservice application and lacks comprehensive details of the algorithms
used in machine learning utilised. Luo et al. (2022a) - ”Madu: A Tool for Improving
Microservice Applications”:

explains Madu, a tool that predicts workload and makes proactive resource adjust-
ments to improve microservice applications. teaches Madu how to forecast each mi-
croservice’s workload using intelligent computer algorithms, or machine learning. has the
ability to speed up microservices and increase resource efficiency, but it can’t be directly
compared to other tools of a similar kind or provide insights from actual deployments.

The reviewed papers highlight the importance of dynamic resource scaling for mi-
croservices in cloud environments to ensure optimal performance and resource utilisa-
tion. Two publications that provide innovative predictive strategies for auto-scaling mi-
croservices driven by machine learning are Xu et al. (2022b) and Goli et al. (2021).

Xu et al. (2022b) presents CoScal, a multifaceted approach to scaling that combines
different methods with reinforcement learning to enable adaptive decision making. The
assessments show how well it works to enhance microservices’ resource scaling.

The difficulties associated with dynamic resource scalability for microservices are po-
tentially addressed by both publications. Additional thorough comparisons and practical
implementations are required to confirm their efficacy in various contexts. Predictive
techniques driven by machine learning have the potential to transform resource manage-
ment for microservices in cloud-based systems as they advance.

Fard et al. (2020) explains the difficulties in implementing microservices, which are
tiny programme elements. The RAM and CPU will all be covered in this article based on
the input value. It draws attention to the issue of resource inefficiency, which can result in
capacity waste and sluggish response times. The study advises organising and managing
microservices more effectively by utilising contemporary technologies like Kubernetes. It
presents the ”Least Waste Fast First” scheduling technique, which distributes resources
effectively by resembling the solution to a problem. This novel approach demonstrated
superior performance in terms of scheduling speed, CPU performance, execution time,
and resource utilisation when compared to prior algorithms.
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Wang et al. (2020) Elastic scheduling, a clever scheduling technique that works well
for managing activities in applications, is introduced in this study. It guarantees that
work is completed without wasting any resources and on schedule. It is unique in that it
considers jobs that must be completed sequentially (streaming workloads). This system’s
effective use of virtual machines also contributes to financial savings. They put it to the
test against other systems and discovered that it performs better in terms of completion
of tasks, adaptability to changes, and speed.

3 Methodology

My research plan is heavily influenced by what other experts have studied. I looked at
various studies, like the ones by Luo et al. (2022) and Goli et al. (2021), to understand
the challenges of making sure microservices in the cloud always have the right amount
of resources they need. So I decided to organize my computer programs in a way that
allows them to work together smoothly. I got this idea from Luo et al. (2022) work
on a system called CoScal. It helps use different techniques to manage their resources
effectively. I wanted to use machine learning to predict when Lambda service would
need more or less resources according to the pervious data. This idea comes from Chung
(2023) work on a system called Changing In distributed memory machines, transitioning
load balancing: shifting from reactive to proactive for task-based parallel applications
that by predicting these needs, I can make research efficient and proactive in managing
their resources. Once I’ve got these predictions, I’m planning to set up a system that can
automatically adjust the resources of my programs based on these predictions. To make
sure my approach works well, I’m going to test it with different workloads, using Netxfilx
NDbench which is benchmarking tool will provide the different dataset each time which
help to evaluation method. This testing phase will help me see how effective my system
is compared to what’s already out there in the industry.I have also used this data-set to
train my machine learning model. This will provide the csv of CPU utilization , Network
In , Network Out , And Memory details in section 3.1 I will explain how I was worked
with dataset to normalize the data-set.

3.1 Normalization and Classification of SystemMetrics(Dataset)

Dataset Preparation: The dataset utilized in this research is to be in CSV format, contain-
ing metrics such as CPU utilization, network activity, and memory usage. Specific column
names, including ’CPUUtilization Average,’ ’NetworkIn Average,’ ’NetworkOut Average,’
and ’MemoryUtilization Average,’ are expected. The normalization process involves con-
verting network activity to percentages of the specified network capacity. To calculates
the sum for each metric (CPU, Memory, Network In, Network Out) to facilitate nor-
malization. The entropy for each metric using a logarithmic function, determining the
weights of CPU, Memory, Network In, and Network Out. Entropy serves as a measure of
uncertainty or disorder in each metric, contributing to the weighting scheme. Normalized
dataset is produced by applying the calculated weights to each metric and considering
the logarithmic normalization. The final target values for each data point are computed
as a weighted sum of normalized metrics. Class labels (low, normal, high) are assigned
based on predetermined thresholds for the final target values. Instances falling below
the low threshold are classified as ’Low,’ those between the low and high thresholds as
’Normal,’ and those exceeding the high threshold as ’High.’ The resulting normalized
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dataset, along with final target values and assigned class labels, is written to an output
file named ”normalized dataset.csv.” which will I used for further to use to trained the
ML models.

3.2 Data Preparation

The dataset, which contains variables like CPU utilisation, network in/out, RAM, and
the target variable ”final target,” is loaded in the first stage. The ’network in’ and ’net-
work out’ characteristics are normalised to a range of 0 to 99 using min-max scaling.The
dataset’s features’ minimum (min) and maximum (max) values. The range of every char-
acteristic is represented by these values. A function named series to supervised is used
to make LSTM modelling easier. This function transforms the time series data into a
supervised learning format, introducing features for each variable to predict the next
time step. The dataset is then split into training and testing sets, with 59 data points
reserved for testing purposes. An LSTM model is constructed using the Keras library.
The model architecture includes an LSTM layer with 100 units and a Dense layer with
1 unit for regression output.The model is built using the mean absolute error (MAE)
loss function and the Adam optimizer. To identify patterns and relationships in the time
series data, the LSTM model is trained for a total of 200 epochs with a batch size of 128
on the training dataset. Plots are used to visualise the training and testing loss history,
providing a study of the model’s performance. Next, the trained LSTM model is used to
forecast the ”final target” for the test set. Plots are used to assess the model’s perform-
ance by displaying the ”final target” values that are expected and real. The inverse scale
to which the actual values and the projections are compared is the original data range.
The model’s accuracy is evaluated using the Root Mean Squared Error (RMSE) on the
test set.

3.3 Architecture for Load Management and Prediction in Server-
less Environments

The architecture begins with the implementation of a machine learning model dedicated
to workload prediction. Leveraging historical data and relevant parameters, this model
forecasts the anticipated load on AWS Lambda functions. An AWS Lambda function
is deployed to function as an API endpoint. This API enables users to retrieve specific
data or trigger actions associated with the application.API is crafted specifically for load
testing the AWS Lambda function. This API plays a pivotal role in simulating diverse
levels of demand, ensuring the robustness and efficiency of the system under varying
conditions.To gain insights into the performance and health of the load balancer, Cloud-
Watch is intricately configured. This monitoring component provides real-time analytics
on traffic, aiding in the optimization of resource allocation. The API Gateway acts as
a central entry point for APIs, facilitating the creation, publication, and management
of secure interfaces. It acts as a bridge, connecting users with AWS Lambda functions
seamlessly. S3 bucket serves as a repository for storing code artifacts. This ensures
that AWS Lambda functions consistently access the most recent code versions when in-
voked, promoting system stability.Dynamic adjustment of Lambda function concurrency
is achieved through the Auto Scaler. Informed by predictions from the machine learning
model, this component optimizes resource utilization, enhancing overall system efficiency.
Web application is developed to present detailed insights into AWS Lambda functions
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Figure 1: Architecture diagram

and display results from machine learning predictions. Users interact with the application
to make informed decisions regarding concurrency scaling. AWS SDK integration and
communication with various AWS services are facilitated by the AWS SDK. The web ap-
plication employs this toolkit to interact with Lambda, API Gateway, and CloudWatch,
ensuring a cohesive and efficient system.Al Qassem (2022) 1 (2019) Goodman (2011)
Mao (2020) Blog (2020)

4 Design Specification

A. Multinomial Logistic Regression Model

This modeling approach is to the dynamic nature of AWS Lambda function concurrency,
which exhibits various states. Multinomial Logistic Regression’s flexibility in handling
multiple categories offers a robust framework for modeling the intricate relationships
between predictor variables and diverse AWS Lambda concurrency states.

The interpretability derived from odds ratios adds a valuable dimension, allowing for
a nuanced understanding of how predictor variables influence the likelihood of events
within each category. This interpretative capability proves essential in discerning the
factors that drive changes in AWS Lambda concurrency. The predictive power of the
Multinomial Logistic Regression model becomes instrumental in anticipating shifts in
AWS Lambda function concurrency when presented with new data.

The model’s ability to evaluation, checking for goodness of fit through statistical tests,
ensures its reliability in representing patterns within the data accurately. Importantly,
Multinomial Logistic Regression seamlessly integrates into the broader objective of incor-
porating machine learning predictions into AWS Lambda concurrency management. It
becomes a modeling relationships between predictor variables, such as workload metrics,
and the multiple states of AWS Lambda concurrency. Böhning (1992)
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Multinomial Logistic Regression serves as a classification method designed for simpli-
fying logistic regression into multiclass problems. The model assigns a category to each
response variable, comparing it with the target category. For instance, when dealing with
g categories, the model generates g − 1 logistic regression models. In this scenario, with
three CPU usage target groups (High, Normal, and Low), I employ two logic models as
shown below:

log
Pr(Y = GroupHigh)

Pr(Y = GroupNormal)
= α0 + β01X1 + β02X2 + . . .+ β0kXk

log
Pr(Y = GroupLow)

Pr(Y = GroupNormal)
= α1 + β11X1 + β12X2 + . . .+ β1kXk

The output provides prediction scores for each class, and the class with the highest
score determines the final classification. I evaluate the predictive accuracy using the
macro-average F1 score, as indicated below:

MacroAverageF1Score =
1

k

k∑
k=1

F1k

B. Linear Regression Model

The Linear Regression Model, as applied in your research Ajila and Bankole (2016),
serves as a crucial tool for establishing a quantitative relationship between variables. In
the context of your study, the model expresses the estimation (y) of observations based on
a linear equation that considers the vector of observed data records (X). The coefficients
(β and α) are determined through a process of resolving the equation for linear regression,,
prior tasks (y(i - 1), y(i - 2))

The usefulness of the Linear Regression Model in your research lies in its ability to
provide a mathematical representation of the relationships between variables, offering in-
sights into how changes in the independent variables (X) influence the dependent variable
(y). By assessing the accuracy of the model using the root mean square error (RMSE)
metric, you gain a quantitative measure of how well the model’s predictions align with
the actual numeric targets.

The average magnitude of the residuals—that is, the variations between the expected
and actual values—is effectively quantified by the RMSE measure. A smaller RMSE
denotes a better fit between the expected and actual values, indicating that the model’s
estimations are more accurate.

The Linear Regression Model establishes a relationship between variables by fitting a
linear equation to observed data. In this context, y represents the estimation of obser-
vations, and X is the vector of observed data records. Coefficients β and α are obtained
by working out a linear regression equation using the workloads from prior iterations,
y(i− 1), y(i− 2), and so on:

y = βX + α

I assess the accuracy using the standard root mean square error (RMSE) metric, which
measures the residual between predicted numeric targets and actual numeric answers:
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RMSE =

√√√√ 1

N

N∑
i=1

(actualTargeti − predictedTargeti)
2

5 Implementation

In this comprehensive implementation, I detail the end-to-end process of building and
deploying a scalable AWS Lambda system integrated with a machine learning-driven
autoscaling mechanism. The technology stack includes Node.js, Express.js, AWS RDS
(MySQL), AWS Lambda, AWS API Gateway, AWS CLI, AWS Load Balancer, AWS
SDK, Keras (for machine learning models), and more.

The development of the Node.js User API is a foundational aspect. Node.js and
Express.js are chosen as the building blocks for constructing the User API, while AWS
RDS (MySQL) serves as the selected database storage solution. The development process
includes local testing before deploying the application to AWS Lambda, facilitated by
the Serverless framework. The configuration of AWS CLI with access and secret keys is
pivotal for seamless deployment, overcoming challenges through dedicated research and
development efforts.

Integration with AWS API Gateway and Load Balancer plays enhancing scalability.
AWS API Gateway triggers AWS Lambda functions, providing users with an accessible
endpoint. Load balancing is introduced to optimize AWS Lambda’s serverless archi-
tecture, ensuring efficient performance. The exploration of autoscaling AWS Lambda
with concurrency becomes paramount in this journey. Reference to AWS documentation
guides the integration of AWS Load Balancer, emphasizing the necessity of updating
concurrency based on machine learning predictions.

Handling concurrency programmatically involves leveraging the AWS SDK to dynam-
ically update concurrency based on predicted workloads from the machine learning model.
The machine learning aspect involves training two models, Multinomial Logistic Regres-
sion and Linear Regression, using the NDbench Netflix dataset. Keras and predefined
libraries play a crucial role in model selection and training. Evaluation metrics, such as
Root Mean Square Error (RMSE), are employed to assess model accuracy, with results
documented in a CSV file for further analysis.

The prediction model is rigorously tested using AWS workload data, and a web ap-
plication is developed using the AWS SDK for monitoring lambda function details and
machine learning results. A dedicated file is created for updating the concurrency of
the Lambda function, triggered via the console for dynamic scaling based on machine
learning predictions. The final touch involves the development of a web application for
monitoring and action. This application displays Lambda function details and machine
learning results, enabling users to monitor system activity and receive instructions on
updating Lambda function concurrency.

This end-to-end process showcases the seamless integration of various technologies
and methodologies, highlighting the synergy between Node.js development, AWS ser-
vices, machine learning, and dynamic scaling. Each phase contributes to the overall
robustness and efficiency of the system, providing a comprehensive solution for building
and managing a scalable AWS Lambda system integrated with machine learning-driven
autoscaling.

Building and Scaling AWS Lambda with Machine Learning Integration:-
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A Comprehensive Journey In the creation and scaling of The AWS Lambda system, I
employed a diverse technology stack, predominantly leveraging Node.js and Express.js
to develop a user API. This API facilitates interactions with MySQL database hosted
on AWS RDS. Using this api user can perform the curd operation via postman .The
application was initially developed locally for Lambda functions, later deployed to AWS
using Serverless, a framework streamlining REST API deployment.

Serverless Deployment and AWS CLI Configuration The deployment journey
wasn’t without challenges. While setting up AWS CLI with access and secret keys, I
encountered hurdles during the deployment of the Node.js app to AWS Lambda after
research and development efforts eventually led to successful deployment. AWS API
Gateway was employed to trigger Lambda functions, offering users an accessible end-
point. To enhance scalability, I integrated an AWS Load Balancer with Lambda services,
configuring it for two availability zones.

Autoscaling AWS Lambda with Concurrency The quest for scalability led us to
explore autoscaling Lambda functions, discovering insightful AWS documentation on the
subject. Delving deeper into concurrency and its workings, I found valuable resources, on
AWS Lambda Provisioned Concurrency Autoscaling. The article guided us on updating
the concurrency of Lambda functions programmatically, a crucial aspect for reducing cost
and latency.

AWS SDK Exploration for Concurrency Management To dynamically update
instances based on predicted workloads from The machine learning model, I delved into
AWS SDK. Thorough exploration of the SDK, coupled with insights from the official
documentation, empowered us to programmatically update Lambda function concurrency

Machine Learning Model Training For predicting AWS workloads, I employed
the NDbench Netflix dataset, training two distinct models: Multinomial Logistic Regres-
sion and Linear Regression. Keras, with its libraries such as MinMaxScaler, mean squared error,
Sequential, and LSTM, played a pivotal role in model training. Both models underwent
evaluation using Root Mean Square Error, and their comparison was documented in a
CSV file generated by a dedicated notebook, compare.py.

Prediction Model Testing and Web Application Development A separate
notebook was created to test the prediction model using AWS workload data. Simultan-
eously, a web application was developed using AWS SDK to monitor Lambda function
details and machine learning results. The integration of Lambda function details and the
trained model using pickle files facilitated comprehensive monitoring of the entire system.

Dynamic Concurrency Management and Web Application for Action Con-
sidering the CPU usage categories—low, normal, and high—I developed a file to predict
AWS workload. The predictions influenced the updating of Lambda function concur-
rency. To monitor this dynamically, I’ll utilized AWS SDK to create a web application
that displayed Lambda function details and machine learning results. Additionally, a
dedicated file allowed us to update Lambda function concurrency through the console.

In essence, The journey encompasses the intricacies of building, deploying, and man-
aging a scalable AWS Lambda system integrated with machine learning-driven autoscal-
ing. This detailed account serves as a roadmap for developers and researchers aiming to
implement similar systems in their projects.
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Figure 2: F1 socre of predection Model

6 Evaluation

The assessment centers around gauging the effectiveness of approach in provisioning re-
sources . To simulate realistic workloads, I generate workload scenarios using an industry
benchmark on a deployed in the AWS cloud. As the machine learning model is pivotal for
scaling actions, both in and out, I’ll conduct thorough validations to ensure the accuracy
of these models. The evaluation criteria encompass measuring prediction delays, respons-
iveness to workload fluctuations, and the overall efficiency in provisioning instances.

6.0.1 Experiment / Case Study 1: Machine Learning Model Accuracy

Rationale: The accuracy of machine learning models in predicting workload is crucial
for effective resource provisioning. I assess this through F1 score evaluation.

Results: The F1 score, ranging from 0 to 1, provides a comprehensive measure of
model accuracy. Models achieved a score of 1 for all three classes—low, high, and normal.
The confusion matrix illustrates the percentage of correct and incorrect predictions for
each class.

6.0.2 Experiment / Case Study 2: Linear Regression Model Residuals

Rationale: I delve into the residuals of Linear Regression model to understand its
accuracy and potential overestimation or underestimation.

Results: The histogram of residuals indicates the model’s performance. Positive
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Figure 3: Linear Regression Model

residuals imply overestimation, negative residuals suggest underestimation, with the mean
centered around zero. The Root Mean Square Error (RMSE) for model is calculated as
1.9426, further affirming its accuracy.3

6.0.3 Experiment / Case Study 3: Training and Prediction Times

Rationale: I evaluate the efficiency of machine learning models by measuring the time
required for training and prediction.

Results: 1 presents the time measurements for these phases. Times are recorded for all
four folds of each algorithm. Predictions, performed every 10 minutes, exhibit efficiency
in deployment.

Training Duration (min)
Regression 06.24
Multiclass 08.25
Prediction Duration (min)
Average 7.45

Table 1: COLLECTED TIME FOR TRAINING, VALIDATION AND PREDICTION

6.0.4 Experiment / Case Study 4: Dynamic Workload Forecasting and Re-
source Management

Rationale: Focus shifts to practical implementation, where monitor CPU usage, predict
workload, and dynamically manage resources based on predictions.

Results: The Linear Regression model successfully forecasts workload ten minutes
ahead. The ManageResource AWS Lambda function responds to predictions—adding
resources for ”High” workloads and terminating instances for ”Low” workloads.
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Figure 4: Comparison predicted workload with observed values

6.0.5 Comparison with Threshold-based Autoscaling

I compare machine learning-based approach with traditional threshold-based autoscaling
in two scenarios.

1. Threshold-based Autoscaling (Orange Line): Resources are added or removed based
on a fixed threshold. The workload exceeds the threshold at Time 25.

2. Method based on Machine Learning (Blue Line): The proactive approach foresees
shifts in workload and adds resources as needed. At Time 22, the burden falls below
the threshold. 4

7 Conclusion and Future Work

In wrapping up exploration of blending machine learning with cloud computing, I achieved
a how I handle the scalability, efficiency, and cost-effectiveness of cloud systems. Through
a careful set of experiments, I shown the effectiveness of our approach in managing the
resources that power the backend of cloud services.

In this paper study is the efficiency boost from using machine learning models. These
models, trained on standard industry benchmarks, accurately predicted changes in work-
load. This meant I could scale resources in and out precisely, adapting to different
workloads. This adaptability makes system a robust solution for the ever-changing needs
of cloud services.

The implemented solution successfully demonstrated the effectiveness of using ma-
chine learning for predicting resource demands. The models, including Multinomial Lo-
gistic Regression and Linear Regression, were trained on the NDbench Netflix dataset.
Through rigorous evaluation and comparison, these models showcased reliable predic-
tions, as indicated by low Root Mean Square Error (RMSE) values.

The autoscaling architecture, integrated with AWS Lambda allowed dynamic adjust-
ments based on the predictions. Concurrency management, handled programmatically
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using the AWS SDK, ensured that resources scaled up or down seamlessly, maintaining
optimal performance.

A web application was developed for monitoring system activity and providing a user
interface for updating Lambda function concurrency. This not only facilitated real-time
insights into the system’s status but also offered a practical means for users to take
manual actions based on predictions.

The experiment comparing the machine learning-driven approach with a traditional
threshold-based autoscaling method demonstrated the superiority of our solution. The
system’s proactive nature, guided by machine learning predictions, led to more timely
resource adjustments, resulting in lower overall costs compared to the default autoscaling
method.

Future Work
One future direction is to improve predictive models. Exploring more advanced ma-

chine learning techniques and adding more data sources could make models even better
at understanding complex workload patterns.

Putting the solution into action in real-world settings is a crucial next step. Testing
it in a live environment will tell us how well it performs, how reliable it is, and if it’s
practical for everyday use. Teaming up with industry partners will give us a sense of how
well the system works in specific business situations.

Digging deeper into cost-efficiency is another exciting area to explore. Analyzing the
costs under different cloud service models, pricing setups, and configurations will give
us a full picture of the economics of our approach. Figuring out ways to dynamically
optimize costs as resource needs change will make for a more economically sustainable
cloud system.

Looking ahead, I can extend our adaptive monitoring. Creating more advanced ways
to keep an eye on changing workloads will make our system even more responsive. Ex-
ploring the possibility of automated responses to predicted scenarios could in a new era
of self-adjusting resource management.

Security is a big deal in the world of cloud computing. Future work should focus on
building strong security measures into the system. Ensuring that data and resources stay
safe and available in a predictive resource system is crucial for its widespread use.

In simple terms, this study is just the beginning of exploring smart and flexible cloud
computing. As technology keeps advancing, there’s more to discover in making resource
management in the cloud better. The combination of machine learning and cloud com-
puting has the potential to create a more efficient, cost-effective, and reliable digital
infrastructure, and my work plays a big role in that journey.
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