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Abstract

Effective data processing at the source is necessary for the Internet of Things
(IoT), frequently necessitating high speeds without depending on high bandwidth.
Cloud computing and fog computing (FC) are used in tandem to achieve this.
Fog computing is especially useful for real-time applications that require quick
internet access. Meeting dynamic real-time needs is one of the main issues in FC,
nevertheless, because of the restricted resources of fog nodes. As such, a primary
challenge in the fog context is how best to distribute work across fog nodes. It
is imperative to use scheduling algorithms that considers the diversity of the fog
nodes and their job completion in order to minimize many aspects, such as cost
and energy usage.

This work highlights important obstacles in the body of literature and provides
a thorough taxonomy to improve our comprehension of the research questions per-
taining to task scheduling in the cloud-fog environment. As a result, it offers a
thorough analysis of work scheduling strategies in this particular setting, highlight-
ing both their benefits and drawbacks. Multiple publications are reviewed in each
of the four main kinds of approaches that are examined: deterministic mechanisms,
heuristic-based, machine learning-based, and metaheuristic-based. A number of
other factors include time taken for execution, utilization of resource, processing
latency, network bandwidth, power consumed, execution deadlines, turn around
time, unpredictability, and complexity are also compared across different strategies
in the study.

The results show that 23% of the scheduling algorithms use machine learning
algorithms, 38% use metaheuristic-based techniques, 30% use heuristic-based ap-
proaches, and 9% use deterministic techniques. Remarkably, energy usage stands
up as the most important characteristic discussed in most of the articles, receiving
19% of the attention.

1 Introduction

As digital technologies develop further, a substantial amount of data is generated from
various origins. Although cloud-computing systems can process and store this data, they
are not able to fulfil the Internet of Things’ (IoT) security and mobility requirements.
To address these concerns, Cisco unveiled ”Fog Computing (FC)” in 2012. By doing
operations locally and using resources close to loT edge devices, fog processing brings the
services offered by cloud near to the network’s edge and limits the volume and duration



of data transport. By using local resources, network traffic load is reduced, costs are
minimized, latency is lowered, secrecy and security are improved, and so on.

When fog computing lacks effective resources, cloud resources are used, but are higher
cost. The concept of fog computing and edge computing, which both are based on the
concept for spreading processing resources much closer to end devices, are sometimes
used interchangeably in the literature. These names will be used interchangeably to refer
to this notion in this work.

When it comes to cloud-fog designs, task management is crucial. Optimal utiliza-
tion of cloud and fog resource is imperative in order to enhance a number of qualitative
factors, including job completion time, operating expenses, and energy usage. In a fog en-
vironment, work scheduling is crucial to cutting expenses and processing/communication
delays. However, choosing an effective work scheduling technique is a problem that re-
searchers face frequently. In order to achieve this objective, a comprehensive analysis and
assessment of work scheduling strategies is necessary in the fog environment.

Many academics have studied the features of fog environments various work scheduling
strategies. Within the framework of fog computing, a variety of job scheduling algorithms
are categorized and examined into 4 primary categories: static, heuristic, dynamic, and
hybrid. Along with outlining opportunities, the assessed qualitative factors for each
approach, such as reaction time, cost, and energy use are also important. In the com-
prehensive evaluation of job scheduling algorithms in cloud-fog paradigm, various task
scheduling tools and the strengths and drawbacks of these methods are discussed. There
are also unresolved problems and potential paths for further research in the field of task
scheduling. Similar to this, some publications worked on fog task scheduling, emphasizing
heuristic and meta-heuristic methods and weighing the benefits and drawbacks of each
technique. Nevertheless, their categorization did not incorporate the most current works
in the field of fog-cloud job scheduling, nor did it cover more expansive categories like
deterministic techniques.

In order to provide researchers with useful information for determining future direc-
tions for improving scheduling techniques, the studies also looked at qualitative factors
and tools utilized in fog task scheduling. In the end, it divided the fog computing service
management challenge into five different categories, evaluating the offered algorithms
based on certain metrics and assessment tools and talking about the advantages and
disadvantages of each research.

The study aims to address the following research question:

How the implementation of Pareto Optimization algorithm effectively enhance the
operational efficiency and significantly reduce the energy consumption in fog and edge
environments, addressing challenges associated with distributed computing environments.

The structure of the paper is as follows: Section 2 provides an official definition of fog
computing along with an outline of its principles and advantages. In Section 3, problem
is defined and iFogSim Design is explained. Section 4 covers the methodology, while
sections 5 and 6 contains the details related to design specification and implementation
of the approach. The iFogSim scalability test findings are shown in Section 7, where two
basic resource management strategies are contrasted based on delay, energy consumed,
and network utilisation. The article is concluded in Section 8, which also suggests possible
next directions.



2 Related Work

Numerous research works have examined ways to provide affordable computing and ser-
vice provision in Mobile Cloud Computing (MCC) architectures. The Energy-efficient
dynamic Computation Offloading and Resources Allocation Scheme (ECOS) is an innov-
ative solution to address challenges in Vehicular Fog Computing (VFC). By leveraging
nearby vehicular nodes, VFC reduces cloudlet node overload, reduces service latency, and
conserves energy in battery-powered cloudlets [Yadav et al.| (2020).

To minimize energy consumption while meeting latency requirements, offloading task
and allocating resources to them, in Mobile Edge Computing (MEC) are optimized in
this paper. As a promising architecture, MEC can significantly decrease the consumed
energy for mobile devices and ensure satisfactory QOS in time-sensitive applications. This
problem is decomposed into 3 smaller points: offloading selection, enhancing transmission
energy, and allocation of sub carriers and processing resources Zhao et al. (2021)).

By leveraging the emerging Fog computing paradigm, this study discusses challenges
in resource allocation and edge application management in environments having restric-
ted processing capabilities and resources. In Multi-objective IoT Application Placement
in Fog (MAPO), a novel Pareto-based strategy is introduced to optimize application
placement near data sources. This study utilizes real-world use case and simulated test
beds to assess the effectiveness of MAPO [Mehran et al.| (2019).

Fog computing (FC) and the Internet of Everything (IoE), traditionally treated as
separate paradigms, are explored in this paper Baccarelli et al. (2017). The authors
describe the basic blocks and services of the technological platform and the used protocols.
The paper concludes by situating the FoE model with broader landscape of recent work
done, offering insight into its relevance and contribution to the field.

Rani and Garg| (2021) address the challenges of energy consumption by cloud centers
and propose a user friendly solution based on pareto based multi-objective discrete ant
lion optimization algorithm(PBMO-DALO). The proposed algorithm uses pareto domin-
ance parameter with spatial crowding distance to obtain optimal results. The algorithm’s
superiority over competing approaches is demonstrated showing uniform diversity and
improved convergence.

Zhang et al| (2010) explores cloud computing as a recent paradigm for delivering
services over the Internet. Despite its enormous potential, the paper emphasizes that
cloud computing technology is still in its early stages with numerous issues to address
despite its on-demand resource provisioning and scalability appeal to business owners.

Towards real-time, latency-sensitive applications, Mahmud et al.| (2018) examines the
escalating proliferation of IoT devices and sensors. To meet this demand, Fog computing
is introduced, positioned as an middle layer in between the edge devices and the cloud
centers. IoT fog computing extends computing, storage, and networking capabilities
beyond traditional cloud computing. Based on this taxonomy, current research gaps
in fog computing are identified. Moreover, the chapter provides valuable insights for
advancing the field based on the identified challenges and gaps.

Data centers with significant energy consumption and operational costs are being
established to meet the escalating demand for computing power Beloglazov and Buyyal
(2010). To maintain high Quality of Service (QoS) for customers in modern Cloud com-
puting environments, a power-performance trade-off must be addressed. A virtualized
cloud data center resource management policy is introduced in the proposed solution.
VMs (Virtual Machines) are continually consolidated through live migration and idle



nodes are powered off with a focus on optimizing power consumption. The study’s eval-
uation results indicate substantial energy savings from dynamic VM reallocation, so the
policy should be developed and implemented further.

Dastjerdi and Buyya (2016) highlights how conventional cloud computing or edge
computing systems cannot cope with huge amounts of data generated by the smart mobile
Devices. In order to address these drawbacks, fog computing is the introduced paradigm
to handle these unique challenges posed by [oT in managing and processing massive data
volumes.

As the IoT devices and robust cloud services become more widespread, edge computing
is emerging as a novel paradigm. Edge computing focuses on processing data at the
network’s edge, Shi et al.| (2016 addressing challenges such as ensuring data privacy
and security, conserving battery life, reducing bandwidth costs, and meeting response
time requirements. This paper presents case studies ranging from cloud offloading to
applications in smart cities and smart homes.

The notion of mobile edge computing (MEC) is explored in [Mao et al.| (2017) in
vision of the IoT and 5G-communications, which are driving the paradigm shift in mobile
computing. As a result of MEC, mobile computation, network management, and data
management are decentralized to the network edges, such as base stations and access
points, making it possible to run intensive and real-time computing applications on mobile
devices with limited resource. In order to realize the 5G vision, MEC can significantly
reduce latency and mobile energy consumption. An overview of state-of-the-art MEC
research is presented, focusing on the management of joint radio- and computational
resources.

The shift in trend from cloud computing to Edge Computing model is discussed in Mao
et al| (2017). It discussed the MEC models and green MEC with heterogeneous servers.
The study also delves into challenges in server selection, cooperation and computation
migration including two time based management of resources, task partitioning online
and large scale optimizing.

Yi et al| (2015)) discusses the drawbacks and limitations of cloud computing and
propose a comprehensive definition of fog computing as a solution for latency and mobility.
The three layered architecture of fog, end user and cloud is discussed and an experimental
fog computing platform is implemented using OpenStack for lower latency and higher
bandwidth than cloud.

Ubiquitous demand for high quality mobile service and explosive growth of mobile
traffic is discussed in [Luan et al. (2015). The paper highlights the limitation of cloud
computing lacks of location awareness and motivations behind fog computing by com-
paring both computing paradigm. The article explored communication challenges and
integration with emerging technologies like 5G, SDN and NFV.

5G heterogeneous networks for Mobile Edge Computing demands for resource intens-
ive mobile applications, but with the limited capabilities of smart mobiles devices energy
efficient computation offloading(EECO) schemes is required. A solution classifying mo-
bile devices, allocating radio resources and determining priorities is proposed by Zhang
et al.| (2016) to minimise energy consumption while meeting latency constraints. The
demonstration reduces 18% energy consumption when compared with local implementa-
tion highlighting the effectiveness of EECO scheme.

Bellavista et al.| (n.d.) explored the challenges while integrating fog computing with
Internet of Things(IoT). The limitations of two layered architecture are highlighted and
a unified architecture model is presented with fog computing closer to IoT devices. The



research emphasizes the need for different IoT applications solutions that can adapt with
the guidelines for developing fog computing based applications.

2.1 Pareto Optimization Algorithm

Pareto optimization, often-referred to as multi-objective optimization, is an effective
method for resolving conflicts between several competing objectives in optimization situ-
ations. Energy efficiency and latency reduction are the main goals of fog and edge job
offloading.

Iteratively producing a collection of non-dominated solutions—also referred to as
Pareto optimum solutions—is how the Pareto optimization method operates. Since no
solution can enhance one goal without making another worse, these solutions offer the
optimum trade-offs between the objectives [Ngatchou et al. (2005).

By framing the challenge as a multi-objective problem, fog task offloading may be
solved using the Pareto optimization technique. The jobs to offload and the fog or edge
nodes to transfer them to would be the decision factors in this case. Reducing latency
and energy usage would be the goal functions.

For fog and edge job offloading, a number of other techniques have been developed,
including:

Round Robin (RR) |[Pradhan et al.| (2016]) is a straightforward method that distributes
work across fog or edge nodes in a round-robin manner. Although RR is simple to use,
latency or energy efficiency are considered in this method.

The First Come, First Served (FCFS) algorithm distributes work to edge or fog nodes
according to the order in which it is received. FCFS is likewise simple to use, however it
ignores latency and energy economy.

Natural selection serves as the inspiration for the Genetic Algorithm (GA), a meta-
heuristic algorithm. Although GA has shown to be successful in offloading fog and edge
tasks, it can be computationally costly. Another metaheuristic algorithm that draws in-
spiration from ant behavior is Ant Colony Optimization (ACO). It was demonstrated to
be successful in fog and edge job offloading, ACO can be parameter sensitive.

2.2 Task scheduling in Fog Computing

Several approaches have been developed in the field of cloud-fog integration to simplify the
administration of these systems |Alizadeh et al.| (2020). Through workload distribution,
these methods help reduce server congestion on cloud infrastructure. The edge devices
dispatch their requests to the cloud or fog throughout this procedure. After the requests
have been assessed within the fog, they are either processed there or sent to the cloud,
based on the particular characteristics of the jobs.

Task scheduling takes on considerably more significance in scenarios such as the In-
ternet of cars (IoC), where a variety of linked cars create huge amounts of data. Effective
scheduling techniques are essential for reducing latency and guaranteeing timely task
completion, which improves traffic control and vehicle safety.

Fog computing presents a complex work scheduling difficulty. The dynamic character
of the fog paradigm, marked by fluctuating workloads, and mobility, is the cause of this
complexity. As such, there is a need for efficient methods of managing resources and
scheduling tasks in the fog-cloud paradigm. To tackle the issue, some approaches and



strategies include objective based optimizing, ML based techniques, or heuristic based
approach.

Approaches based on heuristic techniques use pre-established rules or heuristics to
distribute jobs across fog nodes while taking workload, availability, and proximity into
account. These techniques are simple and effective, but they might not always produce
the best results. Consequently, in order to improve scheduling performance, several re-
searchers have improved heuristic algorithms, especially when edge nodes are clustered
together on edge network to execute jobs decentralised and in parallel. Based on kind of
operating system, execution time, or arrival time, these techniques groups tasks together.

However, optimization-based approaches formulate the scheduling of tasks challenge
as an optimization issue and use techniques such as linear or integer programming to
discover the optimal solution. These techniques can produce ideal results, but they can
be computationally taxing.

2.3 Approaches for the Selection of Research

A thorough analysis of earlier research is a step in the Systematic Literature Review (SLR)
process. In this part, we introduce an SLR-based method for examining fog computing job
scheduling strategies. To find pertinent papers, we used six well-known databases: ACM,
IEEE, ScienceDirect, Springer, Wiley, and MDPI. In order to streamline the selection
process, we created a search string by combining a set of search terms including logical
operators AND and OR. The search query looks like this:

(Scheduling OR Task scheduling) AND (Fog OR Fog Computing)

First, we searched the designated databases using keywords. We sifted the research
and took into consideration those that were published after the beginning of 2018 due to
the large volume of search results. Then, we narrowed down our choices by assessing the
research according to their names and keywords. In order to further reduce the selection,
we carefully read the study abstracts in the third phase. After carefully going over all
of the material, we ultimately kept just the papers that were completely relevant to our
study question for additional analysis.

2.4 System Architecture and Problem Synopsis

The cloud and edge combined offloading architecture is designed because cloud servers
provide large computational power and storage resources along with a wide range of
applications, on the other hand, edge servers is better in inexpensive communication, fast
turn around times, and enhanced adaptability. The benefits of edge and cloud servers are
seamlessly combined in this design, enabling the full utilisation of a variety of computing
resources. Based on the unique needs of various applications, tasks are automatically
offloaded to the best location, taking into account variables like processing capability,
energy consumption, and latency. Three basic layers make up the architecture, as shown
in Figure|[l} the cloud layer, the edge layer, and the end-device layer.

The end-device layer includes a diverse range of sensor. Such devices commonly have
compact sizes, battery life is constraint, and are capable of low computational and data
management. As a result, to process data even more, these devices use wireless access
points (APs) to have successful communication with cloud layer.

Majority of the edge layers is made up by the light weighted edge servers which
offers computing service with ultra low latency. To avoid any overloading or delay in the
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Figure 1: The architecture of the three-layer fog computing

communication, these edge servers can transmit workloads to cloud servers for processing
using wired connections.

Multiple cloud-based servers with abundant processing and storage capacity are housed
in the cloud layer, serving users concurrently from different geographic locations. On the
other hand, higher communication costs are a result of more users using the system at
the same time and longer data transmission lengths to different levels.

2.5 Resource Distribution

Innovative methods to resource allocation difficulties in Mobile Edge Computing (MEC)
have been observed in recent study. The resource allocation problem in a multi-user MEC
system was solved by applying an optimisation framework based on reinforcement learn-
ing. The introduction of a method for user pairing that prioritises maximum classification
differences and sub-maximum viewpoints was based on optimising non-orthogonal mul-
tiple access (NOMA) system capacity improvements. Performance-criticizing learning
algorithms were used in conjunction with asynchronous advantage participation to solve
complex dynamic resource allocation challenges. Through deep reinforcement learning,
the study investigated decentralised strategies for inter vehicle communication. The study
investigated the best resource allocation techniques for ultra-dense networks (UDNs) by
utilising an algorithm that relies on the alternating direction multiplier approach. Re-
search also explored methods for allocating resources to reduce average service response
times.

Additionally, studies looked at workload distribution in MEC, employing different
strategies to reduce latency. These techniques included data insertion strategies inside
MEC processes, genetic algorithm-based computing resource allocation, and game theory
and Particle Swarm Optimisation (PSO) [Shu and Li (2023)) based MEC job allocation
strategies. These strategies aimed to efficiently lower data placement expenses.

The main goals of task offloading were to break down tasks into smaller components,
choose between local execution and offloading, figure out the number of offloading tasks,
then create similar edge server situations. Nevertheless, problem of assigning the jobs
produced by various smart devices to heterogeneous servers on edge is brought about by
the everyday use IoT technologies. The complex link between dumping costs and time



delays has not been well addressed in the existing literature, nor has it been modelled
successfully for this multi-objective situation.

3 Problem Defined

Among the many smart devices that industrial facilities utilise in the context of the
Industrial Internet of Things in the 5G environment are smartphones, smart cameras,
and augmented reality (AR) devices—all of which are referred to as "multi-user.” These
gadgets are essential to intelligent production lines in manufacturing environments. The
tasks created by these smart devices typically demand the engagement of numerous Mo-
bile Edge Computing (MEC) servers, due to the significant volume of data that has to
be processed; this is known as the "multi-MEC” feature. The purpose of this work is to
verify the effectiveness of using the Particle Swarm Optimisation offloading technique for
detecting suitable offloading resource and, as a result, to produce task offloading results
that minimise the total task processing latency.

In this study, we assume the existence of M smart devices and N MEC servers, oper-
ating in an Industrial Internet of Things context. Every smart device creates tasks that
are assigned to be computed on a particular MEC server. Note that we only handle non-
divisible tasks, and every smart device sends in a single task to be processed. It is possible
to carry out each job locally or by offloading it to MEC servers for distant execution.
Each job may therefore be handled at one of N+1 possible places, which includes the
possibilities of local execution or offloading to N MEC servers. Three core components of
the study are examined: the computational model, the energy consumption model, and
the time delay model. Table [2[ provides clarification on the meanings of the symbols used
in the system modelling.

3.1 Model of time delay

The overall delay for completing job i on server j includes transmission delay with server
delay. This may be computed as:
,’sz = Tt{"an,i + T’rZzec,i

We create the notation where Di is the amount of data needed to execute a job, and
C; is the quantity of CPU cycles required to process each bit of data. Consequently,
D; multiply by C; yields the volume computation. Moreover, the job volume divided by
the MEC server’s CPU frequency yields the MEC calculation latency, as shown by the
following equation:

mec,t Cs,j

The channel transmission rate may be obtained using Shannon’s formula in order to
factor in the MEC’s transmission delay in our calculations. In this instance, we have the
subsequent:

where W denotes transmission bandwidth, Ny denotes noise power spectral density, S;
shows the power transmitted by individual device, and A; ; is the gain from device i to j



Figure 2: Symbol Table for MEC Task Allocation

Symbol | Meaning

D The amount of data for the i-th task

Ci CPU cycles needed to process each bit of data

Cui CPU frequency of the i-th device

Csj CPU frequency of the j-th MEC server

w Transmission bandwidth

Si Transmission power of the i-th device

Aij Channel gain

No Noise power spectral density

Fij Transmission rate from local device i to the MEC server j

Emas Maximum energy consumption constraint of the j-th MEC server

g Penalty factor

T The total delay from local device i to the MEC server j

Ey The energy consumption from the i-th device to the j-th MEC server

Ecaleij Calculation energy consumption from the i-th device to the j-th MEC server
Eerangij Transmission energy consumption from the i-th device to the j-th MEC server
Trmesif Calculation delay from the i-th device to the j-th MEC server

Terani Transmission delay from the i-th device to the j-th MEC server

M The number of tasks

N The number of MEC servers

server. Consequently, it is possible to turn the transmission delay into:

tran,g
’ Tij

Next, for j MEC server, the overall latency in finishing the i job is determined by:

Cs,j W * (1 + W*—No)

3.2 Model of energy consumption

The i job on the j computing server has 2 components to its power usage: the energy
consumed in the processing and computation and the energy used in the transmission.

El = F’

cale,i

+ Eiran,z‘
where U denotes voltage and R; is dependent on the effective switching capacitance.
Transmission energy use is incurred by the tasks sent to the server. Given that the
delay model has computed the delay in transmission, the energy consumed in transmission
is
B} i =Six T}

tran,i tran,i

where Si stands for each local device’s transmit power. Next, the whole amount of

energy used is:
El =R xU*xC,; % D C; + —— + S,

Tij



3.3 Calculation model:

Reducing the delay issue is the main goal in the current situation. On the other hand,
if we ignore the queuing delay, there’s a chance that a particular MEC server with more
computational power will find itself in a scenario where it’s overloaded. The majority
of jobs are delegated to this MEC server as queuing time is not a factor, which results
in high energy consumption and maybe exceeds its maximum energy consumption limit.
In these situations, job offloading to a different MEC server can improve performance
while reducing strain on the severely loaded server. In order to achieve a more balanced
approach, we thus suggest to introduce a penalty function and divide the load equally
among all computing servers.

Func(X) =Y > T/ + P(X)
P(X) = (Z Z(EZ — Ejua)) % 9

The power usage limit for the j computing server is denoted by E? . The offloading
vector X = x1, x2,..., xM is utilized, with total job size to be executed is represented
by X. For each element xi, there are two definitions: either xi = 0 (local execution) or
xi € [1, N] (identification of the MEC server used to handle the particular job). Weights
for the penalty and delay functions are included to improve the optimization of the
method.

The above introduced set of equations and computational model specifically centred
around the task allocation in fog and edge computing and play important role in iFogSim
simulator. Although the manual calculations doesn’t include the use of these equations,
they were essential for iFogSim decision making process. The outlined models influenced
how tasks are allocated to devices in fog and edge environment withing the simulation,
replicating the complex dynamics of fog and edge computing. The simulator allowed
us to observe critical metrics by executing task allocation based on these models. It is
crucial to recognize the importance of these models and equations for understanding the
basics of energy consumption in fog and edge computing. Their integration in iFogSim
simulator enhance the understanding of simulator’s functionality and its alignment with
real world scenarios.

3.4 Mobile Edge Computing

ETSA in 2014, introduced Mobile Edge Computing (MEC) to offer mobile devices with
computing powers of cloud servers. The host level and the system level are the two sep-
arate levels that make up the MEC reference architecture, as described by ETSA in the
literature. A MEC platform manager, infrastructure manager, and a host are included
at the MEC host level. MEC orchestrators, management of life-cycle of user applica-
tion, and operator support systems are all included at the system level in MEC. Beyond
the MEC system, there is also a network layer that includes local networks, external
networks, cellular networks, and relevant external elements that represents MEC system
entry scenario. [Ben Sada et al| (2023]) discussed a multi layered task offloading frame-
work including the cloud, device and cloudlet layers. When this framework is compared
to more sophisticated compute offloading technologies, it performs better.
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MEC gives the traditional Radio Access Network (RAN) low latency, high bandwidth
transmission capabilities, and the ability to conduct localised business operations. It
also makes it easier to roll out services across small distances. This reduces the amount
of bandwidth and latency that mobile networks must handle. During business down-
turns, localised deployment plays a crucial role in lowering network load and bandwidth
demands, which results in lower network operating costs and better network resource
utilisation. Figure 3| shows the computation offloading flow diagram.

The resources are allocated v
according to the algorithm scheme

7 —b[ Local computation

[ Updating server parameters I
[ Do offloading ]—*

A4
( The end )

Figure 3: Flow diagram for computational offloading

3.5 Application Situations for Edge Computing in Mobile

One important component of Mobile Edge Computing (MEC) is computational offload-
ing methods, which have found a wide range of applications in different circumstances.
MEC has been deployed in important domains like 5G, IoT, Vehicular communication,
automated vehicles, AR/VR, or other contexts in which offloading plays crucial role be-
cause of its close proximity to edge devices also they innate the computing capabilities
and storage power.

3.5.1 IoT, or the Internet of Things

Before these data packets reach the main network, MEC is useful in processing and ag-
gregating the tiny packets created by IoT services. This method improves the connection
and adaptability of IoT apps, which is especially helpful for battery-operated IoT devices.
By reducing the time consumed in transmission between devices and servers, MEC adop-
tion improves the quality of services and devices while also using less battery life | Mehrabi
et al. (2019). Supporting long-term corporate goals requires this.
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The active IoT devices globally is predicted to exceed 10B by year 2020 and rise
to 22 billion by 2025, according to a December 2019 IoT platform study issued by IoT
Analytics, a research organisation that specialises in Internet of Things. These gadgets
gather a tremendous quantity of data, thus sending it all to the cloud service centre for
processing would put a heavy demand on the distant cloud.

Unfortunately, a lot of IoT devices have low processing power or are incapable of
processing data effectively. By minimising energy usage and reducing transmission time
between servers and devices, MEC deployment improves the continuity for devices to
meet extended business objectives. For instance, the compute offloading method of User
Equipments (UEs) with an emphasis on Mobile Edge Computing (MEC) in the context
of the Internet of Things.

3.5.2 Services for Smart Buildings

These days, a lot of smart buildings are developing integrated technologies, and the
majority of these systems need or produce local data. Thus, a local IoT gateway is
employed to enable data connection across processing equipment. Processing and data
control, such as entry control, temperature management, intelligent signalling, object
monitoring, and surveillance, are handled by MEC ETSI-Industry-Specification-Group
(2020)).

The data is moved closer to the device enabling quick processing and storage than
central servers. This suggests that rather than constantly depending on a central comput-
ing environment, MEC have capacity to function locally. The general effective objective
of smart buildings is aligned with the design of edge computing. In addition to lowering
latency, it also results in considerable cost savings since data is processed more quickly,
allowing for quicker reaction times and real-time decision-making. The edge system has
helped in more efficient understanding of these variations, analysing how they affect the
underlying framework.

3.5.3 Task Offloading for MEC

The act of moving computational work from Mobile Devices (MDs) to expanded cloud
or grid platforms is known as computing offloading Feng et al. (2022)). This allows end
applications to respond to user requests to return calculated output. With the Mobile
Edge computational (MEC) technology, users can summon computational capacity near
the region for data computing by using MEC server as an intermediary. This strategy
deviates from the standard practice of sending data to a central cloud located at a distance
for processing. Figure [4] shows the flowchart that illustrates the MEC system’s compute
offload procedure.

A computation task can be run at the edge server or locally. Local execution entails
the computing task and output result being completed by the mobile device itself. An
offloading request must be made prior to remote execution. The MEC server assesses if
the user’s service request is legitimate: The MEC server updates the status of system
energy consumption and computational resources based on resource utilisation and user
task data volume, if the request is accepted. The service cannot be rendered to an
unauthorised user. The server computes the results and sends them back to the mobile
device after processing the tasks supplied by the device in accordance with the computing
resources that have been allotted.
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Figure 4: Process of unloading tasks

In edge settings, heuristic algorithms are crucial in addressing the problem of task
scheduling by guaranteeing the best possible resource allocation for activities that users
request. Rather of using exhaustive search techniques, these algorithms provide useful and
efficient answers by depending on approximations, recommendations, or rules of thumb.
The Grey Wolf optimization, Particle Swarm Optimisation and other key prototypes are
some examples in this field.

Heuristic algorithms are excellent at discovering workable solutions when faced with
limitations, but they have two drawbacks: they tend to converge slowly and become
trapped in locally optimum solutions. The unanticipated difference between viable and
ideal solutions might make it difficult to satisfy the criteria of low-delay activities. The
reinforcement learning technique Wang et al.| (2021) is used to solve scheduling issues in
intricate edge settings as a reaction to these difficulties.

By continually correcting disparities between feasible and optimum solutions, rein-
forcement learning speeds up convergence and raises the general quality of solutions. It is
limited, nonetheless, when it comes to solving continuity and high dimension difficulties.
Deep learning techniques, on the other hand, are particularly good at identifying features
in data since they emphasize conveying perception and input. Deep Reinforcement learn-
ing make use of deep neural network to detect environmental features combining with
federated learning for resolving challenging system issues. With this method, edge nodes
act as intelligent agents that pick up scheduling rules without needing to know anything
about their surroundings at all.

3.5.4 iFogSim

The case studies that illustrates the process of modelling an IoT ecosystem and con-
trasts the approaches to resource management strategies are included in the article. For
evaluating the toolkit scalability, time taken and RAM used in the execution are ana-
lysed. The Internet of Things (IoT) paradigm presents an opportunity to include, into
the Internet environment, a variety of "things,” such as consumer electronics and house-
hold appliances, such as refrigerators, cameras, sensors, and medical equipment. This
idea opens up new avenues for creative interactions between people and objects, enabling
the development of urban areas, cutting-edge infrastructure, and maximising resource
use. Integration, transmission, and analysis of data produced by smart devices—Ilike
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sensors—are made easier by the Internet of Things. Real-time analytics and decision-
making have not received enough attention as a primary goal of IoT, despite the quick
development of technology facilitating connectivity and data transfer. Most IoT data
processing options available today processes data by shifting it to the cloud.
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Figure 5: Common Objectives for IoT Environments

Many Internet of Things applications, like stream processing, are dispersed by design
and are frequently integrated into environments with a large number of networked com-
puter devices with a variety of functionalities. An assessment environment is required
to investigate different resource management and scheduling strategies in order to pro-
mote the growth of real-time analytics in fog computing through innovation and pro-
gress. This includes factors like task allocation, migration, and consolidation as well as
operator—which is often used interchangeably with application module—and operator.
Real-world IoT environments are excellent testbeds, but they are sometimes too costly
and lack the repeatability and controllability needed for methodical testing.

In order to get around this restriction, we suggest using a simulator called iFogSim.
This simulator offers a regulated and affordable substitute for real-world IoT testing set-
tings by simulating resource allocation with application scheduling strategies over the
edge and cloud resources under different situations and conditions. In order to evaluate
resource management strategies in Fog settings, this article explores the architecture,
design, and implementation of iFogSim for analysing latency effects, energy consumed
in execution, cost of runing the operations Mahmud et al. (2022). To measure perform-
ance measures, the framework simulates network connections, cloud processing, and edge
devices. The detect-analyse-execute application paradigm is the main one being con-
sidered. In this approach, sensors broadcast data to Internet of Things networks, Fog
devices subscribe to and analyse sensor data, and actions are taken in response to the
insights obtained, which are then directed towards actuators.

4 Methodology

In this segment, fog computing is described formally as a decentralized computing and
processing model that expands and extends the services of cloud to the edge of the
network. As seen in Figure [0 this paradigm incorporates its own infrastructure and
seamlessly combines cloud and edge resources. The core of fog computing constitutes
integration of code development, connectivity, and data repository. The deployment of
application components in the cloud and on devices like smart gateways and routers that
are positioned in between endpoints and the cloud is essential to its functioning. Fog
computing is made to work with heterogeneous resources and interfaces, facilitate mobil-
ity, communicate with the cloud, and perform dispersed data analytics. This addresses
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the application requirements with minimal delay with extensive widespread coverage geo-
graphically.

Figure 6: Distributed Data Processing in Fog Environment

The Fog Computing integrates the advantages of both paradigm cloud and edge com-
puting. It uses on-demand scalability that cloud resources provide in addition to the
processing in close proximity of IoT devices, which optimises their response times. To
sum up, fog computing is a comprehensive strategy that combines the advantages of
cloud and edge computing to meet dispersed processing, real time response, and a broad
geographic footprint.

Fog computing is popular because it provides a number of benefits. Reducing network
traffic is one of the main advantages as it lowers the possibility of congestion and high
delay brought on by unchecked growth in data transfer. By using edge device resources,
fog computing creates a platform for data generation from sensors that can be filtered
and analysed. By placing filtering operators nearby to the source of data generated, can
significantly decrease the amount of traffic that is routed to the cloud.

The Fog computing reduces the response delay significantly, which is especially helpful
for critically complex applications that need analysis in actual time. Cloud robotics,
advanced aircraft control, and automatic brakes in automobiles are a few examples of
such uses. Cloud-based robotics situations, where fast data collection, control system
processing, and actuator input are critical to motion control effectiveness, might result
in delays or unavailability of the control system owing to communication issues. To
overcome this difficulty, fog computing executes control system operations near the robots
to guarantee real-time reaction times.

Finally, fog computing deals with certain bottlenecks that might occur in the paradigm
while processing the original data IoT devices generate, despite its nearly limitless re-
sources. By dispersing the data processing architecture and improving scalability, fog
computing can filter and process large amounts of incoming data on edge devices. To
summarise, fog computing’s efficacy and suitability for a range of crucial applications
stem from its capacity to decrease network traffic, minimise latency, and disperse data
processing.
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4.1 Architecture

As shown in Figure[7] the Fog computing environment has a hierarchical design with Fog
nodes dispersed across the network to act as bridges between the central cloud infrastruc-
ture and end devices or sensors. loT sensors are arranged in this configuration at the
lowest layer, distributed over different geographic regions. These sensors monitor their
surroundings and use gateways to send recorded results to higher layers for further ana-
lysis and decision making. Concurrently, IoT actuators operated in lowest tier, managing
systems or mechanisms. Actuators are made to react to changes in the surroundings that
are detected by sensors. Sensors transmit immutable values in sequences that make up
[oT data streams.

Any network component that may host application modules is called a Fog Device in
the architecture [Hu et al. (2017). Gateways connects the sensor devices to the internet.
These Fog devices include on-demand cloud resources that are dispersed across many
data centres.

loT Applications

Application Models

Resource Management

Infrastructure Monitoring

IoT Sensors and Actuators < 2
) Q@ @

Figure 7: Computer Architecture for Fog

For fog and IoT contexts, the architecture also specifies two application models and
three primary services:

Components for Monitoring: These components monitor the availability and use of
fog network and resources in the system. When necessary, the information is shared to
other services by keeping an eye on the functionality and state of the apps and services
installed on the infrastructure. Maintaining a thorough understanding of the effectiveness
and state of the system depends heavily on component monitoring.

The central part of the design is resource management, which includes components
that efficiently manage resources to satisfy application-level Quality-of-Service (QoS) re-
quirements while reducing resource waste. Placement and Scheduler components are
essential to this domain as they are crucial to keeping track of the resources that are
available (data supplied by the Monitoring service) and determining which application
modules are the best fit for hosting.

Power monitoring, which tackles the particular problem of energy usage in Internet
of Things solutions, is a crucial component of resource management. Energy manage-
ment is made more difficult by fog computing, which, in contrast to cloud data centres,
comprises a large number of devices with different power consumption characteristics.
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Consequently, the power monitoring component, which keeps track of and reports on
the energy usage of Fog devices during simulation, is an essential element to the design.
Prior to implementing applications and resource management strategies in production
environments, it is imperative to assess their influence on energy usage.

The application model used by the architecture to create applications meant to be de-
ployed in the Fog is Distributed Data Flow(DDF) model. According to this approach, an
application is thought of as a group of modules that stand in for different data processing
components.The modules i and j are inter dependent as the data from i module acts as
input for the j module. With the use of this application model, an application may be
shown as a directed graph, with application modules represented as vertices and data
flowing between them as directed edges. Two example applications that are modelled
using the Distributed Data Flow model are provided later in the study.

4.2 jMetal Framework
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Figure 8: jMetal Base classes

Multi objective optimization algorithm are used to optimize the problems that in-
volve two or more conflicting objectives. jMetal is a flexible and user friendly java based
framework developed for multi objective optimization using metaheuristic algorithm. The
core components [§ of the object oriented architecture of jMetal includes jMetal Solution
that represents potential solutions, jMetal Operator that defines operators on the solu-
tions, jMetal Problem which includes the optimization problems and jMetal Algorithm
including the abstract classes for metaheuristic algorithm Durillo et al.| (2010).

5 Design Specification

We made use of CloudSim’s fundamental event simulation features in order to develop the
iFogSim architecture’s functionalities. Data centers and other CloudSim entities exchange
messages using message passing procedures, more precisely sending events. Consequently,
in iFogSim, the interchange of events across Fog computing components is managed by
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CloudSim’s core layer. The figures [9] depict the main classes of iFogSim. We get into
these classes’ specifics and how they interact in this section. Modelling the components
of the architecture as iFogSim classes, the simulated entities and services compose the
iFogSim implementation.

The primary components of iFogSim include:

Entities: Fog devices, sensors, data centres, and other parts of the Fog computing
ecosystem are represented by these basic simulation units.

FEvents: Within the simulation, events contain actions or state changes. These events
help the many components of iFogSim communicate with one another and exchange
information.

Services: Fog computing component capabilities and behaviours, such resource man-
agement, monitoring, and power monitoring, are encapsulated as services in iFogSim.

Simulation Clock: An essential component that establishes the sequence in which
events in the simulation are carried out is the simulation clock.
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Figure 9: iFogSim main classes

These elements work together in a coordinated manner to replicate the dynamics of
fog computing, which makes it possible to assess resource management strategies and
application scheduling tactics. Built on top of CloudSim, the iFogSim architecture offers
a framework for investigating and evaluating the functionality of Fog computing systems
in a range of settings.

Several essential classes are included in the iFogSim implementation to represent vari-
ous elements of the Fog computing environment:

FogDevice: This class describes the physical properties of fog machines and how they
are connected to other fog machines, sensors, and actuators. It is derived from the Power-
Datacenter class in CloudSim and contains characteristics that define the communication
capability of Fog devices, including available memory, CPU information, storage capacity,
and uplink/downlink bandwidths.

Methods: This class’s methods manages the deployment of application modules, with
Fog device’s resources scheduling amongst them. These methods can be overridden by
developers to apply unique rules.

Sensing In the architecture, instances of this class stand in for IoT sensors. The class
contains attributes that specify the properties, connection, and output features of the
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sensor. It also contains information on the latency of the connection between the sensor
and the gateway Fog device. This class distributes the tuple inter-transmission times and
determines the rate of transmission.

Tuples These are the basic building blocks of the Fog, and in iFogSim, the class Tuple
instance is used to create these building blocks. Tuples, extends the CloudSim class
named Cloudlet, are identified by their kind, source and destination application modules,
and the amount of data they contain. Their processing needs are expressed in Millions
of Instructions per second.

An actuator This class defines the attributes of a network connection by modelling
an actuator. It has a property about the delay between the actuator and the gateway
connection. Additionally, this class defines a function to be called when a tuple from an
application module arrives.

Utilisation A directed graph employed to depict an application, where vertices are
modules that process input data and edges are the data relationships between these
modules. Applications may be modelled with the help of several classes and entities,
which makes for an all-encompassing representation in iFogSim. A number of extra classes
are included in the iFogSim architecture to represent various facets of fog applications:

Module App The App Module Class represents the processing components of fog
application. CloudSim PowerVm class is extended for defining this class. Directed Acyclic
Graph (DAG) represents the application using the output tuples created by AppModule
instance. Selectivity model can be employed for determining the volume of output tuples
based on burst or fractional selectivity.

AppEnd An AppEdge instance represents the interdependence of two application mod-
ules. The AppEdge class captures the tuple that each edge carries in addition with the
length of data wrapped with each tuples and the processing requirements. Periodic and
event-based application edges are supported by iFogSim. While event-based edges send
tuples whenever the module receives tuple permitted by selectivity model, tuples emission
is carried by that edge, periodic edges emit tuples at regular intervals.

AppLoop Control loops that the user may find interesting are specified using the Ap-
pLoop class. Control loops can be specified by developers in iFogSim in order to analyse
overall latency. An AppLoop constitutes modules list from loop starting point till where
it concludes. This enables programmers to specify and examine certain control loops in
the Fog application.

The sequential flowchart presented in Figure depicts the steps involved in tuple
emission and subsequent execution in iFogSim. A sensor creates a tuple and sends it to
the gateway that the sensor is attached to. On tuple arrival at the device, processTuple-
Arrival() callback function is executed. The tuple is transmitted right away, without any
additional processing, if it has to be forwarded to another Fog device. If the application
is set up on the receiver end device, the tuple is executed. checkCloudletCompletion()
method is executed subsequent to execution of the tuple. Apart from these fundamental
tuple processing features, iFogSim integrates simulated services, such as:
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Service for Monitoring Power

A power model (such as PowerModelLinear) is linked to every Fog device, which is an
instance of the FogDevice class. Tuple processing logic is included in the executeTuple()
function of the FogDevice class. It uses the associated power model to update the device’s
power usage in response to variations in resource utilisation.

Service for Resource Management

Placement and Scheduling are the two tiers of resource management that iFogSim offers
for applications. These can be extended and customised in accordance with particular
application needs because they are abstracted as distinct policies.

Application Placement and Application Scheduling are two essential components of
resource management for Fog applications in iFogSim:

Application Scheduling: When an application is submitted, the dispersion of modules
among fog devices is handled by placement policy. Certain goals, such minimising energy
use, optimising operating expenses, cutting down on network utilisation, and minimising
end-to-end latency, drive the placement process. Various placement policies are built
upon the abstract class ModulePlacement, which must be expanded to accommodate
new policies that are customised to meet particular needs.

Application Time Management Allocating the resource of fog to application module is
another level in this service. All active application modules on a device share its resources
evenly according to iFogSim’s default resource scheduler. On the other hand, developers
can override the updateAllocatedMips function in the FogDevice class to customize this
scheduling scheme. Because of this customization, the application scheduling strategy
may be adjusted to suit the particular requirements and features of the Fog environment
that is being used.

Placement and Scheduling, the two tiers of resource management, provide developers
the freedom to create and modify techniques that fit the unique objectives and limitations
of their Fog applications.
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5.1 A GUI for graphical interface

A graphical user interface (GUI) built into iFogSim makes it easier to describe the actual
network architecture. The iFogSim application logic serves as the foundation for this GUI,
which gives users the ability to graphically represent physical components including fog
devices, sensors, actuators, and connecting connections. Through the GUI, users may
enter the defining features of these entities. To save and load the developed topologies
interface, JSON format is used. Physical topologies may be constructed programmatically
with Java APIs or via the GUI.

Through GUI Users may visually create a topology by drawing and defining the
components of the physical network using the graphical user interface.

Programmatically, Java APIs give developers the ability to build physical topologies,
offering flexibility and automation in topology construction. A sample physical architec-
ture developed using the GUI is seen in Figure [11], along with the connections between a
sensor, gateway, cloud virtual machine, and other devices.
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Figure 11: Network topology GUI

6 Implementation

USE CASE: INTELLIGENT VEHICLE PARKING APPLICATION

The implementation of smart vehicle parking application in fog and edge environment
includes modules representing various functionalities like image capture, object detection,
or alarm control. The underlying infrastructure include fog devices like smart cameras
and proxy servers, each having their characteristics such as MIPS, bandwidth, or RAM.
The application supports two deployment models as discussed above, the cloud based
deployment involves all task to be offloaded to the cloud server, on the other hand, in
edge ward deployment the task are divided between smart cameras and the proxy server,
which acts a fog computing unit. For multi objective optimization, the Non-dominated
Sorting Genetic Algorithm(NSGAII) is employed in the application having two objectives
defined: efficiency and energy consumption. These objective are then being utilised to
update the parameters of the application such as transmission time, or number of camera
per area. Utilising distributed camera networks for smart car parking is the main topic
of the case study. This system, which has applications in manufacturing, transportation,
public safety, security, makes use of a dispersed network of cameras to monitor a space
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effectively and automatically analyse data.The characteristics of the system includes the
following;:

Minimal-latency Interaction

Goal: By adjusting the control (PTZ) settings of many cameras sensors without any time
delay depending on taken pictures, enable efficient object coverage.

Challenge: Needs a set of camera control methods and high speed transmission with
minimal delay between the devices.

Managing A Lot of Data

Goal: Handle continually incoming video frames from cameras without adding to the
load on the network.

Challenge: The network may become overwhelmed by the amount of data produced by
video cameras, thus efficient data handling techniques are required.

Extensive, Extended Processing

Goal: Learn the best PTZ parameter calculation approach by continuously updating the
camera control strategy.

Challenge: The study of the strategy for controlling actions for an extended duration
requires powerful processing capabilities due to its computationally expensive nature.
The intricacy of smart car parking systems and the requirement for effective data man-
agement, communication, and long-term processing capabilities are demonstrated by this
case study. By simulating such a system with iFogSim, various tactics, network topo-
logies, and resource management rules may be investigated in order to maximise the
network’s performance.

Dispersed Video Encoding

For more effective analysis, decentralized video processing is used, enabling each camera
to handle its video stream locally.

Coordinated CCTV Monitoring

Goal: Arrange various cameras with distinct fields of vision (FOVs) in order to efficiently
monitor a specified region.

Procedure: In order to obtain the best possible picture of the region, coordination entails
synchronising the adjustment of Pan-tilt-zoom (PTZ) settings.

Tracking and Detecting Motion

Motion inside the field of view of smart cameras triggers the start of video feeds to the
smart car parking application. The program recognizes and follows moving car from
parking spaces in the video stream, continuously modifying the PTZ settings to provide
the best possible tracking.

22



Notification of Events and User Alert

Detection: The system looks for anomalous occurrences in the video streams that need
to be attended to.

User Notification: The user receives collected video streams via the Internet and is noti-
fied via the smart car parking program.

In order to address issues with centralized techniques, this system architecture places
a strong emphasis on decentralized processing. In order to create a more responsive and
successful network, the emphasis is on the real-time coordination of cameras, effective
monitoring of moving objects, and timely warning of unusual events. The iFogSim sim-
ulation of this smart car parking system makes it easier to experiment with different
resource management and deployment tactics for best results.

Application Model: camera, image capture, Object detection, alarm Control(PTZ),
and display screen are the five main processing-intensive modules that make up the
smart car parking programme [12} Numerous CCTV cameras transmit real-time stream
to the program, with camera’s motion control continually modifies the PTZ settings. The
modules described includes the below functionalities:

MOTION_VIDEO_STREAM

RAW_VIDEO_STREAM

DETECTED_OBJECT,

Motion
Detector

OBJECT_LOCATION

PTZ_PARAMS
<<periodic 10ms>>

Object
Tracker

Figure 12: Application Model

Detecting Motion The intelligent camera utilized for this example have this module
built into them.

Functionality: To detect object motion, it continually examines the unprocessed video
streams that the camera records.

Action on Detection: The real time camera stream forwarded to the Object Detection

module to process stream when any object movement is observed inside the camera Field
of View (FOV).

Object Detection The object detection module is tasked with receiving video signals
from smart cameras that have picked up motion from objects.

Processing: The items in motion from the video frames are isolated and then compared
with already identified entities present in the previous frames.

Tracking Activation: Coordinates are computed and tracking for the identified object is
started if it is new to the region.
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Object Monitoring The Object tracker module receives the latest coordinated of the
tracked object.

Optimization: To efficiently capture the tracked objects, it establishes the best Pan-tilt-
zoom (PTZ) arrangement for each camera positioned throughout the region.
Information Conveyance: The PTZ control of cameras receives information from time to
time.

PTZ Regulator This module controls the physical camera of each smart camera, ad-
justing it to fit the ideal PTZ settings provided by the Object Tracker module.
Function: system actuator that is integrated within the smart cameras themselves.

Interface User By delivering filtered video streams that include every monitored item
to the user’s device, programme creates an interface. The input stream filtered by the
object detector are used in this scenario.

Table [13] describes the attributes of the application modules.

Tuple Type CPU Length | N/W Length
RAW_ VIDEO_ STREAM 1000 20000
MOTION_ VIDEO_ STREAM 2000 2000
DETECTED_ OBJECT 500 2000
OBJECT_ LOCATION 1000 100
PTZ_ PARAMS 100 100

Figure 13: Inter-module edges

7 Evaluation

In this part, application case study is simulated in a fog computing environment, and
two placement techniques (cloud-only and edge-ward) are evaluated according to metrics
such as latency, network utilization, and energy consumption. Furthermore, the Network
consumed and execution time of iFogSim are evaluated in relation to its scalability in a
variety of simulation situations.

To demonstrate the adaptability of iFogSim, the smart car parking application is eval-
uated on a range of physical infrastructure configurations. There are somewhere from
one and sixteen monitored zones, and each one has four smart cameras installed. Con-
figurations (1 - 5) includes one, two, four, eight, and sixteen regions that are monitored
and are among the simulated scenarios. Every monitored region include four intelligent
imaging device linked with an access point that handles Internet access. Table [14] lists
the network latency between devices.

The network is organized so that smart cameras are at the network edge while cloud
center is on top. Smart cameras receive live video feeds as tuples and use them to identify
motion. The cameras’ PTZ control is represented by an actuator model. There are two
approaches used for deploying modules in application: cloud only and edge ward.

Cloud Only Deployment: Except the object detection module, all others are present
on the cloud.
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Figure 14: Intelligent Surveillance physical topology

Edge Ward Deployment: Cameras in a monitored area are connected to the Internet via
Wi-Fi gateways that are equipped with the Object Detector and Object Tracker modules.

The iFogSim smart car parking simulation provides valuable insights into resource
consumption by the application. On further break down, the key components of the
output are:

e FExecution Time is representing the total time take by the application to execute
the simulation completely. Ideally the execution time should be short as it indicates
quick turnaround times and real-time analysis.

e Loop Delays is indicating the time taken for each stage in the application including
all tuples. Potential bottleneck can be identified by monitoring loop delay value for
optimization in the area.

e CPU execution Delay shows delay in execution for any specific tuple. Analysing
execution delays can be crucial for identifying critical components in the application
and their optimization.

e Energy Consumption indicates the amount of energy consumed by each fog
device, fog and cloud included. The cloud devices and various fog devices with
their respective energy consumption level are included. This parameter is essential
for monitoring the efficiency of the deployed services which indicates lower energy
levels are expected as more energy efficient application.

e Network Usage indicates the network used by the modules and tuples while
execution and how it is affected by the number of devices connected. Lower network
usage is better as it can help in monitoring and identifying communication overhead
between devices.

Energy Consumption

When the application switches to Fog devices, the amount of consumed energy in the
cloud data centers decreases. This decrease remains consistent with the advantages of
fog computing, which maximize resource efficiency and lessen the burden on centralized
infrastructure.

As the number of regions under monitoring increases, cameras—which detect motion
in recorded video frames—consume more energy This association draws attention to
the energy requirements of motion detection algorithms.

The investigation highlights Fog-based deployment’s energy-efficient benefits, espe-
cially in situations when monitoring needs are higher.
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Figure 15: Energy Consumption

Simulation Time

Figure [16|shows the simulation times for a range of topologies and input workloads, illus-
trates how the number of devices and transmission rate grow with execution time. Even
with a sizable number of gates added, simulation can still be completed in a respectable
amount of time—12 seconds—because the simulation’s growth is almost linear.
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Figure 16: Simulation Time

Network Utilisation

Figure represents the utilization of network for both the deployments, cloud only
and edge ward. A significant increase in the load on the network can be observed as the
number of connected devices are increased, especially in the case of cloud only deployment.
However, it is clear that the edge ward deployment handles the load more effectively and
seems more reliable in controlling network traffic.

7.1 Discussion

Promising approaches to tackle data processing issues in the Internet of Things (IoT)
include fog and edge computing. Fog and Edge computing, in contrast to conventional
cloud-centric methods, make use of devices at the network edge to lower latency and
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Figure 17: Network Utilization

congestion. In this study, iFogSim—a simulation tool used for modelling and simula-
tion of environments in Fog and Edge, and IoT applications—was described. With iFog-
Sim, resource management strategies based on Quality of Service (QoS) parameters—like
latency—can be examined and contrasted for a range of workload scenarios.

The case studies that were presented showed how well iFogSim evaluated resource
management strategies, such as placing application modules exclusively in the cloud and
pushing applications towards edge devices. The simulation’s scalability was confirmed,
demonstrating iFogSim’s potential to facilitate IoT-scale simulations.

8 Conclusion and Future Work

Addressing the challenges related to task and resource scheduling in fog and edge com-
puting is essential for optimizing resource utilization and increase the efficiency of the
application. The research work provides valuable insights into existing strategies and un-
derscore the significance of energy consumption as a crucial factor. By evaluating various
qualitative factors, this work guides the future research in the direction of fog computing
task scheduling efficiently.

Policies for Power-Aware Resource Management: It’s critical to address the problem
of prolonging the battery life of Fog devices. Future research might investigate rules that
dynamically migrate operators based on the battery life of devices.

Strategies for Priority-Aware Resource Management in Multi-Tenant Environments:
A potential avenue of study is to examine scheduling rules for situations where various
application instances share the same pool of resources but have varying Service Level
Objectives (SLO).

Modelling Fog Device Failures: Research might concentrate on obtaining failure mod-
els for common IoT and fog device malfunctions. Subsequently, these models may be
employed to assess and contrast scheduling and recovery strategies that consider depend-
ability for diverse applications. Examining combined Edge-Network resource scheduling
is an important issue to research in Internet of Things settings, where heterogeneous net-
work and sensing resources are shared among several applications with different Quality
of Service needs.

Modelling and Comparing various techniques of virtualization for fog Environments:
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Upcoming research works might take into account for evaluating overall effectiveness
of different techniques of virtualization, such as full virtualization, operating system-
level virtualization like containers, and para-virtualization (instances of hardware-level
virtualization).
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