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Improving Dynamic Cloud Workload Prediction and
Resource Management with

AdaptiveCloudEnsemble(ACE): A Concept
Drift-aware Approach

Shreya Dhumal
21195773

Abstract

In the ever-changing landscape of cloud computing, dynamic resource allocation
is a crucial challenge, particularly in handling fluctuating workloads and navigating
the intricacies of concept drift. Traditional machine learning-based resource alloc-
ation methods, while promising, frequently fail when confronted with the dynamic
and unexpected nature of real-world cloud workloads. Although ensemble learn-
ing has emerged as a potential answer, many existing models are still struggling
with real-time adaptation and effective drift management. This research offers the
AdaptiveCloudEnsemble (ACE) technique, a new solution for stream management
and development of models done using AWS Cloud resources. Within a unified en-
semble architecture, the ACE approach integrates many predictive algorithms and
advanced drift detection systems. By integrating AWS services for data stream-
ing and analysis, the ACE model not only improves adaptability and accuracy in
resource management but also establishes a new benchmark in leveraging cloud
infrastructures for solving complex machine learning problems.

1

1 Introduction

The introduction of cloud computing has transformed the way data is handled and main-
tained; yet, the dynamic nature of cloud workloads poses a substantial issue. This re-
search project tackles conventional models’ inadequacies in cloud workload prediction and
resource management, particularly in dynamic circumstances typified by concept drift,
where the statistical features of target variables change with time. It aims to enhance the
domain by combining cutting-edge machine learning models with sophisticated concept
drift detection approaches to address the unpredictability of workload patterns in cloud
environments. It extends the novel approaches to drift detection such as those developed
by Barros et al. (2017) and Jin et al. (2023) in evolving data streams and expands on
the fundamental work of Hameed et al. (2016) in resource allocation efficiency. The de-
velopment of the AdaptiveCloudEnsemble (ACE), an ensemble model aimed to improve
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the adaptability and accuracy of cloud resource management in the presence of concept
drift, is central to this research.

The research question posed intends to investigate the effectiveness of ACE in enhan-
cing cloud workload prediction.

Research Question: How can different forecasting ensemble models be incorporated
into the AdaptiveCloudEnsemble (ACE) technique to improve predictive resource man-
agement in dynamic cloud workloads, handle concept drift, and improve the existing
models?

The study is divided into four essential steps to investigate the research question:
Stream Processing, Data Preprocessing, Model Development, and Model Testing and
Evaluation. In the Stream Processing step, AWS Kinesis Datastreams and Firehose are
used in conjunction with an AWS Managed Apache Flink Zeppelin notebook to manage
real-time data streaming. AWS Cloud 9 is crucial in developing a Python producer to
feed data streams into Kinesis streams, demonstrating a viable use of streaming techno-
logies in cloud environments. The SageMaker Studio Notebook is widely used for data
preprocessing and model development.

For these critical stages, the research employs an extensive set of algorithms. The
ACE model contains the Adaptive Random Forest Classifier (ARF), which has variants
such as ARF-ADWIN and ARF-DDM for adaptive drift detection Gomes et al. (2017),
as well as the Streaming Random Patches (SRP) Classifier, which has SRP-ADWIN and
SRP-DDM variants Montiel et al. (2020). Furthermore, for its efficiency in handling
huge datasets, the ensemble includes the well-known XGBClassifier from the XGBoost
framework Chen and Guestrin (2016). The ensemble model incorporates a drift detection
technique based on the Drift Detection Method (DDM) ?, which improves its capacity
to adjust to concept drifts in data streams.

Ensemble approaches improve forecast accuracy and robustness by integrating the
characteristics of various algorithms, which is especially useful for dynamic and complic-
ated data streams as suggested in a survey by Saxena et al. (2023). By using the distinct
characteristics of each method, this technique maximizes overall model performance in
cloud workload prediction and management. The ACE model is intended to attain more
accuracy and enhanced drift detection skills in similar settings to the method proposed by
Wu et al. (2023). The final stage of the project involves examining the proposed model’s
accuracy, flexibility, and efficiency to traditional models.

This report’s structure indicates a methodical approach to researching this topic.
Following this introduction, a review of the literature provides a broader background,
following the development of cloud workload prediction as well as the role of ensemble
learning and concept drift detection. The following parts will go into the methodology,
implementation, and rigorous evaluation of the ACE framework, concluding with a dis-
cussion of the results and their implications in the broader field of cloud computing.

2 Related Work

The Internet of Things (IoT) and cloud computing landscape is inherently dynamic,
characterized by the ever-changing nature of data streams. This environment is particu-
larly challenged by the phenomena of concept drift, where the statistical features of data
change with time, having a substantial influence on predictive modeling and workload
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management in cloud systems. Concept drift in IoT and cloud computing is more than
simply a data characteristic; it is a critical aspect in evaluating the success of predictive
analytics. A complete evaluation of learning models under the influence of concept drift
was discovered by critically assessing the research of Lu et al. (2019). Their findings
highlight the importance of adaptive learning models in IoT environments, where data
features can change unexpectedly. Similarly, Ullah and Mahmoud (2020) underlined the
dynamic and real-time nature of IoT data, emphasizing the necessity for models that can
react to these changes quickly and accurately.

While these studies set the framework for understanding concept drift, they also
highlight limitations in present approaches, particularly in dealing with high-volume,
high-velocity data streams prevalent in cloud computing. This gap highlights the prom-
ising potential of ensemble learning models, which aggregate predictions from numerous
models to improve overall performance Lu et al. (2019). With their inherent flexibility
and adaptability, ensemble models are well-suited to addressing the issues provided by
concept drift in cloud computing systems.

This section lays the groundwork for investigating ensemble learning as a solution
to the issues of concept drift, recognizing the need for novel methods that capitalize
on the strengths of multiple predictive and drift detection models. It prompts consid-
eration of how the integration of several algorithms within an ensemble framework can
improve forecast accuracy and adaptability in the setting of dynamic and complex IoT
data streams.

2.1 Concept Drift Detection Techniques

The detection of concept drift in data stream mining, particularly in IoT and cloud
computing, is critical for sustaining predictive model accuracy. This field has witnessed
a development of solutions, each tackling a different component of drift while simul-
taneously presenting new obstacles. The survey by Lu et al. (2019) categorizes drift
detection approaches into error rate-based, data distribution-based, and ensemble-based
strategies. The ”Drift Detection Method (DDM)” uses a landmark time frame to de-
tect large changes in the online error rate of base classifiers under error rate-based drift
detection Gama et al. (2004). The ”PCA-based drift detection” method signals drift
in data distribution-based drift detection when the p-value of the generalized Wilcoxon
test statistic is sufficiently big Shao et al. (2014). The power of numerous models is
harnessed by ensemble-based drift detection methods such as ”Accuracy Weighted En-
semble (AWE)” and ”Adaptive Random Forest (ARF)” to identify drifts more effectively
Gomes et al. (2017). However, real-world datasets pose difficulties: precise times of drifts
are frequently unknown, and records may contain a mix of drift types. This uncertainty
makes evaluating drift understanding approaches more difficult and may induce biases
when comparing machine learning models. Furthermore, defining an accurate and robust
dissimilarity measurement for drift detection is a challenge that has yet to be solved.

The study by Suárez-Cetrulo et al. (2023) investigates numerous approaches for de-
tecting drift in real-world datasets. The uncertainty of drift timings, as well as the pres-
ence of mixed drift types in datasets, might make evaluating drift detection algorithms
more difficult. The Restricted Boltzmann Machine (RBM-IM), introduced by Korycki
and Krawczyk (2021), adopts an imbalance-aware loss function to anticipate changes in
multi-label online learning environments. Furthermore, Barros et al. (2017)’s Reactive
drift detection approach (RDDM) continuously recomputes statistics notifying warnings
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and drifts. However, providing an efficient and accurate dissimilarity measurement for
drift detection remains a continuous difficulty across various methodologies.

These investigations serve as the foundation for the proposed ACE model. The ACE
model attempts to combine advanced drift detection methodologies with ensemble mod-
eling, hence improving adaptability and accuracy in cloud workload forecasts. Wu et al.
(2023)’s reference work backs up this method by proving the effectiveness of mixing dif-
ferent models, such as ARF-ADWIN and ARF-EDDM, in an ensemble to address both
rapid and gradual drifts. The ACE model demonstrates an advancement in concept drift
handling by merging prediction and drift detection methods in an ensemble model, to fill
gaps found in previous studies.

2.2 Forecasting Cloud Resources Using Predictor Models

Predictor models are critical in cloud computing for effectively predicting resource utiliz-
ation in the presence of different service types and dynamic workloads. The development
of machine learning-based forecasting models, as investigated by Saxena et al. (2023)
in a survey, emphasizes their capacity to harness computing strength, delivering pre-
cise predictions critical for optimum resource management in cloud environments. Based
on their theoretical concepts and mathematical functioning, the author divided these
models into five categories: Evolutionary Neural Network-based prediction models, Deep
Learning-based prediction models, Hybrid Learning-based prediction models, Ensemble
Learning-based prediction models, and Quantum Learning-based prediction models.

Evolutionary learning, which is inspired by natural evolution, iteratively refines solu-
tions. Kumar and Singh (2018) addressed typical parameter selection issues in evolution-
ary approaches by combining a neural network with a self-adaptive differential evolution
algorithm. Their technique learns parameter values and mutation procedures, increas-
ing the robustness of the solution. It may, however, be sensitive to parameter changes,
demanding iterative modification for optimal outcomes.

Deep learning, which employs multi-layered neural networks, has been applied to
cloud computing to address straggler workloads, which cause response times to be pro-
longed. Tuli et al. (2023) developed the Straggler Prediction and Mitigation Technique
(START), which uses an Encoder LSTM network to forecast future stragglers, improving
SLA adherence and decreasing execution time. While START exceeds many existing
approaches, it may neglect task execution time details and may fail to fully incorporate
host capabilities, thus leading to errors in results.

Hybrid learning-based prediction models combine various strategies to leverage their
strengths while mitigating their drawbacks. To address resource scaling issues in cloud
systems, Kardani-Moghaddam et al. (2021) developed the ADRL approach, which com-
bines anomaly detection with deep reinforcement learning. While ADRL improves service
quality and stability by managing huge state spaces and assuring quick scaling decisions,
combining approaches can bring complications. Furthermore, hybrid models may have
higher processing costs, thereby delaying real-time decisions.

Kumar et al. (2020) propose an ensemble learning-based workload forecasting sys-
tem that employs extreme learning machines and weights their forecasts with a voting
engine. This system, which was optimized using a meta-heuristic technique inspired by
blackhole theory, significantly reduced resource waste and energy usage, attaining up to
a 99.20% improvement in root mean squared error. However, because the model is heur-
istic, network parameters must be manually selected, indicating a need for automation
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improvements. While the technique is advanced, it still faces adaption and automation
challenges, highlighting possibilities for additional improvement to increase its practical
applicability and efficiency in real-world cloud computing systems.

Quantum Learning models leverage quantum physics to improve computation. Singh
et al. (2021) presented an Evolutionary Quantum Neural Network (EQNN) for accurate
cloud workload forecasts, which outperformed conventional approaches by up to 91.6%.
However, while quantum approaches offer exciting results, they also have their own set
of challenges, such as the need for specialist quantum equipment and the possibility of
quantum decoherence.

Taking these achievements and limits into account, the proposed ACE model in this
study employs ensemble learning because of its capacity to combine different models,
resulting in higher accuracy and resilience against overfitting. This technique is consistent
with Wu et al. (2023)’s findings, which show the usefulness of ensemble models such as
ARF-ADWIN and ARF-EDDM in IoT data stream analytics. The ACE model aims to
enhance these techniques to provide a more balanced, accurate, and efficient solution to
cloud computing resource forecasts.

2.3 Ensemble Learning Approaches for Cloud Workload Pre-
diction

Ensemble learning has emerged as a major approach for improving workload forecast
accuracy in the evolving cloud computing ecosystem. Researchers have delved into the
complexities of cloud computing resource prediction, resulting in the development of
several ensemble models. One such study by Wang et al. (2021). uses the capability of
ensemble learning to improve computing resource estimates in cloud environments. They
combine models such as support vector machine, decision tree, and k-nearest neighbor,
and they improve the ensemble by utilizing an Accuracy and Relative Error-based Pruning
approach. To overcome feature redundancy, a forward search Feature Selection method
is added, with a focus on impacting features. However, challenges with managing feature
redundancy and ensuring consistent performance across varied cloud applications persist.

Several novel approaches have been proposed in the field of ensemble modeling to
solve the issues of accurate prediction and optimization. The ”Ensemble Learning-based
Approach for Predicting (ELAP)” was introduced by Xiao et al. (2022), with the goal
of predicting CPU utilization in cloud systems. Given the huge volatility of cloud data,
the strategy mixes numerous regression models to improve prediction accuracy. The
ensemble technique successfully mitigates individual model biases and provides a more
robust prediction. However, its key weakness is its possible inability to adapt to various
workloads beyond the single Cybershake dataset on which it was evaluated. Another
study by Rahmanian et al. (2018) describes an ensemble cloud resource utilization pre-
diction system based on the Learning Automata (LA) theory. This method integrates
different cutting-edge prediction models, weighting individual constituent models based
on their performance. While this method provides a dynamic mechanism to alter weights
and increase forecast accuracy, it may face difficulties adjusting to rapidly changing cloud
workloads, particularly when the variability is significant. Kaur et al. (2019) delves into
the ”Intelligent Regressive Ensemble Approach for Prediction (REAP),” which focuses
on predicting cloud computing resource utilization. REAP delivers great performance by
combining feature selection and resource usage prediction algorithms. A major part of
this approach is the employment of a meta-heuristic, the Genetic Algorithm, for feature
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selection. However, the method’s narrow focus on the Cybershake dataset on a workflow
management system may cause difficulties in more general applications.

While ensemble modeling improves prediction accuracy and resilience across all meth-
odologies, the difficulty of assuring flexibility to various and dynamic workloads remains
a major concern. Hence, to improve the adaptability and accuracy of prediction models,
addressing the phenomena of concept drift, where data distributions vary over time, is
critical, necessitating specialized drift detection strategies to preserve model efficacy.

2.4 Ensemble Predictors with Drift Detection Techniques

The combination of drift detection approaches and ensemble classifiers improves the ac-
curacy of cloud computing workload forecasts. Ensemble classifiers, by definition, com-
bine the strengths of numerous basic classifiers, resulting in a more comprehensive ap-
proach to prediction. These classifiers, when combined with drift detection, can quickly
adjust to changes in data distribution, ensuring constant performance even in dynamic
contexts. This collaboration not only improves forecast accuracy but also ensures that
the model remains relevant over time, accommodating changing workloads and system
dynamics. D and Prem M (2023) provides a unique ensemble approach to concept drift
in non-stationary environments that combines several drift detection approaches with
ensemble predictors. This method combines the benefits of drift detection and ensemble
prediction to achieve greater accuracy and versatility. However, its complications can
cause problems in real-time applications. Furthermore,Mart́ınez Pérez et al. (2021)’s
study emphasizes the importance of diversity in base learners while dealing with sudden
and gradual concept drifts. Their proposed improvements to current ensemble algorithms
demonstrated improved performance in various concept drift scenarios by changing vot-
ing procedures and adding heterogeneous base learners. However, striking the proper
balance between diversity and accuracy remains critical.

Wu et al. (2023)’s reference article effectively demonstrates the utilization of multiple
models in an ensemble, such as ARF-ADWIN, ARF-EDDM, OPA, and KNN-ADWIN,
to control both sudden and gradual drifts. However, it highlights a significant disadvant-
age: post-drift detection, the model’s accuracy tends to decline due to the fluctuating
nature of data and the lack of retraining mechanisms to adjust to these drifts. This
restriction highlights the difficulty of maintaining constant accuracy in the dynamic data
environment.

In this project, the ACE Model skillfully incorporates complex algorithms such as the
Adaptive Random Forest Classifier (ARF), Streaming Random Patches (SRP) Classifier,
and XGBClassifier from the XGBoost framework. ARF, including ARF-ADWIN and
ARF-DDM versions, and SRP, including SRP-ADWIN and SRP-DDM, provide concept
drift flexibility, which is critical in dynamic cloud environments. XGBoost is included
for the efficiency in processing massive data sets. The model also contains the Drift
Detection Method (DDM) for detecting and adapting to concept drifts in real-time. Not-
ably, the ACE Model is set up to retrain components such as the XGBClassifier after
drift detection, ensuring constant adaptation to workload changes. This strategy ensures
that the model remains adaptable to changes in workload, retaining overall accuracy and
effectiveness in real-time cloud computing settings striving for improved results.
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3 Methodology

This research methodology encompasses a disciplined and methodical approach to ad-
dressing the difficulties of cloud workload prediction and concept drift. The project’s fun-
damental component is the development and testing of a novel predictive model called the
AdaptiveCloudEnsemble (ACE), which employs advanced ensemble learning algorithms
and drift detection strategies. Data collection, preprocessing, model creation, and evalu-
ation are all independent but interrelated stages of the methodology implemented using
various resources in the Amazon Web Service(AWS) cloud to simulate the real-world
cloud environment. This methodical flow not only assures that the project adheres to
scientific standards, but it also allows for a complete understanding of the model’s efficacy
in real-world cloud computing scenarios.

3.1 Data Collection and Preprocessing

The IoT2020 dataset is an important part of our research because it provides a com-
prehensive and accurate depiction of IoT network behavior, including both neutral and
malicious behaviors. This dataset, as described by Ullah and Mahmoud (2020), is a com-
prehensive collection of data meant to capture the complexities of IoT network activity
and malicious behavior, containing 83 network features and three label features that cap-
ture various IoT attack forms and behaviors. Because of its precise details and real-world
data qualities, it is an excellent proxy for analyzing the volatile nature of cloud data.

The IoT2020 dataset in this research enables an accurate simulation of the fluctuating
and dynamic conditions found in cloud environments. The dataset’s diversity in network
traffic patterns and attack types accurately reflects the unpredictable and dynamic nature
of cloud data, making it an excellent tool for researching concept drift. With its broad
and increasing data properties, the IoT2020 dataset provides the appropriate context for
exploring and learning about these drifts in a controlled yet realistic manner.

The IoT2020 dataset data was given as input into AWS Cloud 9 using Python code
and then delivered to AWS Kinesis streams. This configuration enabled real-time data
handling, similar to live cloud data streams. Following that, the data was processed
by Kinesis Firehose and an AWS-managed Apache Flink Zeppelin notebook before be-
ing stored in parquet format in AWS S3 buckets. This process was handled by AWS
SageMaker Studio Notebook, and comprised critical preparation procedures such as data
cleaning, normalization, and feature selection, ensuring that the data was ready for the
next stages of model creation and analysis.

3.2 Techniques and Scenario Set-Up

• Model Development: The research centered on the development of the ACE
model, an ensemble learning framework. This model incorporates algorithms such
as XGBoost, AdaptiveRandomForest, and SRP, which were chosen for their proven
effectiveness in dealing with massive amounts of data and adaptability to concept
drift.

• Drift Detection: To identify and respond to concept drift in data streams, the
ACE model includes the DDM drift detector, ensuring the model’s adaptability and
accuracy over time.
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• Scenario Execution:To evaluate the model’s performance in real-world scenarios,
it was tested in simulated cloud computing settings. To measure the model’s re-
sponsiveness, multiple workload patterns were created and concept drifts were in-
troduced.

3.3 Data Analysis and Statistical Techniques

• Analysis Process: The raw data from the IoT2020 dataset was thoroughly ana-
lyzed to assess the ACE model’s performance in predicting cloud workloads, par-
ticularly under conditions of concept drift. This examination entailed applying the
proposed and previously developed models to the preprocessed dataset and monit-
oring their responsiveness, adaptability to changes in data patterns over time, and
changes in evaluation metrics.

• Statistical Techniques: Several primary statistical indicators Powers and Ailab
(2011) were used to quantify and assess the performance of the ACE model:

Accuracy: The proportion of true results (including true positives and true neg-
atives) among the total number of instances studied is measured by this statistic.
It is a key indicator of the model’s overall accuracy. The accuracy formula is as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP, and FN stand for true positive, true negative, false positive,
and false negative, respectively.
Precision: The fraction of true positive predictions among all positive predictions
made by the model is reflected in precision. It is especially important in situations
where the cost of false positives is large. Precision is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall (Sensitivity): Recall assesses a model’s ability to correctly detect actual
positives in data. It is especially critical in instances where missing a true positive
is costly. The recall formula is as follows:

Recall =
TP

TP + FN
(3)

F1-Score: The F1-score is a harmonic mean of precision and recall that balances
the two measures. It is especially effective when the distribution of classes is uneven.
The F1-score is determined as follows:

F1 = 2× Precision× Recall

Precision + Recall
(4)

These measures were chosen for their potential to provide a thorough picture of the
model’s performance in a variety of areas, ranging from accuracy to precision-to-
recall balance.
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4 Design Specification

The architecture of this project has been meticulously designed to handle cloud work-
load prediction, with an extensive flow that covers from initial data ingestion to final
model building and evaluation. The architecture is based on two major data pipelines:
the Upward Pipeline and the Downward Pipeline. The Upward Pipeline handles data
ingestion and early storage, while the Downward Pipeline handles data transfer and final
storage, completing the flow with data preparation and ACE model generation. This
design, as indicated in the below figure 1, guarantees a continuous and efficient flow of
data from initial collection to final processing and storage, laying the groundwork for
advanced model creation and analysis.

Figure 1: System Architecture

4.1 Upward Pipeline(Data Ingestion and Initial Storage):

• Ingestion and Streaming: The Upward Pipeline begins with data streaming
from AWS Cloud 9, a cloud-based IDE, where a Python script feeds data into the
AWS Kinesis Datastreams input stream. This configuration mimics real-time data
collected from the IoT2020 dataset.

• Temporary Storage in AWS Glue: Data from the input stream is then routed
to an AWS Glue table via the AWS Managed Apache Flink Zeppelin notebook, a
web-based notebook that enables interactive data analytics with Flink, excellent
for real-time processing and manipulation of streaming data. As a fully managed
extract, transform, and load (ETL) service, AWS Glue streamlines data preparation
for analytics. This step prepares the data for further processing by providing a
structured and temporary storage solution.
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4.2 Downward Pipeline(Data Transfer and Final Storage):

• Data Transfer to Output Stream: The data is transported from the input
AWS Glue table to an output Glue table in the Downward Pipeline. This transfer
is essential for separating and managing data flow within the system.

• Delivery to AWS S3: The data from the output Glue table is then routed into
the AWS Kinesis Datastreams output stream. This output stream is linked to the
AWS Kinesis Firehose delivery stream, which is a fully managed service for the
reliable loading of streaming data into data stores and analytics tools. The data
processing is completed by converting it to parquet format and transferring it to
an AWS S3 bucket for long-term storage.

4.3 AWS SageMaker Studio Notebook for Data Preprocessing
and Model Development:

Following data storage in AWS S3, the AWS SageMaker Studio Notebook is used for
following data preparation and model building phases. This advanced tool efficiently
manipulates and transforms stored data, including cleaning, normalization, and feature
selection, preparing it for usage in machine learning models. SageMaker Studio Notebook
offers a flexible environment for developing, training, and evaluating the ACE model,
using the integrated algorithms and assuring the model’s correctness and adaptability in
anticipating cloud workloads and dealing with concept drift.

The project’s dual-pipeline architecture efficiently manages real-time data streams
by combining the Upward Pipeline for data ingestion with the Downward Pipeline for
processing and storage. This structure connects AWS services from Cloud 9 to S3 using
Kinesis Datastreams and Glue tables, allowing for model construction and analysis. The
usage of AWS SageMaker Studio Notebook for data preprocessing and model construction
after that ensures a streamlined workflow, allowing for a comprehensive approach to cloud
workload prediction from initial data collecting to final model evaluation.

5 Implementation

5.1 Adaptive Cloud Ensemble(ACE) Model

In this research, the ACE model is a powerful ensemble learning system developed specific-
ally for cloud workload prediction in dynamic settings with concept drift. The ensemble
is composed of three fundamental machine learning algorithms: Adaptive Random Forest
Classifier (ARF), Streaming Random Patches (SRP) Classifier, and XGBClassifier from
XGBoost.

A. Ensemble Structure and Functionality:

• Adaptive Random Forest Classifier(ARF): ARF-ADWIN and ARF-DDM are
two variants of the Adaptive Random Forest Classifier (ARF) Gomes et al. (2017).
In this implementation, each variant has three models.ARF responds to changes in
data streams effectively, making it suited for contexts with concept drift.The ARF-
DDM variant incorporates the Drift Detection Method (DDM), which improves its
capacity to respond to data drifts.

10



• Streaming Random Patches (SRP) Classifier: The SRP Classifier is imple-
mented in two variants: SRP-ADWIN and SRP-DDM. Each variation is made up of
three separate models, for a total of six SRP models in the ensemble Montiel et al.
(2020). SRP-ADWIN detects changes using the ADWIN (ADaptive WINdowing)
technique. ADWIN is a drift detection approach that automatically modifies the
size of the sliding window, allowing the model to effectively respond to changes in
the data streamBifet and Gavaldà (2007). SRP-DDM incorporates the Drift De-
tection Method (DDM), offering a tool for more accurately identifying and reacting
to idea drift. This version is very good at detecting changes in data distribution,
allowing for rapid adjustments in the ensemble’s decision-making process. With
its ensemble method, the SRP Classifier aggregates numerous weak learners to pro-
duce a more powerful predictive model. This aggregation improves the ACE model’s
overall forecast accuracy and stability.

• XGBClassifier(XGBoost): XGBoost excels in complicated prediction jobs by
providing both speed and accuracy. Its powerful boosting techniques are especially
useful for huge and complex datasets like those found in cloud workload predictions
Chen and Guestrin (2016). The retraining technique is initiated by drift detection
signals generated by the ARF-DDM and SRP-DDM models. When these models
detect a major shift in data distribution, XGBoost is updated with novel data, al-
lowing it to re-calibrate its forecasting method. This dynamic retraining procedure
ensures that the XGBoost model remains relevant and accurate even when the in-
put data characteristics change over time. XGBoost adds depth to the ensemble’s
predictions, particularly in finding and responding to complex data patterns. It
adds to the adaptability of ARF and SRP models, resulting in a balanced and
comprehensive prediction output.

B. Concept Drift Adaptation:

• Real-Time Base Learner Monitoring: The ACE approach involves continuous
monitoring of each base learner’s accuracy. This constant evaluation is critical for
recognizing any differences in prediction performance that may suggest concept
drift in the data stream.

• Detecting and Responding to Drifts:The DDM included inside the ARF-DDM
and SRP-DDM models is largely used for drift detection. These models are sensitive
to changes in data distribution, allowing for the early detection of concept drifts.
When a drift is detected, the model initiates a retraining process for the XGBoost
classifier. This retraining entails feeding the most recent data into the XGBoost
model, allowing it to recalibrate its predictions based on the new data patterns.

• Maintaining Predictive Accuracy: The combination of real-time monitoring,
drift detection, and adaptive retraining results in a comprehensive strategy for main-
taining the accuracy of the ACE model over time. By combining these strategies,
the ACE model can not only detect idea drifts but also dynamically adapt its pre-
dictive strategy to retain relevance and accuracy in a constantly changing data
environment.

C. Weighted Aggregation of Predictions: The ACE model modifies the weighting
of each base learner’s predictions in response to concept drift. The weights are inversely
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Figure 2: Retrain XgBoost)

proportional to their real-time error rates, guaranteeing that more accurate models have
a higher influence on the ensemble’s ultimate forecast at any given time. This dynamic
weighting method ensures that the ensemble’s forecasts stay balanced and accurate as
the data stream evolves.

Figure 3: Weighted Aggregation of Predictions)

5.2 Implementation Process

The ACE model’s implementation was a multifaceted procedure that included not only
the coding of each base learner but also their integration into an effective ensemble.

A. AWS Resource Setup & Configuration:

• AWS Resource Setup: The first stage was to configure several AWS services
such as Cloud 9, Kinesis Datastreams, Firehose, and S3. This configuration was
crucial for establishing a continuous pipeline from data streaming to storage.

12



• Connecting AWS Services: To ensure a smooth data flow, each service was
methodically connected. For example, connect Cloud 9 to Kinesis Datastreams for
real-time data streaming and then to S3 via Kinesis Firehose for data storage.

• Permissions and IAM Policies: Adequate permissions were granted using IAM
(Identity and Access Management) policies. This step was critical for ensuring
secure and efficient access to AWS resources, allowing each service to interact as
needed without exposing itself to security threats.

B. Ensemble Integration and Coding:

• Base Learner Development: Each base learner - ARF, SRP, and XGBoost - was
coded individually. Their configuration was given special consideration to optimize
them for the task of cloud workload prediction.

• Integrating Base Learners in the Ensemble: The integration of these key
learners was at the center of the ACE approach. To ensure that each learner
effectively contributed to the ensemble’s overall performance, careful coding for
weighted aggregation of predictions was required.

C. Addressing Challenges:

• Tuning parameters: Fine-tuning the parameters for each base learner was a
major issue. Iterative testing and modifications were used to get the appropriate
settings for the best predictive performance.

• Drift Detection and Response: Another key challenge was ensuring adequate
drift detection and response. This necessitated not only the right implementation
of drift detection algorithms within the ARF and SRP models but also the efficient
retraining of the XGBoost model upon drift detection.

D. Data Integration and Workflow Execution:

• Streaming Data to AWS Kinesis Datastreams: A A Python script was writ-
ten to stream the IoT2020 dataset to AWS Kinesis Datastreams using AWS Cloud 9.
This script connected to the iot-input-stream in the eu-west-1 region, received data
from ’IoT 2020 b 0.01 fs.csv’, converted each row to JSON, and then transmitted
these JSON records to the Kinesis stream as individual entries. For effective distri-
bution within the stream, each record was allocated a partition key, and the script
offered feedback by displaying the sequence number of each transmitted record.

• Data Processing and Preprocessing in AWS SageMaker Studio Note-
book: SageMaker Studio Notebook was used to access data stored in S3. Dask,
which is effective for handling massive datasets, was used to read the data, which
was initially in parquet format in the S3 bucket (iotdestbucket). For easy handling
and preprocessing, the Dask dataframe was transformed into a Pandas dataframe.
Preprocessing methods included normalization and feature selection to prepare the
data for model training.

E. Iterative Model Training Using Stream Data:
The ACE model was trained using a real-time, iterative approach suitable for stream-
ing data. Data was formatted appropriately for the model, with X train as features and
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y train as labels. The training involved iterating over the dataset using the stream.iter pandas
method from the river library Montiel et al. (2020), processing data in a streaming fash-
ion akin to real-world environments. Each iteration involved feeding a single data point
(xi1) and its label (yi1) into the model using the learn one method. This online learning
approach allowed the model to adjust and learn incrementally, continuously updating its
strategy to effectively handle concept drift and maintain accuracy.

F. Tools and Technologies Used

• Programming Language and Libraries:

Python: Python was chosen as the primary programming language due to its
versatility and depth of support in data science and machine learning.

River Library: This Python library was critical for implementing the ACEmodel’s
ensemble learning components, particularly its skills in online learning and drift de-
tection.

Scikit-learn (sklearn.metrics): This library was used for performance evaluation
and provided crucial tools for calculating metrics such as accuracy, precision, recall,
and F1-score, which provided insights into the model’s usefulness.

• AWS Tools Suite:

AWS Cloud 9: Used as an integrated development environment for building and
testing the data streaming Python application.

AWS Kinesis Datastreams: Played an important role in real-time data handling,
allowing the IoT2020 dataset to be streamed into the system.

AWS Kinesis Firehose: Made it easier to send streaming data to AWS S3 for
storage.

AWS S3: Served as the primary data storage option, holding processed and trans-
formed data.

AWS Glue: Used for temporary data storage and management, notably between
streaming and eventual storage.

AWS SageMaker Studio Notebook: Used to preprocess data and train the
ACE model, as well as to provide a powerful environment for machine learning
activities.

These tools and technologies served as the project’s backbone, each contributing to differ-
ent parts of data management, model creation, and performance evaluation. The entire
development process was iterative, with cycles of testing, feedback, and refinement re-
peated. This method enabled the detection and correction of errors in real-time, resulting
in a robust and efficient ACE model.

6 Evaluation

The purpose of the research project is to determine the efficacy of combining several
forecasting ensemble models into the AdaptiveCloudEnsemble (ACE) approach. The re-
search specifically seeks to analyze the ACE model’s capabilities in improving predictive
resource management for dynamic cloud workloads, as well as its ability to address the
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issues posed by concept drift. By comparing the ACE model’s performance to that of
established forecasting models, the project aims to validate its improvements in adapt-
ability and predicted accuracy under changing data situations.

6.1 Analysis of Results

The Analysis of Results shown in the below Table highlights the ACEModel’s outstanding
performance highlighted by its dynamic adaptability and refined algorithm integration.
It outperformed the ARF-ADWIN model by achieving a more precise balance between
precision and recall, demonstrating its ability to reduce false positives while maintaining
high accuracy. While commendable, the ARF-DDM was unable to match the ACE
Model’s precision, which is crucial in avoiding false alarms and retaining trust in forecast
accuracy.

Model Accuracy Precision Recall F1-score
ARF-ADWIN 98.05% 98.59% 99.43% 98.97%
ARF-DDM 98.68% 98.97% 99.64% 99.3%
HT 95.45% 95.91% 99.42% 97.63%
LB 97.8% 98.25% 99.43% 98.83%
PWPAE 99.02% 98.99% 99.98% 99.48%
ACE 99.2% 99.2% 99.96% 99.58%

Table 1: Comparative Performance of Ensemble Models

The Hoeffding Tree model, while strong in recall, lagged in precision and accuracy,
indicating that the ACE Model handles various data patterns better. Similarly, despite
its robustness, the Leveraging Bagging model could not match the ACE Model’s high
recall rates, owing to the latter’s complete detection of true positives. The PWPAE
model performed well in terms of accuracy and recall, but it was outscored by the ACE
Model in terms of precision and F1 score. This minor advantage reflects the ACE Model’s
improved ability to provide reliable and consistent predictions.

The ACE Model’s improved efficiency can be explained by its dynamic retraining
capabilities in response to concept drift, which ensures it stays updated with changing
data trends. The ACE Model’s versatility, along with a weighted methodology that
leverages the capabilities of various algorithms, enables it to maintain high accuracy and
precision even in changing data settings. Its outstanding performance highlights the
model’s potential as a dependable, accurate tool for predictive resource management in
cloud computing, establishing a new benchmark in the field.

6.2 Graphical Analysis of the Results

The graph 4 depicts the comparative performance of various ensemble models over a
series of samples in an appealing visual manner. It measures the accuracy percentage as
a function of sample count, providing a clear picture of each model’s behavior in response
to concept drift, as demonstrated by the vertical lines labeled ”Drift 1” and ”Drift 2.”
Initial Performance Dip: At the beginning of the graph, all models have a drop in
accuracy, which corresponds to the first concept drift. This is a normal occurrence as
models react to the abrupt shift in the statistical features of the data.
Sustained Performance Post-Drift: The ACE Model continuously outperforms the
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Figure 4: Graphical Representation of Results

other models in terms of post-drift accuracy. Notably, the ACE Model’s performance
stays consistent even after the second drift, demonstrating its ability to effectively handle
concept drift.
Comparison to Other Models: The proposed PWPAE model has the same accuracy
as the ACE Model. The ACE Model, on the other hand, edges ahead slightly, imply-
ing a more nuanced treatment of concept drift. The ARF-DDM model closely follows,
suggesting efficacy but with slightly lower average accuracy. The HT and LB models lag
behind, showing that while they are successful, they may not be as adept at dealing with
quick changes in data.

6.3 Discussion

The ACE Model represents a considerable advance in the management of rapidly chan-
ging cloud computing workloads, a concept that is well supported by current academic
research. The model’s design cleverly blends numerous forecasting methodologies, which
has been proved to outperform single prediction models. Interestingly, when new data
trends arise, the ACE Model’s performance drops marginally, most likely because the
model’s complex structure needs time to respond to these changes. However, after adapt-
ing to new conditions, it immediately outperforms previous models, maintaining superior
accuracy over time.

While the ACE Model represents a breakthrough in predictive modeling, the architec-
ture of the system from data ingestion to analysis needs particular concern. The seamless
integration of AWS components - from pushing data to Kinesis Streams to storing it in
S3, and finally analyzing it in SageMaker Studio - demonstrates a well-executed inform-
ation flow. However, there is a possibility for improvement in the process. For example,
automating model parameter tuning could improve efficiency, and broadening the range
of data scenarios could improve the model’s robustness. Automation in the early stages of
data streaming and preprocessing could reduce time-to-insight while diversifying datasets
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in SageMaker could test and perhaps improve the model’s adaptability to diverse cloud
environments. Such improvements could strengthen the system’s design, ensuring that
the model not only learns from data but also does so with greater speed and precision. In
conclusion, the ACE Model represents a significant advancement in predictive modeling
for dynamic cloud systems, with future modifications highlighted to improve adaptability
and accuracy.

7 Conclusion and Future Work

This research project aimed to investigate the integration of several forecasting ensemble
models into the AdaptiveCloudEnsemble (ACE) approach, to improve predictive resource
management in dynamic cloud workloads and successfully deal with concept drift. The
research was met with a thorough design and rigorous testing, demonstrating the ACE
Model’s superior performance, notably in terms of adaptability and response to concept
drift when compared to established models. The major findings show that the ACEModel
not only manages the initial impact of concept drift well but also excels at sustaining
high accuracy over time, outperforming other models in sustained predictive performance.
This demonstrates the model’s efficacy and the project’s success in meeting its goals.

However, the research recognizes the constraints of relying on a single dataset and
manually adjusting the model’s parameters. An investigation into automated hyperpara-
meter optimization would be a significant next step in future research, potentially improv-
ing the model’s efficiency and performance. Furthermore, expanding the current work to
incorporate a broader range of datasets with various features could give a more thorough
validation of the model’s applicability across multiple cloud environments. Introducing
AWS Lambda functions could enable seamless interconnection of services, automating
data stream flow and better simulating a live streaming environment. Such automation
would not only improve the system’s efficiency and responsiveness, but it would also
potentially raise the model’s responsiveness and efficiency.

In the future, the ACE Model holds significant commercial potential for real-time
cloud workload management. Deploying the model into live cloud systems to evaluate
real-world performance and scalability could reinforce its practical applicability and pave
the way for innovative industry applications. The transition from a research prototype
to a commercial solution has the potential to transform cloud computing resource man-
agement, marking a significant advancement in the area.
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