

Configuration Manual

MSc Research Project Cloud Computing

Naaga Barani Govindan Venkatraj Student ID: x22104038

School of Computing National College of Ireland

Supervisor: Ahmed makki

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Naaga Barani Govindan Venkatraj
Student ID:	x22104038
Programme:	Cloud Computing
Year:	2023
Module:	MSc Research Project
Supervisor:	Ahmed makki
Submission Due Date:	14/12/2023
Project Title:	Configuration Manual
Word Count:	430
Page Count:	10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Naaga Barani Govindan Venkatraj
Date:	14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only		
Signature:		
Date:		
Penalty Applied (if applicable):		

Configuration Manual

Naaga Barani Govindan Venkatraj Student ID: x22104038

1 Introduction

The Configuration Manual contains all the instructions for reproducing the study and its findings on a local environment and the Azure ML cloud platform. This manual provides thorough information about the system specs required for running the program locally, the source of the dataset, the Python machine learning packages used, the process of creating the cloud environment using Azure SDK v2, and the execution model of the Azure pipeline for the project.

2 System Specifications

Hardware Configuration for the local run:

- Processor: Intel 9th Gen Core i7-9750h @3.6 GHz
- RAM: 16 GB DDR4 RAM 3200MHz
- Storage (SSD): 512GB
- Operating System: Windows 10, 64-bit

Software Packages for the local run:

- Python 3.8
- Anaconda Navigator 2.3.2
- PyCharm IDE Community Edition 2021.3
- Jupyter Notebook

3 ML Packages

The subsequent machine learning packages were installed on the local system for early code development before migration to the cloud. To simplify the process of setting up the environment and installing packages, a requirements.txt file was provided for the project.

To execute the command on a local computer, utilise the following instruction in the Windows terminal:

Create a conda environment using the configuration file "environment.yml" by using the command "conda env create -f config/environment.yml".

4 Environment Setup – Package Versions

```
blis==0.4.1
certifi==2021.10.8
charset-normalizer==2.0.7
click==8.0.3
cycler==0.11.0
cymem==2.0.6
fonttools==4.28.1
ftfy==6.0.3
idna==3.3
joblib==1.1.0
kiwisolver==1.3.2
matplotlib==3.5.0
murmurhash==1.0.6
nltk==3.6.5
numpy~=1.21.6
packaging==21.2
pandas==1.3.4
Pillow==8.4.0
plac==0.9.6
preshed==3.0.6
pyparsing==2.4.7
python-dateutil==2.8.2
pytz==2021.3
regex==2021.11.10
requests==2.26.0
scikit-learn==1.0.1
scipy==1.7.2
seaborn==0.11.2
setuptools-scm==6.3.2
six==1.16.0
spacy==2.2.0
srsly==1.0.5
thinc==7.1.1
threadpoolctl==3.0.0
tomli==1.2.2
tqdm==4.62.3
urllib3==1.26.7
wasabi==0.8.2
wcwidth==0.2.5
wordcloud==1.8.1
Flask==1.1.2
Flask-Bootstrap==3.3.7.1
```

5 Dataset

The data collection process involves gathering the tweets from the Twitter API and Tweepy libraries in addition to the Kaggle dataset.

Link: https://www.kaggle.com/datasets/ywang311/twitter-sentiment/data

6 Azure ML Configuration

🛓 Download config.json 📋 Delete	
∧ Essentials	JSON View
Resource group	Studio web URL
<u>my_mlops_prj</u>	https://ml.azure.com?tid=6edb49c1-bf72-4eea-8b3f-a7fd0a25b68c&ws
Location	Container Registry
East US 2	a33b8aa8e3145c4b23f4d1186706e6c
Subscription	Key Vault
Azure for Students	dptweets2928915759
Storage	Application Insights
dptweets4734460434	dptweets9365265852
	MLflow tracking URI azureml://eastus2.api.azureml.ms/mlflow/v1.0/subscriptions/34a65394

Figure 1: Azure Account Details

[e] my_mlops_prj				×
	+ Create Manage view 🗸 📋 Delete resource group 🕐 Refresh	↓ Export to CSV 😚 Open query	$ $ \oslash Assign tags \rightarrow Move \checkmark	
() Overview	Filter for any field Type equals all X Location equals all 3	≺ ⁺ → Add filter		
Activity log	Showing 1 to 8 of 8 records. Show hidden types	No grouping	↓ == List view	\sim
Access control (IAM)	Name 1	Туре ↑↓	Location 14	
🛧 Resource visualizer	a33b88aa8e3145c4b23f4d1186706e6c	Container registry	East US 2	••••
🗲 Events	Application Insights Smart Detection	Action group	Global	
Settings	L dp-tweets	Azure Machine Learning workspace	East US 2	
Deployments	dptweets2928915759	Key vault	East US 2	
	dptweets4734460434	Storage account	East US 2	
Security	dptweets6220534390	Log Analytics workspace	East US 2	
Deployment stacks	dotweets9365265852	Application Insights	East US 2	•••• •

Figure 2: Azure ML Resource Group

azureml-blobstore-a33b88aa-8e31-45c4-b23f-4d1186706e6c				×		
	↑ Upload 合 Change access level	<mark>∵) Refresh</mark> 🛍 Delete ≓ Change tie	er 🔗 Acquire lease	o ^{c7} Break lease ●	View snapshots	
Overview	Name	Modified	Access tier	Archive status	Blob type	Siz
Diagnose and solve problems	azureml					
Access Control (IAM)	data1					
Settings	🗌 📜 data2					
 Shared access tokens 	📄 📩 dep_data					
Access policy	models					
Properties	📄 📩 rand_data					
() Metadata	📄 🚞 titanic					
	tw-data					
	depressive_tweets.csv	12/13/2023, 6:19:06 .	Hot (Inferred)		Block blob	5.4
	processed_data.csv	12/12/2023, 4:34:29 .	Hot (Inferred)		Block blob	4.2
	📄 📄 random_tweets.csv	12/13/2023, 6:19:14 .	Hot (Inferred)		Block blob	149

Figure 3: Azure Blob Storage

Figure 4: Open Notebook Instance.

cpu-cluster-ml 🔅

Last operation Stopped due to being idle at Dec 13, 2023 8:18 PM: Succeeded Virtual machine size

Standard_D4s_v3 (4 cores, 16 GB RAM, 32 GB disk)

Processing unit CPU - General purpose

Estimated cost \$0.19/hr (when running)

Additional data storage

Applications JupyterLab Jupyter VS Code (Web) PREVIEW

Created on 11/12/2023, 09:40:30 SSH access Disabled

Private IP address

Figure 5. Compute Instance for the notebook

```
1 import os
2 import requests
3 import tempfile
4 import azureml.core
5 from azureml.core import Workspace, Experiment, Datastore
6 from azureml.widgets import RunDetails
7
8 # Check core SDK version number
9 print("SDK version:", azureml.core.VERSION)
```

SDK version: 1.51.0

Figure 6. Import Azure SDK

```
1 from azureml.pipeline.core import Pipeline
2 from azureml.pipeline.steps import PythonScriptStep
3 
4 print("Pipeline SDK-specific imports completed")
/
```

Pipeline SDK-specific imports completed

Figure 7. Import Azure Pipeline-specific SDK

```
ws = Workspace.from_config()
   1
   2
      print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n')
   3
   4
       # Default datastore
   5
       def_blob_store = ws.get_default_datastore()
      # The following call GETS the Azure Blob Store associated with the workspace.
   6
   7
       def_blob_store = Datastore(ws, "workspaceblobstore")
     print("Blobstore's name: {}".format(def_blob_store.name))
   8
 \checkmark
dp-tweets
my_mlops_prj
eastus2
34a65394-13fc-43ed-8e03-a0f81df6e347
Blobstore's name: workspaceblobstore
```

Figure 8. Azure user workspace configuration

```
from azureml.core import Dataset
from azureml.data.data_reference import DataReference
tweet1 = "./data/depressive_tweets.csv"
tweet2 = "./data/random_tweets.csv"
modelsvm = "./models/model_svm1.pkl"
#Uploading Depressive Tweets
with open(tweet1, "r") as f:
   # get_default_datastore() gets the default Azure Blob Store associated with the workspace.
   # Here we are reusing the def_blob_store object we obtained earlier
    def_blob_store.upload_files([tweet1], overwrite=True)
print("Depressive Tweets: Upload call completed")
#Uploading Random Tweets
with open(tweet2, "r") as f:
   # get_default_datastore() gets the default Azure Blob Store associated with the workspace.
   # Here we are reusing the def_blob_store object we obtained earlier
    def_blob_store.upload_files([tweet2], overwrite=True)
print("Random Tweets: Upload call completed")
```

Figure 9. Dataset upload to Azure Blob Storage

```
1 cts = ws.compute_targets
2 for ct in cts:
3 print(ct)

x221040381
cpu-cluster
cpu-cluster-ml
```

Figure 10: Check Available compute targets

```
1
     from azureml.core.compute import ComputeTarget, AmlCompute
      from azureml.core.compute_target import ComputeTargetException
  2
  3
      # Attempts to retrieve an existing compute target with the specified name
  4
  5
      aml_compute_target = "cpu-cluster'
  6
      try:
  7
         aml compute = AmlCompute(ws, aml compute target)
  8
          print("found existing compute target.")
  9
      except ComputeTargetException:
 10
          print("creating new compute target")
 11
      #If the compute target doesn't exist, the code proceeds to create a new compute target named
 12
          provisioning_config = AmlCompute.provisioning_configuration(vm_size = "STANDARD_D2_V2",
 13
                                                                       min_nodes = 1,
 14
                                                                       max nodes = 4)
 15
          aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)
 16
          aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)
 17
 18
      print("Azure Machine Learning Compute attached")
 19
\checkmark
```

found existing compute target.

Azure Machine Learning Compute attached

Figure 11: AML Compute Provisioning for the pipeline

```
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDep
from azureml.core.runconfig import DEFAULT_CPU_IMAGE
                                                          pendencies
# create a new runconfig object
run_config = RunConfiguration()
# enable Docker
run_config.environment.docker.enabled = True
# set Docker base image to the default CPU-based image
run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE
# use conda_dependencies.yml to create a conda environment in the Docker image for execution
run_config.environment.python.user_managed_dependencies = False
# specify CondaDependencies obj
#run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])
run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=["pip", "python=3.8", "pandas==1.3.4", "numpy", "matplotlib"
pip_packages=['blis==0.4.1',
 'certifi==2021.10.8',
'charset-normalizer==2.0.7',
'click==8.0.3',
 'click==8.0.3',
'cycler==0.11.0',
 'cymem==2.0.6
 fonttools==4.28.1'
'ftfy==6.0.3',
'idna==3.3',
```

Figure 12: Run Configuration for conda environment creation in the docker image for execution

Figure 13: Pass DataReference object to the pipeline to access datasets across pipeline stages

```
26
27 ∨ step1 = PythonScriptStep(name="preprocess_step",
                                   script_name="preprocess.py",
arguments=["--dep_data", dep_data, "--rand_data", rand_data, "--preprocessed_data",
28
29 \sim
30
                                    preprocessed_data],
31
                                    inputs = [dep_data, rand_data],
32
                                    outputs= [preprocessed_data],
                                    compute_target=aml_compute,
source_directory=source_directory,
33
34
35
                                    runconfig=run_config,
36
                                    allow_reuse=True)
37
      print("Step1 created")
```

Source directory for the step is /mnt/batch/tasks/shared/LS_root/mounts/clusters/cpu-cluster-ml/code/Users/x22104038/src. DataReference object1 created DataReference object2 created Step1 created

Figure 14: Pipeline Step1 creation – preprocess_step

```
# For this step, we use a different source_directory
1
    source_directory = './src
2
    print('Source directory for the step is {}.'.format(os.path.realpath(source_directory)))
3
4
    # Creating DataReference for Preprocessed Data
5
    preprocessed_data = DataReference(
            datastore=def_blob_store,
6
            data_reference_name="preprocessed_data",
            path_on_datastore=os.path.join("preprocessed_data.csv"),
8
q
        )
0
    print("DataReference object4 created")
1
    #This step is intended for training a machine learning model using the preprocessed data
2
    # All steps use the same Azure Machine Learning compute target as well
    step2 = PythonScriptStep(name="training_step",
1
                              script_name="modeltrain.py",
arguments=["--preprocessed_data", preprocessed_data],
6
7
                              inputs = [preprocessed_data],
8
                              compute_target=aml_compute,
q
                              source_directory=source_directory,
ø
                              runconfig=run_config)
1
    step2.run_after(step1)
    #The second step depends on the output of the first step, ensuring a sequential execution order in the pipeline
2
```

Figure 15: Pipeline Step2 creation – training_step

```
print("Step lists created")
```

Figure 16: Pipeline Step3 creation – prediction

```
1
    # Syntax
2
    # Pipeline(workspace,
З
    #
          steps,
4
    #
               description=None,
 5
    #
               default_datastore_name=None,
6
    #
               default_source_directory=None,
7
    #
               resolve_closure=True,
8
    #
               _workflow_provider=None,
9
    #
               _service_endpoint=None)
10
11
    pipeline1 = Pipeline(workspace=ws, steps=steps)
12
    print ("Pipeline is built")
```

Pipeline is built

Figure 17: Build Pipeline

```
1
    pipeline1.validate()
    print("Pipeline validation complete")
2
```

. . Pipeline validation complete

Figure 18: Validate Pipeline

Submit syntax # submit(experiment name pipeline_parameters=None, continue_on_step_failure=False, # 5 # regenerate_outputs=False) pipeline_run1 = Experiment(ws, 'Depression_Tweets').submit(pipeline1, regenerate_outputs=False)
print("Pipeline is submitted for execution") Created step preprocess_step [e043d517][9eb0fc25-c483-4c48-b466-784f00805a13], (This step is eligible to reuse a previous run's output) Created step training_step [64bdee9d][c71a5ad9-84ca-4eef-a9f9-542fb94fb05e], (This step is eligible to reuse a previous run's output)

Created step prediction [3ecbcc88][9449445c-cfee-44c7-85e8-009bc5b59883], (This step is eligible to reuse a previous run's output) Using data reference dep_data for StepId [a57e9120][5ec54ca7-e6ac-406f-802e-74fe8ac91e59], (Consumers of this data are eligible to reuse prior runs.) Using data reference rand_data for StepId [5bdcd7d8][afe62eae-3fa3-4e15-9519-57ba4b7bcc08], (Consumers of this data are eligible to reuse prior runs.) Using data reference preprocessed_data for StepId [9dba6346][20022763-cfd2-4e69-b7cc-1a12d4492b2b], (Consumers of this data are eligible to reuse prior runs.)

Submitted PipelineRun 71e05035-08d3-4e9f-904e-366e69c47c3d

Link to Azure Machine Learning Portal: https://ml.azure.com/runs/71e05035-08d3-4e9f-904e-366e69c47c3d?wsid=/subscriptions/34a65394-13fc-43ed-8e03a0f81df6e347/resourcegroups/my_mlops_prj/workspaces/dp-tweets&tid=6edb49c1-bf72-4eea-8b3f-a7fd0a25b68c Pipeline is submitted for execution

Figure 19: Submit the Pipeline and Click on the link to access the pipeline.

Figure 20: Running Pipeline