
Enabling Automated Multi-cloud Migration
For SMEs With A Standard Three-Tier

Infrastructure

MSc Research Project

Cloud Computing

Achyut Gawade
Student ID: 22103228

School of Computing

National College of Ireland

Supervisor: Prof. Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Achyut Gawade

Student ID: 22103228

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Prof. Sean Heeney

Submission Due Date: 14/12/2023

Project Title: Enabling Automated Multi-cloud Migration For SMEs With
A Standard Three-Tier Infrastructure

Word Count: XXX

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Enabling Automated Multi-cloud Migration For SMEs
With A Standard Three-Tier Infrastructure

Achyut Gawade
22103228

Abstract

The proposed solution is a practical middleware-based approach for seamless
multi-cloud migration and portability of standard three-tier infrastructure, includ-
ing virtual machines, databases, and object storage. The proposed system utilizes
Python SDKs and APIs provided by the major public cloud providers (AWS, Azure,
and GCP) to achieve resource discovery, VM migration, database migration, and
object storage migration. The feasibility of heterogeneous VM migration across
different hypervisors (XEN, Hyper-V, and KVM) and various disk formats (AMI,
VHD, and RAW) has been evaluated and demonstrated throughout the study.
A hybrid database migration approach combining snapshot and streaming data
has been implemented to optimize data transfer and minimize downtime. Object
storage migration has been streamlined using multi-part uploads for faster upload
speeds and ARIA2 for parallel downloads, particularly for large files. The pro-
posed solution has been successfully tested for migrating a sample Ubuntu 22.04.6
LTS virtual machine with 30 GB of disk space, a MySQL database with various
object types and millions of records, and storage objects across different cloud pro-
viders, demonstrating its ability to achieve seamless multi-cloud interoperability.
The design and evaluation of the tool have been performed considering the re-
quirements of SMEs. The proposed solution can be used by SMEs to effectively
utilize the benefits of multi-cloud computing while mitigating the risks associated
with vendor lock-in and limited portability. In summary, the proposed solution ad-
dresses the key challenges of multi-cloud migration and portability, enabling SMEs
to adopt a more flexible and cost-effective cloud strategy.

1 Introduction

A multi-cloud system refers to an approach where an organization uses services from
multiple cloud service providers (CSPs) to meet its computing needs. Instead of rely-
ing on a single cloud provider, a multi-cloud strategy involves distributing workloads
and applications across different cloud platforms. This approach aims to leverage the
strengths of each provider, enhance redundancy, mitigate risks, and avoid vendor lock-in.
Multi-cloud migration systems are essential for organizations looking to obtain benefits
such as scalability, pay-per-use, and increased availability. A well-planned and executed
multi-cloud migration can lead to improved efficiency, cost savings, and flexibility for
businesses. Some of the common challenges in multi-cloud migration systems include
data management, security, and integration with existing systems Success factors include
a well-defined migration strategy, proper planning, and the selection of suitable migration

1



Figure 1: EU Public Cloud Market Share Based On Revenues In IaaS And PaaS Only

service providers. A recent economic analysis of cloud services in Europe Joshua Gans
and Masri (2023) claims that Amazon Web Services (AWS) and Microsoft Azure hold up
80% of the market share combined, with Google Cloud Platform (GCP) holding the third-
largest market share of around 10% is the primary concern for cloud market regulation.
Due to this high concentration of market share, high switching costs, “data transfer-out”
or “DTO” fees, and a lack of interoperability between services are emerging, resulting in
vendor lock-in. Hence, it is extremely important to improve interoperability and migra-
tion between these three major players to mitigate vendor lock-in risks. The next section
briefly highlights the prime complications of asserting seamless multi-cloud strategies.

• Complex compatibility issues: Migrating from a complex existing cloud infrastruc-
ture to a new cloud-based infrastructure can be difficult, as interdependencies and
relationships between systems need to be identified and documented. The system
and services provided by each cloud provider are based on proprietary formats,
hardware, middleware, and software modules, which do not directly support ser-
vices from different cloud providers. Hence, it is the primary challenge to ensure
compatibility between source and destination clouds, leading to potential issues
during the migration process.

• Long migration process and downtime: Manual cloud migrations often involve mul-
tiple stages with in-depth testing and validation between each stage, making the
process time-consuming and prone to delays. Migrating applications and services
from one cloud to another can result in downtime. Minimizing downtime during
migration is crucial, especially for mission-critical systems.

• High cloud migration costs: The cost of migrating to the cloud, including data mi-
gration, application migration, and ongoing operations, can be a significant concern
for organizations

• Data security and compliance: Ensuring data security and compliance with the
migration process is essential, especially in cases where third-party service providers

2



are involved in the process. Inadequate security measures can expose sensitive
information during the migration process.

• Skill gap: Cloud migration requires a diverse set of skills and knowledge in areas
like cloud deployments, data migration, and application migration, which can be
challenging to find and retain within the organization.

The above challenges associated with the cloud migration process often result in
vendor lock-in, which is a situation where a customer becomes heavily dependent on
a particular vendor’s products or services to the extent that switching to an alternat-
ive vendor becomes difficult, expensive, or impractical. This dependency can arise due
to proprietary technologies, formats, or standards used by the vendor, making it chal-
lenging for the customer to migrate to a different solution without significant effort,
cost, or disruption. Small and medium enterprises (SMEs) face challenges with vendor
lock-in in cloud computing due to limited resources, dependence on provider ecosystems,
cost implications, a lack of negotiating power, limited expertise, long-term commitments,
data migration challenges, and vendor-specific skills. These challenges can hinder SMEs’
ability to switch between cloud providers efficiently, impacting their flexibility and ad-
aptability in the rapidly evolving cloud landscape.

Research Question : How to feasibly migrate standard three tier infrastructure com-
prising of compute, storage and database between current three major public cloud service
providers namely AWS, Azure and GCP to promote interoperability and mitigate vendor
lock-in problem for SMEs ?

2 Related Work

The multi-cloud standardisation efforts started with the survey Kaur et al. (2017), which
critically assesses the adoption of standards such as OCCI, SAML, and IPv6 in addressing
interoperability challenges within interconnected clouds. Despite the potential benefits,
the limited embrace of these standards by global providers is underscored as a significant
drawback. It emphasizes the imperative of extending support across various service mod-
els (IaaS, PaaS, and SaaS) and encourages the exploration of additional technologies such
as OpenFlow and NOX for inter-cloud networking. The analysis urges a broader adoption
of diverse standards and technologies to effectively tackle the complexities of interconnec-
ted cloud environments. followed by a study by Tomarchio et al. (2020) that evaluated
existing cloud resource orchestration frameworks (CROFs) like Terraform, CloudForma-
tion, Brooklyn, Cloudify, and Heat, finding that they rely on diverse open standards and
abstraction libraries such as jclouds. The research concludes that the prevalence of open
standards primarily in academic projects for cloud interoperability, like the Open Cloud
Computing Interface (OCCI), the Cloud Data Management Interface (CDMI), and the
Topology and Orchestration Specification for Cloud Application (TOSCA) by OASIS, is
not widely adopted in the architectures of commercialized cloud providers.

In their review of modern interoperability in multi-cloud systems, Caceres and Globa
(2022) observed that many existing tools predominantly utilize low-level APIs and mech-
anisms for migrating infrastructure-as-a-service (IaaS). However, they noted a lack of
interoperability for most high-level services, primarily due to the absence of standards.
The research concludes by suggesting that standardization of higher-level services can be

3



achieved through the HTTP protocol, leveraging APIs provided by public cloud vendors.
The proposed approach involves a top-to-bottom strategy to ensure effective standardiz-
ation and interoperability in multi-cloud environments.

Comprehensive research by Alonso et al. (2023) highlighted the challenges of multi-
cloud native applications, emphasising that the heterogeneity of cloud service providers’
(CSPs) architecture is a major contributor to vendor lock-ins. The absence of stand-
ard protocols and specifications compounds this issue, with a notable lack of efforts to
establish standardisation across CSPs. The study mentions a few standards set by the
industry, such as OASIS CAMP, OASIS TOSCA, NIST, OAuth, CSA STAR Program,
and SAML/2, for the integration and security of heterogeneous clouds. However, it lacks
a specific focus on multi-cloud migration and portability in major public clouds such as
AWS, Azure, and GCP and provides limited discussion on the technologies, protocols,
and algorithms.

This highlights a gap in the literature, as there is inadequate coverage of multi-cloud
migration and portability in AWS, Azure, and GCP, and insufficient exploration of the
specific technologies, protocols, and algorithms relevant to this context. To address these
gaps, further research questions need to be formulated to study the impact of different
technologies, protocols, and algorithms on the efficiency and success of multi-cloud mi-
gration and portability and the specific requirements for achieving seamless multi-cloud
migration and portability across these major public clouds.

2.1 Cloud Resource Discovery

There are several tools available for cloud resource discovery, each with its own features
and capabilities. The popularity of these tools varies based on specific use cases, pref-
erences, and the cloud platform being used. AWS Config Piper and Clinton (2023),
Azure Resource Graph 1, Google Cloud Asset Inventory 2, Terraform Brikman (2019),
and Hashicorp Consul are a few of the popular options extensively used in the industry.
Of which AWS Config, Azure Resource Graph, and Google Cloud Asset Inventory only
work for their own resources.

In most research, Terraform is used as a resource provisioning IaaC tool. For example,
in research conducted by Bahaweres and Muhammad Najib (2023) and Liu et al. (2022),
Terraform is used to mitigate disaster recovery scenarios as it provides a consistent work-
flow for provisioning and managing resources, regardless of the underlying cloud provider.
Few more studies by Bhalla et al. (2023) and Gupta et al. (2021) utilized Terraform for
cloud Hadoop cluster provisioning and automation.

In the research paper de Carvalho and Patricia Favacho de Araujo (2020), compare the
performance of Terraform and Cloudify as prominent multi-cloud orchestrators. Through
practical experiments, it was observed that Terraform surpassed all other orchestrator
frameworks, with notable superiority over Cloudify.

From all this research, it is evident that Terraform is only looked upon as a multi-
cloud orchestrator. While it’s primarily used for infrastructure provisioning, its state files
can be used for discovering existing resources. This shows a gap in existing studies, which
will be explored in this research.

1https://azure.microsoft.com/en-us/get-started/azure-portal/resource-graph
2https://cloud.google.com/asset-inventory

4

https://azure.microsoft.com/en-us/get-started/azure-portal/resource-graph
https://cloud.google.com/asset-inventory


2.2 Virtual Machine Migration

An initial effort in heterogeneous cloud VM migration, as outlined by Kargatzis et al.
(2017), established the foundation for recognizing diverse virtualization formats em-
ployed by various CSPs such as OpenStack and VMWare. This includes hypervisors,
disk formats, container packaging formats, and various supported migration types within
the context of multi-cloud VM migration. A similar study on heterogeneous VM mi-
gration by Raj et al. (2020) analyzed the migration between OpenStack and VMWare
using a volume-based technique and an image-based technique. Both of these studies
employed a middleware-based approach for implementing a script that will download the
image from the source cloud, convert it if needed, and then upload and deploy it on the
destination cloud. These studies lack a wider migration experimentation and feasibility
study on AWS, GCP, and Azure, which are the major players in the cloud industry.

There has been plenty of research on task scheduling for multi-cloud computing and
live VM migration techniques, considering security and reliability constraints. The re-
search conducted by Zhu et al. (2021) focused on a multi-round allocation algorithm and
discussed the challenges of resource scheduling to optimise task execution time and total
cost in a heterogenous multi-cloud system with the proposed Matching and Multi-Round
Allocation (MMA) algorithm that uses the variance of the estimated completion time of
tasks on resources as a metric to schedule tasks. Whereas Choudhary et al. (2017) briefly
discusses various live VM migration techniques, for example, pre-copy and post-copy ap-
proaches. While the research paper provides valuable insights into task scheduling in a
multi-cloud environment and live VM migration with optimisation techniques, it does
not specifically focus on the migration and portability aspects of public clouds like AWS,
Azure, and GCP.

Anglano et al. (2020) introduced a toolkit designed to facilitate the creation and
utilization of multi-cloud systems (MSs) in both cloud and edge environments. The
study emphasizes the significance of interoperability among diverse heterogeneous clouds
to mitigate the risk of vendor lock-in. The toolkit, named ”EasyCloud,” is Python-based
and encompasses three primary subsystems: VM management, VM monitoring, and
a user interface for overseeing multi-cloud operations. In successive research Anglano
et al. (2021), ”EasyCloud” underwent enhancements to include additional monitoring
capabilities with diverse sink options. While the focus of this research centers on virtual
machine migration and monitoring, it falls short in executing stateful migration of VMs
across different CSPs.

Addya et al. (2023), presented a study on VM coalition for multi-cloud systems, in-
troducing a live migration strategy for virtual machines called CoMCLOUD, utilizing
a broker-based technique. The approach aims to minimize downtime through pre-copy-
based parallel migration. The research primarily focuses on explaining the VM placement
strategy and associated trade-offs but does not delve into the practical implementation
using specific frameworks. While the study provides results through simulations of a
multi-cloud environment, practical validation is recommended through live migration
with CSPs. Further exploration and implementation with real-world CSPs would con-
tribute to the practical evolution of the proposed VM migration strategy.

Hence, this research does not discuss the impact of VM multi-cloud migration and
portability on performance, security, and reliability. The above gaps in the research
necessitate exploring the strengths and weaknesses of multi-cloud VM migration and
portability in AWS, GCP, and Azure public clouds. The research paper does not look

5



into the specific technologies, protocols, and algorithms used for multi-cloud migration
and portability.

2.3 Database Migration

Recent studies has covered Various aspects of database migration, such as The research
article Namdeo and Suman (2021) introduces a database migration model, the Snapshot-
Live Stream Db Migration Model (SLSDMM), designed for transitioning data from Re-
lational Database Management Systems (RDBMS) to NoSQL databases. The proposed
SLSDMM model incorporates both snapshot and live stream data migration techniques,
addressing the dynamic nature of data in modern applications. The paper positions
SLSDMM as a novel solution that combines the strengths of snapshot and live stream
migration, presenting a hybrid approach for improved efficiency. The paper briefly men-
tions the performance of SLSDMM for large databases, but a more in-depth exploration
of scalability issues and potential optimizations for cloud-based databases would enhance
the practical applicability of the model. A middleware-based approach by Kiranbir Kaur
(2020) and a successive study for energy efficiency improvement Kaur et al. (2022) for
multi-cloud database migration facilitating migration across Azure, GCP, and AWS have
made significant contributions to live database migration. The approach employed a mid-
dleware program written in C#, which replicates the code object by object and record
by record. However, the impact of replicating records and database objects on database
performance has not been studied. Further research is needed to address the optimiz-
ation of the proposed approach, whereas A study on transactional database scaling by
Georgiou et al. (2022) provides a commendable exploration of its scalability and perform-
ance, employing a range of benchmarks and workload mixes for transactional database
scaling for MySQL, Oracle, and PostgreSQL DB. Strengths include the introduction of
a parallel replication algorithm, the analysis of affected classes, and the implementation
of statement-level load balancing. However, gaps in the research surface in the form of
a limited focus on real-world use cases, a lack of exploration into scenarios with various
sizes of databases, and the need for a more in-depth discussion on the impact of working
with a cloud-managed database engine

2.4 Storage Migration

Shi et al. (2020), introduced a secure multi-cloud storage system based on an application
programming interface (API) and software development kit (SDK). The system util-
izes erasure code for blocking original data, followed by encryption using the Advanced
Encryption Standard (AES) algorithm. Additionally, MD5 is employed for content veri-
fication of encrypted blocks. It’s important to note that this research does not encompass
a storage system for Azure Cloud and Google Cloud in terms of object storage, and it is
limited to the Linux environment due to the implementation using the Jerasure library.
followed by Mseddi et al. (2021) proposing an efficient replica migration scheme for dis-
tributed cloud storage. But the later one lacks the comparative study of techniques and
performance on AWS, GCP, and Azure clouds. Finally, an article by Kumar et al. (2022)
discussed the challenges of block-level deduplication in cloud storage due to maintenance
difficulties and high processing power requirements. It introduces file-level deduplication
as an alternative, highlighting its benefits in handling a large number of blocks and redu-
cing processing power needs. The proposed approach focuses on file-level deduplication

6



and compression to enhance cloud storage efficiency, allowing for the storage of a single
copy of redundant data and improving availability through replication.

The examination of existing literature exposes several deficiencies in effectively im-
plementing simulated strategies in a multi-cloud setting. A substantial number of tools
and proposed frameworks do not possess a consolidated interface for migrating the infra-
structure, applications, data, and storage of SMEs. Additionally, many systems exhibit
platform dependencies, requiring programming skills to expand functionalities, leading
to substantial costs in both expertise and time.

3 Methodology

To work upon the gaps perceived in Section 2, this research utilizes a few prominent con-
clusions drawn from the critical analysis. The proposed study is based upon a suggestion
by Caceres and Globa (2022), which emphasizes the use of higher-level APIs, services,
and protocols such as HTTP for interoperability. Also, this study extends the use of
SDKs and APIs for complete infrastructure migration, as implemented by Kiranbir Kaur
(2020) and Shi et al. (2020) for migration purposes.

Grozev and Buyya (2014) laid the foundational work for load distribution of a three-
tier application in a multi-cloud environment based on a definition of standard three-tier
applications given in Fowler et al. (2003), which layers the whole web application in three
distinct yet interconnected layers:

• Presentation Layer: This is usually the graphical user interface layer that provides
the user with the ability to interact with the system.

• Business Layer: executes the primary business logic by accepting requests from
presentation layer while accessing and modifying the data layer

• Data Layer: Manages the persistent data by accepting data queries from the busi-
ness layer and returning the result of an operation.

From a cloud architectural perspective, presentation and the business layer are coupled
together as a modern application that could be written in any programming language,
e.g., Java or Python, and run on virtual machines provisioned by the cloud providers. In
contrast, the data layer functions independently as a standalone service, encompassing
relational database engines, NoSQL storage, and object or file storage for persistent
storage solutions. The majority of the applications developed in the current era by SMEs
follow a three-tiered approach. Hence, a solution needs to be developed for achieving
seamless multi-cloud migration and portability of virtual machines, database engines,
and object storage across the public clouds. To achieve this goal, comprehensive tools
and techniques need to be assessed to enhance interoperability from the IaaS level to the
SaaS level.

For a middleware-based cloud VM migration, this study explored potential object-
oriented languages that have rich SDK support from CSPs. A few of the prominent
choices were Java, Python, JavaScript, .NET, and GO. Out of this list, Python was
finalised for implementation purposes due to it’s features such as rapid development,
compatibility with cloud platforms, developer community support, interoperability, and
most of the recent work done on migration used python as a programming language.

7



Table 1: CSPs Virtualization format comparison

Cloud Provider Hypervisor Container Type Disk Format

Amazon Web Services XEN AMI AMI

Microsoft Azure Hyper-V Bare VHD

Google Cloud Platform KVM Bare
RAW,
AMI,
VDI

3.1 Automated Cloud Discovery

Cloud service discovery refers to the process of identifying and locating available services
in a cloud computing environment. It is a crucial aspect of managing and interacting with
services in a dynamic and distributed system. As discussed in 2.1, while Terraform’s
core focus is on defining and deploying resources, it can be utilized for certain aspects
of multi-cloud infrastructure discovery. Terraform employs a declarative language that
provides a unified way to describe infrastructure across multiple cloud providers. Ter-
raform uses state files to track the current state of infrastructure. This can be valuable
for understanding the existing state and changes in the infrastructure. This research
proposes a novel approach to utilizing a Terraform state file for resource discovery in a
multi-cloud environment.

3.2 Virtual Machines Compatibility

As discussed in Section 2.2, migrating a virtual machine from one CSP to a different
CSP has a lot of challenges associated with it, especially for GCP, Azure, and AWS, as
all of them use different sets of virtualization formats in terms of hypervisor, container
file type, and disk format. A summary of these various formats is outlined in Table 1.
As the current research is dealing with interoperability between three different types of
hypervisors (XEN, Hyper-V, and KVM), it can be considered a case of heterogeneous
VM migration. These three CSPs not only use different formats for the underlying
disk images but also container-type descriptors that specify the metadata regarding the
instance launch. Whereas AWS wraps the metadata descriptor in Amazon Machine Image
(AMI) format, Azure and GCP use the bare format, signifying the absence of an initiation
descriptor.

Hence, this research extends the work of Kargatzis et al. (2017) and Raj et al. (2020)
to assess middleware-based heterogeneous migration in the case of XEN, Hyper-V, and
KVM hypervisors. This research also examines the feasibility and interoperability of
varied disk formats such as AMI, VHD, and RAW with the use of Python SDKs and APIs
provided by the CSPs under consideration. This feasibility study is extremely important,
as even if the CSPs are utilizing standard open formats for their infrastructure, they
always introduce a few proprietary modifications and advancements, which eventually
result in a lack of interoperability.

8



3.3 Database Migration

A database is a structured collection of data that is organized and stored in a way that
allows for efficient retrieval, management, and manipulation of information. Databases
are a fundamental component of information systems and are used to store, organize, and
manage data for various applications. The majority of small and medium enterprises use
relation database management system (RDBMS) due their several advantages, such as
Atomicity, Consistency, Isolation, Durability (ACID), etc. On average, SMEs running a
three-tier application store data sizes of around 5 GB to 10 GB. Out of which MySQL,
PostgreSQL, Oracle, and Microsoft SQL Server are the most widely used databases in
the industry, 3.

As the data under migration could be from the enterprise’s production database,
it is extremely crucial to ensure the reliability of the proposed solution along with the
accuracy of the data transfer. Hence, the proposed system will be based on migrating the
relational databases, namely MySQL, PostgreSQL, Oracle, and Microsoft SQL Server,
but the design will be able to extend to other databases in the future with minimal
effort. For the performance evaluation, reliability and accuracy shall be assessed. This
can be done with schema-level validation and data-level validation after the migration is
performed. This will also verify compatibility between the source and target database
schemas.

3.4 Object Storage Migration

Object storage is a type of data storage architecture that manages and organizes data as
distinct objects rather than in traditional file hierarchies or block structures. Each object
typically consists of data, metadata, and a unique identifier called a key. Object storage
is commonly used for large-scale, unstructured data such as multimedia files, backups,
and archives. In context of SMEs, it could be any kind of object, such as text files,
audio files, images, etc. AWS, Azure, and GCP all support object storage; however, the
terminology for all of them varies, such as in AWS it is called Simple Storage Service
(S3), in Azure it is called blob storage, and in GCP it is cloud storage. SMEs can have
varied storage requirements depending on the functional requirements, and object size
can vary from a few KBs to GBs per object. Hence, a comprehensive storage migration
is required that can reliably handle large file migrations with minimal time.

4 Design Specification

As per the discussion in Section 3, the entire proposed solution is based on a middle-
ware design for facilitating the migration. Middleware refers to software that acts as
an intermediary layer between different applications or components within a computing
environment. It serves as a bridge that facilitates communication, interaction, and data
exchange between disparate systems, applications, or services. Middleware plays a crucial
role in simplifying the complexity of integrating diverse technologies and enabling them
to work together seamlessly. Middleware’s key characteristics include communication fa-
cilitation, integration support, data management, security implementation, transaction

3https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-
management-systems/

9



Figure 2: Proposed System Overview

management, and load balancing, providing advantages such as enhanced interoperab-
ility, scalability, and streamlined development and maintenance processes. Middleware
often utilizes SDKs and libraries to build up new functionalities over existing ones. Some-
times middleware is also established to build a wrapper or an abstraction around APIs
or heterogeneous systems, similar to the current study. In this research, a Python-based
middleware is designed and developed to perform interactions with all three CSPs. For
prototyping purposes, each script is developed individually and takes pre-defined variables
for cloud account credentials.

To achieve resource discovery in a cloud environment, a Python script is designed
along with a Terraform script, where the Python script provides the inputs to the Ter-
raform script and invokes it by making a CLI command, which can in turn provide the
details of each cloud resource along with all the dependent resource information. Terra-
form is an open-source infrastructure as code (IaC) tool developed by HashiCorp that
enables users to define and provision infrastructure resources in a declarative configur-
ation language. To achieve this, AWS, Azure, and GCP are added as providers in the
Terraform script along with their respective cloud account credentials. The key resource
used by the Terraform tool is the import command here. The Terraform import com-
mand is used in Terraform to import existing infrastructure into the Terraform state.
This is useful when resources that were created outside of Terraform are needed to be
managed using Terraform. The terraform import command associates existing resources
with a Terraform configuration.

For VM migration, middleware is designed to create an abstraction over heterogenous
VM migration, which involves dealing with various hypervisors and multiple disk formats
such as RAW, VHD, VMDK, and AMI. The scripts are written in such a format that they
can be exposed as web services with the help of representational state transfer (REST)
APIs. Figure 3 is the flowchart of the entire VM migration process. The migration cloud
takes place in six possible ways by permutation of three cloud vendors. Each direction has
a set of generic processes, such as exporting VM from the source cloud account, converting

10



Figure 3: VM Migration Middleware Designed Steps

it to the required format, transferring the image file to the cloud storage service of the
destination cloud platform, and then importing the image file to launch VM.

A common and comparatively simple method to perform DB migration is the snapshot
method, also termed a dump transfer. A snapshot migration involves taking a point-in-
time snapshot or copy of the entire database and transferring it to a new environment.
It’s a relatively straightforward approach but may involve downtime during snapshot
creation due to the lock set on the source database to maintain the integrity of the
data. To mitigate this, a hybrid approach is exercised to find a trade-off between speed
and performance. This research is utilizing the hybrid strategy proposed by Namdeo
and Suman (2021) to migrate databases using the Snapshot-Live Stream Db Migration
Model (SLSDMM), where DB is migrated using both snapshot and streaming data. For
designing such a strategy, the research is utilising dump file export and restoration from
the source database to the destination database, followed by the data synchronisation
step, which will migrate the data record by record from the source database to the
destination database until both databases are synchronised.

The storage migration will follow a middleware approach where the Python middle-
ware will migrate the object files from source storage to destination, iterating object by
object. For upload, the SDKs support multi-part upload for faster file migration; how-
ever, download functionality by SDKs does not support such optimization; hence, this
study is making use of a utility called aria24. Aria2 is an open-source, cross-platform
software that supports downloading files from various protocols, making it a powerful
tool for managing and automating downloads. Aria2 is capable of downloading files con-
currently; it can split a file into multiple parts and download them simultaneously. This
can lead to faster download speeds, especially for large files.

4https://aria2.github.io/manual/en/html/README.html

11



5 Implementation

5.1 Cloud Resource Discovery

5.1.1 Azure Resource Recognition

The implemented code interacts with Microsoft Azure services using the Azure SDK for
Python. This script employs the ServicePrincipalCredentials class from
azure.common.credentials for authentication and utilizes the ResourceManagementCli-
ent class from the azure.mgmt.resource package. The code lists resources of spe-
cific types, including virtual machines (Microsoft.Compute/virtualMachines), disks (Mi-
crosoft.Compute/disks), snapshots (Microsoft.Compute/snapshots), network interfaces
(Microsoft.Network/networkInterfaces), storage accounts (Microsoft.Storage/ storageAc-
counts), and various types related to databases such as PostgreSQL, flexible PostgreSQL,
Azure Data, MariaDB, MySQL, flexible MySQL, SQL servers, and SQL Virtual Machines.
The script then iterates through the listed resources and fetches their IDs, names, and
locations, providing a detailed view of the Azure resources present in the specified re-
source group. This implementation showcases how to use the Azure SDK for Python to
programmatically interact with Azure resources, list them based on resource types, and
extract relevant information about each resource within a designated resource group.

5.1.2 AWS Resource Recognition

The developed Python script utilizes the Boto3 library to interact with AWS services,
specifically focusing on EC2 instances, RDS databases, and S3 buckets. The AWS creden-
tials, including access key, secret key, and session token, are configured to authenticate the
Boto3 clients. Three distinct clients are initialized for EC2 (ec2 client), RDS (rds client),
and S3 (s3 client) services, each associated with the specified AWS region.

The script then fetches details about EC2 instances using the describe instances
method of the EC2 client. It iterates through the retrieved reservations and instances,
printing relevant information such as instance ID and state. Similarly, the script ob-
tains information about RDS database instances using the describe db instances method
of the RDS client. It iterates through the retrieved DB instances, printing details like
DB instance ID and engine.Lastly, the script fetches details about S3 buckets using the
list buckets method of the S3 client. It iterates through the retrieved buckets, printing
the name of each bucket. This script provides a comprehensive overview of the AWS
resources within the specified region, facilitating easy monitoring and management of
EC2 instances, RDS databases, and S3 buckets through the Boto3 library.

5.1.3 GCP Resource Recognition

One more Python script is being developed that utilizes the Google Cloud Client Lib-
raries to interact with Google Cloud Platform (GCP) services, specifically focusing on
compute engine instances, cloud storage buckets, and database instances. The script
begins by importing the necessary modules from the google.cloud package. The script
initializes a compute engine client, a cloud storage client, and a cloud SQL client for inter-
acting with resources from the GCP cloud and fetching metadata. This script provides a
comprehensive overview of GCP resources, facilitating easy monitoring and management
of compute engine instances, cloud storage buckets, and cloud SQL instances through

12



the Google Cloud Client Libraries. Ensure that the specified service account has the
necessary permissions to access and list resources in the given project.

5.1.4 Terraform State Discovery

The Terraform scripts are developed, which work in conjunction with the previously
developed Python scripts. The developed scripts serve as an infrastructure-as-code blue-
print for configuring Azure, AWS, and GCP resources using the HashiCorp Terraform
platform. The script begins by specifying the required AWS, Azure and google provider,
detailing the source and version which establishes the necessary authentication creden-
tials, including the client ID, client secret, tenant ID, and subscription ID. Following
this, distinct resource blocks that define various Azure, AWS and GCP resources to be
managed by Terraform. These resources encompass an Azure virtual machine, a storage
account, a PostgreSQL server, and a resource group. Notably, fields within these resource
blocks, such as names, locations, and configurations, are intentionally left blank and are
expected to be populated with the actual details retrieved from the existing cloud account
resources using a prior Python script. Upon execution, this Terraform script facilitates
the import of the identified cloud resources into Terraform’s state, enabling streamlined
infrastructure management and future updates through Terraform workflows. After ex-
ecuting this script with the terraform import command, the terraform.tfstate file will
be populated with the state of the Azure resources in the given cloud account.

5.2 Virtual Machine Migration

The implementation of VM migration primarily uses SDKs for AWS, Azure and GCP,
with various libraries involved, such as boto3, google.cloud, azure.mgmt, etc. There are
various steps associated with VM migration, as discussed in Section 4. The migration
process deals with various disk formats; most of them are being converted using in-built
APIs provided by the SDK; however, there is no built-in support for some format con-
versions, such as VHD to RAW in the case of the Azure to AWS migration. QEMU-img
5 is utilized to perform such disk conversions to make the migration process compatible.
QEMU-img is a command-line tool used in the QEMU (Quick Emulator) virtualization
environment. It is primarily used for disk image manipulation. The Python scripts are
developed for each migration direction. The scripts perform authentication with each
cloud provider and take a snapshot of a running VM using SDK client methods such
as ComputeManagementClient.snapshots(), boto3.client.import snapshot(), and
google.cloud.InsertImageRequest(). This process is followed by transferring the im-
age file to the destination cloud storage service with the help of the respective SDK
functions. Finally, the image file is imported into the destination compute subsystem
and VM is initialised.

5.3 Database Migration

The implemented Python script focuses on the synchronization of tables and data between
a source relational database and multiple destination relational databases. The imple-
mentation utilizes key libraries, including SQLAlchemy for database operations, pandas

5https://www.qemu.org/docs/master/tools/qemu-img.html

13



for data manipulation, and the database Connectors for connectivity between SQL en-
gine and the python middleware. The script defines functions for obtaining database
engines, fetching source and destination databases from user input, and synchronizing
database structure and data. The main execution section orchestrates the entire process
by obtaining source and multiple destination database engines, fetching table names from
the source, and iteratively synchronizing the databases and their corresponding data.
Notably, the script employs a modular approach, encapsulating functionalities within
functions for enhanced readability and maintainability. As discussed in Section 4 DB
migration utilize a mixed approach where bulk data is transferred initially using dump
files followed by synchronization of data records for live migration. For this, the scrips
uses os module from python for performing command-line SQL execution for example
mysqldump & mysql for dumping bulk data from source to destination.

5.4 Storage Migration

The implementation of the Storage Migration system includes a Python script that facilit-
ates inter-cloud object migration among AWS S3, GCS, and ABS. It is written in Python,
a versatile and widely-used programming language, and employs specific libraries for each
cloud provider interaction: Boto3 for AWS, google-cloud-storage for Google Cloud, and
the Azure SDK for Python for Azure Blob Storage. The script defines functions for each
cloud provider, encompassing operations like getting files, getting a specific file, putting a
file, and deleting a bucket. The main function consists of the migration process based on
the specified configuration options. These options include all bidirectional transfer links
in AWS, GCP, and Azure.

Throughout the execution, the script outputs messages to the console, providing in-
formation on the progress and status of the migration process. It details the start of
the process, the type of transfer being executed, and concludes with a completion mes-
sage upon successful execution. The script offers flexibility by allowing the option to
delete objects from the source bucket after a successful transfer, as controlled by the
DELETE AFTER TRANSFER configuration. Additionally, error handling mechanisms are im-
plemented using exception handling, ensuring that relevant error messages are printed to
the console if issues arise during file download, upload, or bucket deletion. Aria2 utility
is used to speedup the object download which perform faster download by parallel disk
allocation and download.

The overall result is a tool that facilitates seamless inter-cloud object migration, lever-
aging the capabilities of Python and cloud-specific libraries to interact with AWS, Google
Cloud, and Azure services.

6 Evaluation

The next section lists a set of experiments to validate the proposed resource discovery
and migration strategy for VMs, databases, and storage objects. The aim is to perform
application profiling in terms of feasibility, migration time, accuracy, and reliability.

6.1 Cloud Testbed Specifications

A testbed is a dedicated platform or system where developers and engineers can conduct
experiments, evaluate, and validate the functionality, performance, and compatibility

14



Figure 4: Terraform.tftstate File Populated With Resources From Cloud Environment

of software or hardware products in a controlled setting before deployment to ensure
reliability and effectiveness. The below-outlined experiences are performed on AWS Linux
2 AMI with EC2 instance type c5.9xlarge, which is a compute-optimized instance class
with 36 vCPU, 72 GiB of memory, and a network bandwidth of 12 Gbps.

6.2 Evaluation of Cloud Resource Discovery

This experiment validates the compatibility and generalizability of the developed Terra-
form script for AWS, GCP, and Azure environments. The single script should be able
to import resource configurations from all three CSPs. This shall result in the gener-
ation of a terraform.tfstate file, which will populate the discovered resources in JSON
format. For this experiment, three resources from various resource types, such as vir-
tual machines, managed disks, storage buckets, and database instances, were initiated
in each cloud account. The results from Figure 4 validate the application of Terraform
as a resource discovery tool. Terraform was able to discover the detailed configuration
of each cloud resource available in the account. This result gives a future direction for
developing a system that can perform cross-platform infrastructure management with the
use of Terraform.

6.3 Evaluation of Cloud VM Migration

The below set of experiments is based on a migration analysis of a standard Ubuntu
22.04.6 LTS instance with 2 vCPU, 4 GiB of RAM, and 30 GB of disk space. This same
image was initialized on each of the cloud platforms to perform the evaluation under
identical conditions.

15



(a) Individual Process Time For Each Cloud (b) End To End VM Migration Time

Figure 5: Ubuntu 22.04.6 LTS Migration Evaluation with 2 vCPU, 30 GB disk space

6.3.1 Experiment 1 : Individual Process Time

In this experiment, timed operations were performed with the standard image on each
cloud platform and metrics such as snapshot creation, image export and download, image
conversion and image upload on the destination cloud, and finally the image import
operation. The time taken by each process is shown in the Figure 5(a)

The comparison of the experimental outcome in Figure 5(a) depicts that snapshot cre-
ation and format conversion are instantaneous processes as compared to image transfers.
Azure took the least time for exporting the snapshot from the running virtual machine,
which is 420 seconds; in contrast, AWS took the highest time for the snapshot creation
process with 660 seconds. In the restoration part, Azure took most of the time as com-
pared to its creation, export and upload duration contributing to the vast end to end
timings associated with Azure cloud as discussed in the following experiment.

6.3.2 Experiment 2 : Total Transfer Time

This experiment is about migrating the virtual machine end-to-end by making a snapshot
of the running image from the source cloud and initialising the virtual machine on the
destination cloud. All the migration directions were tested for AWS-GCP-Azure and time
duration were noted as given by Graph 5

This experiment confirms the feasibility of the VM migration between these three
major public CSPs. The analysis from the graph signifies that the VM migration time
for Azure to AWS is the least with end-to-end migration time of 20 minutes 50 seconds;
on the other hand, GCP to Azure migration takes the maximum time out of the tested
scenarios. Notably, the experiment was also carried out with different disk formats, which
were not part of the design proposal as per the claims from the CSPs documentation,
but most of such approaches failed the restoration stage on the destination cloud. Hence,
from the results, the compatible disk formats are confirmed as per the design proposal.

6.4 Evaluation of Cloud Database Migration

The below experiments were designed, per the direction of Section 3.3 to evaluate the
reliability and accuracy of the proposed cross-cloud database migration system.

16



Table 2: End-to-End Object Migration Timings

Cloud Object Migration Direction Time In Seconds

AWS to GCP 123.642

AWS to Azure 491.420

GCP to AWS 52.419

GCP to Azure 41.336

Azure to AWS 549.460

Azure to GCP 531.095

6.4.1 Experiment 1 : Reliability Analysis

This experiment validates the reliability of the system by performing schema-level valid-
ations. In this experiment, various database objects such as tables, indexes, views, stored
procedures, triggers, constraints, indexes, and sequences were created in the source data-
base. For this MySQL 5.7 DB server, it was setup in the Azure and AWS clouds, with
the source DB in the Azure cloud containing a total of 100 DB objects.

The reliability of the system was analysed on the basis of the successful migration
of each object from source to destination. The proposed solution is found to be 100%
reliable, with no DB objects getting dropped during migration. All the object types were
found to be compatible across the clouds and functioned normally after the migration.

6.4.2 Experiment 2 : Synchronization Accuracy Analysis

This experiment evaluates the accuracy with which the DB migration and synchronization
occur. To study the accuracy of the system, 5,000,000 (5 million) rows were migrated
from the source DB to the destination DB. Out of which 4000,000 (4 million) records were
migrated initially with dump functionality, and then new 1 million records were inserted
for checking the synchronisation functionality performed by SQLAlchemy with the help
of Pandas. After running the sync function, the overall records from the destination
database were evaluated.

On cursory analysis, it was observed that the destination database had a total of 5
million records that were migrated from the source database. For measuring the accuracy
of the system, the SHA256 hash was calculated from the source DB and matched with the
data level hash from the destination DB. Both the hashes match, concluding that all the
data records from the source were replicated to the destination accurately. Proving the
successful execution of the snapshot-streaming model using the dump and SQLAlchemy
synchronisation techniques.

6.5 Evaluation of Cloud Storage Migration

6.5.1 Experiment 1 : Individual Transfer Time

This experiment deals with migrating a large file object across different cloud directions.
A sample file of 5 GB was used to evaluate and compare transfer performance along
the cloud directions. In the Python script, the flag was set according to the particular
scenario, and the output time was noted from the console as mentioned in Table 2.

17



From the observation, it is evident that the migration time from Azure to GCP is the
maximum, taking 531 seconds. where the GCP to Azure migration took the least time
for transferring a 5 GB object which is 41.336 seconds.

6.5.2 Experiment 2 : Reliability And Accuracy Analysis

To assess the reliability of the migration system, 10,000 objects of small and medium size
were migrated from the source to the destination object store. For the system to provide
100% reliability, it was expected to receive all 10,000 objects at the destination cloud
storage. This experiment involved a negative testing scenario where script execution was
terminated abruptly and restarted to examine the fault tolerance and resiliency features
of the proposed design. To evaluate the accuracy, the MD5 hash of the source files was
compared with the destination file.

Despite an unexpected interruption that forced the script to terminate abruptly, the
remaining files were seamlessly resumed and migrated without any data loss, corruption,
or duplication. This remarkable resilience was achieved through a robust mechanism that
enabled the script to pick up where it left off without compromising the integrity of the
data. To confirm the accuracy of the migration, the hash values of the files in the source
and destination folders were matched, confirming that the data was transferred without
any errors or inconsistencies.

6.6 Discussion

Experimental analysis of the proposed system is extremely promising, as the developed
implementation showcases the successful migration of a three-tier infrastructure. Section
6.2 depicts a new use case of Terraform as a resource discovery tool. This could benefit
the organizations by expanding upon the functionality of the existing Terraform setup
to utilise it’s discovery features to explore the live infrastructure and migrate it to a
multi-cloud architecture. The results shown in 6.3 validate the interoperability of virtual
machines between the three major cloud providers and a workflow to migrate VMs across
CSPs. The approach is satisfactory and in alignment with the research question, as it
performs VM migration without any downtime. The implementation and experiment can
be improved by using compression techniques for the VM images to reduce the download
and upload time, which will not only speed up the migration but also save bandwidth
and the DTO cost associated with each cloud provider. Also, VMs with more types of
guest OS or larger disk sizes can be experimented with for a much wider feasibility study.

Analysis from 6.4 results signifies that the middleware-based DB migration system
is capable of migrating all the DB objects without any record loss to the destination
database with 100% accuracy, as verified with the hash calculation. This tool is designed
to utilize dump commands that are specific to the database engine, which limits its
generalizability, and extensions support more database engines without any modification.
A more sophisticated approach could be developed to build an engine-independent bulk
migration system. The experiment performed in Section 6.5 successfully validated the
migration system’s ability to handle unexpected terminations and maintain data integrity
for migrating large and extensive numbers of objects. However, it is important to note
that the negative testing scenario employed a single abrupt termination. Further testing
with multiple interruptions and longer downtime would be beneficial to fully assess the
system’s resilience under real-world conditions. Additionally, the performance of the

18



system could be further improved in terms of speed by utilising appropriate compression
techniques.

7 Conclusion and Future Work

This research aims to devise a feasible method for migrating standardized three-tier
infrastructure, comprising compute, storage, and databases, among the three major cloud
providers, namely AWS, Azure, and GCP. The objective is to promote interoperability
and mitigate the issue of vendor lock-in for SMEs. The primary challenge in designing
a multi-cloud-compatible VM migration system is the lack of standardization among
cloud providers. The proposed design overcomes the challenge of standardization by
leveraging high-level protocols provided by CSPs and abstracting away the complexities
of the migration process.

The proposed system’s compatibility and migration capabilities demonstrate its effect-
iveness in mitigating vendor lock-in for businesses. Using the proposed tool, an enterprise
can move their infrastructure, such as compute instances, database servers, and storage
buckets, across the clouds with minimal configuration, giving them flexibility and a wider
choice of platform. This system could be integrated with a decision-making system to
generate an automated migration trigger as per cost-saving or network optimization pref-
erences. The primary focus of the initial design was to achieve interoperability, while the
optimization of migration time through the implementation of suitable compression and
encryption techniques was not explicitly considered. This enhancement, however, could
significantly improve the proposed system’s security and efficiency.

Future research directions could explore the feasibility of conducting live migrations
of virtual machines across interconnected cloud environments while operating in het-
erogeneous hypervisor setups. This could be achieved by employing various migration
techniques, such as pre-copy, post-copy, hybrid, and block-level migration, to address the
challenges inherent in such cross-hypervisor migrations.

References

Addya, S. K., Satpathy, A., Ghosh, B. C., Chakraborty, S., Ghosh, S. K. and Das, S. K.
(2023). Comcloud: Virtual machine coalition for multi-tier applications over multi-
cloud environments, IEEE Transactions on Cloud Computing 11(1): 956–970.

Alonso, J., Orue-Echevarria, L., Casola, V., Torre, A. I., Huarte, M., Osaba, E. and Lobo,
J. L. (2023). Understanding the challenges and novel architectural models of multi-
cloud native applications – a systematic literature review, Journal of Cloud Computing
12(1).

Anglano, C., Canonico, M. and Guazzone, M. (2020). Easycloud: a rule based toolkit for
multi-platform cloud/edge service management, 2020 Fifth International Conference
on Fog and Mobile Edge Computing (FMEC), pp. 188–195.

Anglano, C., Canonico, M. and Guazzone, M. (2021). Easycloud: Multi-clouds made
easy, 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 526–531.

19



Bahaweres, R. B. and Muhammad Najib, F. (2023). Provisioning of disaster recovery
with terraform and kubernetes: A case study on software defect prediction, 2023 10th
International Conference on Electrical Engineering, Computer Science and Informatics
(EECSI), pp. 183–189.

Bhalla, Y., Hemamalini, V. and Mishra, S. (2023). Automating hadoop cluster on aws
cloud using terraform, 2023 International Conference on Networking and Communic-
ations (ICNWC), pp. 1–10.

Brikman, Y. (2019). Terraform: Up amp; running, O’Reilly Media, Inc.

Caceres, A. and Globa, L. (2022). State-of-the-art architectures for interoperability of
heterogeneous clouds, 2022 IEEE 16th International Conference on Advanced Trends in
Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 704–
709.

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., Pilli, E. S. and Kapil, D.
(2017). A critical survey of live virtual machine migration techniques, Journal of
Cloud Computing 6(1).

de Carvalho, L. R. and Patricia Favacho de Araujo, A. (2020). Performance comparison
of terraform and cloudify as multicloud orchestrators, 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 380–389.

Fowler, M., Stafford, R., Mee, R., Hieatt, E., Foemmel, M. and Rice, D. (2003). Patterns
of enterprise application architecture, Addison-Wesley.

Georgiou, M. A., Paphitis, A., Sirivianos, M. and Herodotou, H. (2022). Hihooi: A
database replication middleware for scaling transactional databases consistently, IEEE
Transactions on Knowledge and Data Engineering 34(2): 691–707.

Grozev, N. and Buyya, R. (2014). Multi-cloud provisioning and load distribution for
three-tier applications, ACM Trans. Auton. Adapt. Syst. 9(3).
URL: https://doi.org/10.1145/2662112

Gupta, M., Chowdary, M. N., Bussa, S. and Chowdary, C. K. (2021). Deploying ha-
doop architecture using ansible and terraform, 2021 5th International Conference on
Information Systems and Computer Networks (ISCON), pp. 1–6.

Joshua Gans, M. H. and Masri, M. (2023). Economic analysis of proposed regulations of
cloud services in europe, European Competition Journal 19(3): 522–568.
URL: https://doi.org/10.1080/17441056.2023.2228668

Kargatzis, D., Sotiriadis, S. and Petrakis, E. G. (2017). Virtual machine migration in
heterogeneous clouds: from openstack to vmware, 2017 IEEE 38th Sarnoff Symposium,
pp. 1–6.

Kaur, K., Bharany, S., Badotra, S., Aggarwal, K., Nayyar, A. and Sharma, S. (2022).
Energy-efficient polyglot persistence database live migration among heterogeneous
clouds, The Journal of Supercomputing 79(1): 265–294.

20



Kaur, K., Sharma, D. S. and Kahlon, D. K. S. (2017). Interoperability and portability
approaches in inter-connected clouds, ACM Computing Surveys (CSUR) 50: 1 – 40.
URL: https://api.semanticscholar.org/CorpusID:30625897

Kiranbir Kaur, Sandeep Sharma, K. S. K. (2020). A middleware for polyglot persistence
and data portability of big data paas cloud applications, Computers, Materials &
Continua 65(2): 1625–1647.
URL: http://www.techscience.com/cmc/v65n2/39897

Kumar, P. M. A., Pugazhendhi, E. and Nayak, R. K. (2022). Cloud storage performance
improvement using deduplication and compression techniques, 2022 4th International
Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 443–449.

Liu, B., Xin, Y. and Zhang, C. (2022). A solution for a disaster recovery service system in
multi-cloud environment, 2022 International Applied Computational Electromagnetics
Society Symposium (ACES-China), pp. 1–4.

Mseddi, A., Salahuddin, M. A., Zhani, M. F., Elbiaze, H. and Glitho, R. H. (2021).
Efficient replica migration scheme for distributed cloud storage systems, IEEE Trans-
actions on Cloud Computing 9(1): 155–167.

Namdeo, B. and Suman, U. (2021). A model for relational to nosql database migra-
tion: Snapshot-live stream db migration model, 2021 7th International Conference on
Advanced Computing and Communication Systems (ICACCS), Vol. 1, pp. 199–204.

Piper, B. and Clinton, D. (2023). CloudTrail, CloudWatch, and AWS Config, pp. 193–221.

Raj, S., Mangal, N., Savitha, S. and Salvi S., S. (2020). Virtual machine migration in
heterogeneous clouds - a practical approach, 2020 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6.

Shi, W., Liu, T. and Huang, M. (2020). Design of file multi-cloud secure storage system
based on web and erasure code, 2020 IEEE 11th International Conference on Software
Engineering and Service Science (ICSESS), pp. 208–211.

Tomarchio, O., Calcaterra, D. and Modica, G. D. (2020). Cloud resource orchestration
in the multi-cloud landscape: A systematic review of existing frameworks, J. Cloud
Comput. 9(1).
URL: https://doi.org/10.1186/s13677-020-00194-7

Zhu, Q.-H., Tang, H., Huang, J.-J. and Hou, Y. (2021). Task scheduling for multi-
cloud computing subject to security and reliability constraints, IEEE/CAA Journal of
Automatica Sinica 8(4): 848–865.

21


	Introduction
	Related Work
	Cloud Resource Discovery
	Virtual Machine Migration
	Database Migration
	Storage Migration

	Methodology
	Automated Cloud Discovery
	Virtual Machines Compatibility
	Database Migration
	Object Storage Migration

	Design Specification
	Implementation
	Cloud Resource Discovery
	Azure Resource Recognition
	AWS Resource Recognition
	GCP Resource Recognition
	Terraform State Discovery

	Virtual Machine Migration
	Database Migration
	Storage Migration

	Evaluation
	Cloud Testbed Specifications
	Evaluation of Cloud Resource Discovery
	Evaluation of Cloud VM Migration
	Experiment 1 : Individual Process Time
	Experiment 2 : Total Transfer Time

	Evaluation of Cloud Database Migration
	Experiment 1 : Reliability Analysis
	Experiment 2 : Synchronization Accuracy Analysis

	Evaluation of Cloud Storage Migration
	Experiment 1 : Individual Transfer Time
	Experiment 2 : Reliability And Accuracy Analysis

	Discussion

	Conclusion and Future Work

