~

N\ National
College
Ireland

Optimizing Cloud-Native App Deployment
using Kubernetes Scheduler on AWS Cloud

MSc Research Project
Cloud Computing

Swapnil Deshpande
Student ID: x22159401

School of Computing
National College of Ireland

Supervisor: Dr Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Swapnil Deshpande
Student ID: x22159401
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Dr Ahmed Makki
Submission Due Date: 14/12/2023
Project Title: Optimizing Cloud-Native App Deployment using Kubernetes
Scheduler on AWS Cloud
Word Count:
Page Count: [23]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Optimizing Cloud-Native App Deployment using
Kubernetes Scheduler on AWS Cloud

Swapnil Deshpande
x22159401

Abstract

The demand for effective orchestration technologies with smart scheduling al-
gorithms containerization gain traction.This paper presents a novel approach to
for scheduling of microservice application and also their management using a pop-
ular software containerization platform .The suggested approach, known as the
Dependency-Based Scheduler, is centered on ensuring that the interconnected com-
ponents of a program, known as microservices, function well together within same
node. This is crucial because improper handling of these connections by current
techniques could result in a less effective use of computer resources and high net-
work bandwidth usage. The new method seeks to decrease the amount of data
that is shared between these microservices and speed up overall performance and
ultimately help organization to run their microservices efficiently. By doing this,
it enables developers and companies to make better use of their resources, result-
ing in cost savings and improved system performance. This work helps improve
Kubernetes’ efficiency on cloud platforms, such as AWS.The demonstrated sched-
uler’s quality is assessed by comparing its results with that of the default scheduler
provided by kubernetes, which simply considers the network usage for communica-
tion between different microservices. In the dynamic world of cloud computing, this
creative solution addresses the increasing complexity of microservices architectures
and advances container orchestration platforms like Kubernetes. It also fits in with
the changing landscape of cloud-native technologies.

Keywords:Microservice oriented Architecture, Kubernetes, Scheduling, Go Lan-
guage, AWS EC2

1 Introduction

The transition from monolithic to microservices-based applications has become a stand-
ard of innovation in the dynamic field of software architecture. Large organizations have
embraced this shift, which offers improved administration, cost-efficiency, and agility.
Because of their loosely linked components, microservices provide simpler maintenance
procedures and shorter development lifecycles, providing a scalable solution for chan-
ging system requirements. These benefits are further enhanced by the synergy between
microservices and cloud deployment, which permits variable resource allocation in ac-
cordance with Quality of Service (QoS) standards.

However, optimizing resource usage and avoiding unnecessary costs in large-scale mi-
croservices deployments still poses challenges, necessitating innovative scheduling strategies.

This study explores a new scheduling strategy that takes microservice dependencies into
account to effectively distribute containers among cluster nodes. The incorporation of
microservices orchestration, as demonstrated by Kubernetes , is essential to guaranteeing
smooth deployment, continuous monitoring, and elastic scaling. However, this orchestra-
tion improves system performance by addressing latency issues and optimizing resource
use.This research Aiming to contribute innovative scheduling to magnify the microservice
orcharstration in kubernetes. We also cover QoS classes, implicit QoS techniques, and ad-
vanced scheduling features like priority-based scheduling and preemption as we go deeper
into the nuances of resource scheduling and relationship scenarios in Kubernetes. This
detailed investigation lays the groundwork for a thorough comprehension of microservices
orchestration and its essential function in the modern software environment.

App1 Appz App3 App4

[
| |

Docker ‘

| Host Operating System ‘

| Infrastructure ‘

Figure 1: Evolution of Containerization

Containerization is a software development methodology that isolates applications and
their dependencies into lightweight components known as containers.Containerization,
which started with Docker in recent years, changed how we make softwares. It is similar
to making image of apps and all their necessary library in boxes and make their con-
tainers. This made creating software faster and using computer resources better because
these containers share the computer’s main system. Docker made it easy for everyone
to use containers with its simple tools. further, tools like Kubernetes helped developers
to automate tasks like putting containers on servers and making sure they run well.
Containers are popular because they make software portable, and in addition to that
evolution of cloud computing make it scalable and fault tolerant.

The research makes a unique contribution in that it develops and implements a
dependency-aware custom scheduler for microservices, a novel approach that optimizes
deployment in a cloud environment by taking into account the complex dependencies
among microservices. This novel approach reduces data transfer across microservices by
choosing appropriate nodes based on dependencies, in contrast to conventional sched-
ulers. The custom scheduler showed measurable benefits in response time, workload
reduction, and improved Quality of Service (QoS) after extensive testing and assessments
compared to the default Kubernetes scheduler. This work presents a novel development
in microservices orchestration, providing a more effective and nimble way to deal with
the problems caused by complex dependencies in modern cloud infrastructures.

1.1 Background

In the dynamic landscape of Kubernetes and microservices architecture, the need for
dependency-aware scheduling arises from the complex interconnections between microservices
within a given application. Due to the inherent interdependence between these mi-
croservices, traditional scheduling techniques frequently allocate resources inefficiently
and run the risk of causing performance bottlenecks. for functioning of software, Mi-
croservices are depends on each others to share data. Scheduling microservices without
taking these dependencies into consideration might lead to co-locating them on the dif-
ferent node, which can cause high usage of network usage over shared resources, higher
network latency, and decreased efficiency (Pontarolli et al.; 2020). Understanding the im-
portance of these dependencies becomes essential for efficiently scheduling microservices
and maximizing a Kubernetes cluster’s overall performance.

Companies are deploying softwares that consist of number of microservices made up of
multiple interconnected microservices with Kubernetes, To handle this complex require-
ment, these applications require a scheduling method that accounts for in the complex
relationships across microservices in addition to basic resource considerations. By re-
ducing challenges related to incorrect management of microservices dependencies and
allowing intelligent placement choices, dependency-aware scheduling arises as a tactical
way to improve Kubernetes cluster performance (Vayghan et al.; [2021)).

1.2 Motivation

The development and deployment of a dependency-aware custom scheduler in Kubernetes
marks a significant breakthrough in cloud computing and container orchestration. Default
Kubernetes schedulers tend to concentrate on load balancing and resource allocation,
frequently ignoring the complex dependencies that exist between different microservices or
applications in a distributed system. This error, particularly in complicated applications
with interconnected components, can result in decreased performance, resource wastage,
and increased latency.

The custom scheduler that considers dependencies plays a role in improving resource
usage in Kubernetes clusters, which is the main objective. Through careful consideration
of relationships across various microservices or application components, the scheduler
is able to allocate workloads in a way that maximizes node efficiency throughout the
cluster. In conjunction with optimizing the use of existing resources reduce network
latency, enables you to fully utilize Kubernetes while carefully customizing it to the
specific requirements according to your organization’s software ecosystem. It therefore
turns into a strategic investment in the scalability, robustness, and general efficiency of
your applications.

1.3 Research question

Scheduling is an essential part of the orchestration process in Kubernetes and plays a ma-
jor role in the lifecycle of containers. By distributing the containers across appropriate
nodes in an efficient manner, it maximizes resource usage and keeps the workload evenly
distributed.

e In what ways does the Dependency-Aware Scheduler, a pioneering microservices
scheduling strategy that takes into account microservice dependencies, contribute
to the optimization of scheduling and reduce network latency when integrated with
Kubernetes in a cloud environment?

1.4 Objective

The primary objective of this study is to develop a custom Kubernetes scheduler that
will optimize resource scheduling for pods by utilizing advanced relational scheduling of
cluster nodes.

e Improve resource scheduling techniques and will touch the unresolved issue which is
performance overhead by prioritize Quality of Service (QoS) principles, and imple-
ment effective resource quotas to strengthen Kubernetes basic scheduling features.
Evaluate and implement to use advanced relational scheduling situations, with a
focus on relationships between pods for scheduling constraints and by taking data
transfer latency into consideration caching function which will help in reducing
overally network usage over kubernetes cluster.

e The microservices that are present on the node and its CPU use rate are taken into
account by the proposed scheduler as node selection criteria. The node that has
the lowest CPU utilization rate is qualified for selection, and it is only confirmed if
it offers the microservice needs.

e Create the kube-scheduler plugin especially for microservices deployment, for de-
veloper who do not want to concentrate more on scripting, they just need to import
this scheduler and make necessary high level changes and use for their kubernetes
deployment

e To build a cloud based solution which is more flexible and adaptable cluster envir-
onment, integrate priority-based preemption into the custom scheduler. To ensure
optimal usage and efficiency in the AWS EC2-based Kubernetes cluster, this in-
volves integrating various pod types, creating priority classes, and allowing the
scheduler dynamically alter resource allocation depending on priorities.

1.5 Paper Structure

The paper is put in order as follows: in the 1 segment, discuss in brief about evolution
of containerization, motivation and objective of research and in the Section 2,there is
discussion of different research done in Kubernetes custom schedule. Section 3 describes
the Methadology of proposed custom scheduler and their components and functioning
of custom scheduler. In section 4 brief about design specification and tools which used
develop the custom scheduler.Section 5 describes about implmentation steps.Section 6
showcases the evaluation of custom scheduler while comparing it with default scheduler
and their output images and their comparative qualitative analysis and section 7 contains
conclusion and future work which can done to help kubernetes community,

2 Literature Review

Upon reviewing several research publications, it became clear that the default scheduler
was not best for dynamic workloads and should not be the primary option due to its design
limitations, which means that some criteria don’t apply to it. Despite some limitations
in existing scheduler,small organizations still prefer to work on default scheduler for their
workload managment along with taking advantage of cloud computing for non-critical
application as explain in (Merkouche et al.; 2022) and very few research which actually
addressd microservice dependency issues in kubernetes scheduling and which is one of
the peak problem coming into the lights.

According to the survey of (Kratzke and Quint}, [2017)), over 83% of participants are
using hybrid or multi-cloud environments, indicating a significant shift in the adoption
of these models. The idea of a worldwide, all-encompassing mesh is not actually real-
ized in practice, as corporations use different environments depending on their needs.
One of the main players is Kubernetes, which is used by 14% of users for everything,
over 20% for bare metal and virtual machines, and over 29% for a combination of VMs,
bare metal, and Kubernetes. According to 38% of respondents, security and resource
fragmentation is still the most important factor to take into account when using Kuber-
netes. Additionally, the survey shows that over 50% of respondents have rising faith in
expert-built operators.Looking ahead, Kubernetes continues to define the future of con-
tainer orchestration, and while high-level goals like bettering maintenance, monitoring,
and automation remain, the growth of use cases is foreseen, especially in AI/ML and
data platforms.

2.1 Kubernetes Survey

Before Kubernetes, organizations managed containerized apps and coordinated their de-
ployment mostly through manual techniques and different technologies. It was difficult to
handle many aspects of container orchestration, including scalability, load balancing, ser-
vice discovery, and failover maunually. While some businesses packaged and distributed
programs using containerization platforms like Docker, orchestrating these containers was
frequently a laborious and tedious process.

Kubernetes is an open-source platform designed for managing services and workloads.
Its provides features flexibility and portability make it highly adaptable for various envir-
onments. The main role of Kubernetes revolves around efficiently handling service and
workload management. It excels in providing declarative configuration, allowing users to
specify the desired state of their system, and robust automation support for seamless op-
erations. The expansive ecosystem surrounding Kubernetes is marked by a rich array of
supporting tools and services, contributing to its rapid growth and widespread adoption,
as highlighted by Burns and Beda in 2019.

The evolution of containerization in process of DevOps has revolutionized the de-
ployment process, offering a plenty of advantages to organizations. Initially, manual
deployment methods and disparate tools posed challenges in managing containerized
applications.A paradigm change occurred with the emergence of containerization, as
demonstrated by technologies such as Docker. Software dependencies and configurations
are isolated by containers, which encourages portability and facilitates easy transitions
between various environments. By enabling developers to operate in lightweight, isolated

K Cluster N

Control Plane

Node Node Node

kube- APIserver
L‘ Kubelet ‘ ‘ Kubelet ‘ ‘ Kubelet ‘
‘ Kube-proxy ‘ ‘ Kube-proxy ‘ ‘ Kube-proxy ‘
Kube-scheduler

| Container Runtime | Container Runtime | ‘Container Runtime

Kube-Controller-
Manager

_ J

Figure 2: Kubernetes Architecture

situations, this development speeds up deployment and testing, lowers conflict, and in-
creases productivity. Containerization also gives developers fine-grained control over the
application environment, resulting in deployment settings that are reliable and predict-
able as stated by (Narasimhulu et al.; 2023). Efficient utilization of resources leads to
cost-effectiveness, and scalability becomes easier.

2.2 Scheduling in Kubernetes

Kubernetes is an open-source container orchestration system which can be use for auto-
mating software deployment, scaling the application based on request,and management
of applications containers efficiently.A pod is the smallest execution unit in Kubernetes
which holds actual application code and their functionality. A pod encapsulates one or
more applications.Pods are transient in nature. In case of microservices each microservice
in termed as a pod, as it is collection of pods which connected with each other to run
as full tier application.In kubernetes the pod specification and metadata are written in
YAML file. The deployment file which we wrote basically contains the name of image
and needed amount of resource (CPU, Memory) that is required by each container of
microservice. On the other side the file also contains metadata like labels that helps to
distinguish the pod. Executing the the script though kube-API will create the pod and
send it to multiple nodes as per describe in the pod and deployment specification file.

Kubernetes follows master-slave architecture. The master components manage the
overall state of the cluster. This contains accepting client requests, scheduling containers
and running control loops to instruct to perform operations on the actual cluster state
towards the desired cluster state.and worker nodes are responsible for hosting different
containers in terms of pods. Each node can host multiple pods.

Master node is also known as control plane which contains the components like kube-
APIserver,etcd, kube-controller-manager and kube-scheduler. On the Master node, the
Kube Scheduler operates as a process daemon. It keeps a watch on each worker node’s
condition and resource usage. When a user requests the creation of a POD, the scheduler
uses a filtering and scoring technique to identify a worker node that best matches the
resource specification. The API server is then instructed by the scheduler to bind the
POD to the intended node.

This section will describe how the scheduler operates. To decide which available node
is best suited to host a pod, the scheduler will first filter the nodes and then assign a
score to each of them.

Kube scheduler filtering technique is used to opt out worker nodes that contains the
fundamental components suitable for a POD placement.Examples of Filtering predicates
include:

[FlagSet J [File][ConfigMap }

Policy Informer

s] v Lo | v

PV | PVC | StorageClass | CsiNode | storage

Algorithm PDB | Preemption
Queue o
[rRc [Rs | senice [sTS]| D | Distribution
CITTTTTTITITTIT}
Schedule Pipeline “ '

Schedule Cache

i Pod Scheduling Lifecycle Management |

o
z
]
n
z
=

2

Schedule Thread Wait Thread Bind Thread

Figure 3: Scheduling Framework

For filtering of nodes it uses General predicates (e.g., PodFitsResourcesPodFitsNodeSelector
Storage related predicates (e.g., NoDiskConflictMaxCSIVolumeCount Compute node re-
lated predicates (e.g., PodToleratesNodeTaint) Runtime related predicatese.g., CheckNo-
deCondition , CheckNodeMemoryPressure,

2.2.1 Working of Default Scheduler

e Kube scheduler scoring phase is use to rank the nodes that left out after filtering
phase and will be eligible for pod placement.Based on the scoring priorities, the
scheduler gives each of the surviving nodes a score. Ultimately, the node with the
greatest ranking receives the Pod assignment from kube-scheduler.

e Scoring Priorities include SelectorSpreadPriority, InterPod AffinityPriority, LeastReques-
tedPriority, NodeAffinityPriority, BalancedResourceAllocate, etc. For each priority
passed, the corresponding node will be given a score between 1 to 10, based on
the weight assigned by the user in the deployment script, Worker node scores are
calculated as the total of all priority scores.

e On other hand default scheduler determines all the nodes that it knows they exist
and make sure they are healthy. The scheduler keeps an eye on predicate tests to
filter out nodes that are not suitable. The rest of the nodes form a group of possible
nodes.

e Priority tests are performed by the scheduler on the potential nodes. The candidates
are ranked highest to lowest based on their scores. The node with the highest score

is selected at this moment. However, it is possible for many nodes to have the same
score at times.

e The nodes are added to the final list if their scores are same. For the purpose of
evenly distributing the load among the machines, the Kubernetes Scheduler uses a
round-robin method to choose the winning node.

2.3 Custom based scheduling

When Kubernetes first started out, it mostly depended on a default scheduler that made
choices based on the availability of resources, which occasionally resulted in less-than-ideal
deployment choices. The Kubernetes community realized the value of custom schedulers
when the demand for more specialized and effective scheduling techniques increased.

In order to improve resource usage in cluster situations, the (Ningj [2023)) suggests a
modified Kubernetes scheduling technique. The motivation is the increasing acceptance
of container-based methods, especially when implemented in large-scale applications with
Kubernetes serving as the container orchestrator. The default Kubernetes scheduling al-
gorithm is found to have flaws by the authors, especially when it comes to establishing
scoring guidelines for node selection and assigning suitable resource request values for
pods. In order to tackle these problems, the suggested approach uses a custom scoring
rule that takes into account the Euclidean distance between the target and optimal re-
source values, and it dynamically modifies resource requests based on past pod resource
utilization data. In order to maximize efficiency, the authors stress the necessity for im-
provements and draw attention to the widespread issue of inefficient resource usage in
Kubernetes clusters. In general, the suggested algorithm is positioned as an enhancement
to the default.Kubernetes scheduler, emphasizing better load balancing and resource util-
ization among cluster nodes.

Low-latency applications thrive in the quickly evolving Fog and Edge computing land-
scape, but scheduling container-based microservices becomes a significant challenge due
to the dynamic and often unstable nature of Edge infrastructure. While container orches-
tration technologies such as Kubernetes have made it easier for traditional Cloud data
centers to deploy applications, typical.scheduling methodologies are not up to the specific
communication requirements of microservices, especially when latency is an issue. This
literature review highlights the inadequacies of existing container orchestration systems
and emphasizes the need for better scheduling methods. The (Marchese and Tomar-
chio; 2022)suggested method adds a custom scoring plugin to the Kubernetes scheduler
and uses the TOSCA language to record traffic history, network latency metrics, and
microservices communication requirements.The objective is to optimize Pod placement
taking into account the application topology, communication patterns, and real-time net-
work conditions in order to minimize end-to-end latencies for increased Quality of Service
(QoS). The evaluation highlights how crucial communication-aware scheduling solutions
are for enhancing the deployment of microservices in Cloud-to-Edge continuums, partic-
ularly for novel applications like as process management, augmented reality, data pro-
cessing, and smart automobiles.

2.4 Need of Custom Scheduler

This paper discusses the role that schedulers play in Kubernetes, a popular container
orchestration platform for cloud application management. The integrated Kubernetes

scheduler has been proven to be poor, given its speed, and can occasionally lead to
bad service placements or even deployment failures. The authors introduce Boreas, a
novel Kubernetes scheduler designed to simultaneously evaluate bursts of deployment
requests and optimal service container placements with deployment limits. The study
emphasizes the importance of efficient scheduling in cloud environments and introduces
the idea of using Zephyrus2, a configuration optimizer, to achieve provably optimal service
deployment. Through a number of simulated experiments, including a more complex
affinity test and a simpler deployment scenario, the (Lebesbye et al.; [2021) demonstrate
that Boreas outperforms the default scheduler in terms of successful installations and
resource efficiency. The study emphasizes the need for deployment approaches that are
more accurate and resource-efficient in certain scenarios, contributing to the development
of research on Kubernetes schedulers.

The aim of this paper is to address resource fluctuation and uneven job distribution by
presenting a novel hybrid shared-state scheduling mechanism for Kubernetes (Ungureanu
et al.; 2019). Each of the centralized, distributed, and hybrid scheduling models that
are currently in use is discussed along with its shortcomings. The proposed architecture
combines the advantages of centralized and distributed approaches by using master-state
agents for cluster state synchronization and decentralized scheduling agents for local op-
timizations. This approach was motivated by issues that were observed in an operational
Kubernetes cluster, issues that are challenging for conventional centralized schedulers
to handle. High-availability issues, collocation interference, and priority preemption are
some of these issues. The study highlights the necessity of a synchronized cluster state
and the scheduling correction function in order to optimize resource consumption.

2.5 Summary

Upon performing a thorough review of the literature, it is clear that numerous researchers
have concentrated on scheduling technique optimization. But because microservices are
highly interdependent, there is still a significant problem with their deployment. Ap-
plication performance as a whole can be negatively impacted by improper scheduling,
which can also result in higher latency, poor resource consumption, network bottlenecks,
inconsistent scaling decisions, and data transfer overhead.

In case of mircoservices deployment it is necessary to take care of Using affinity and
anti-affinity rules that are laid out in the pod design, pods can establish mutual exclusion
or affinity. These rules specify how pods should be scheduled according to node properties
or other pod labels. They are specified in the affinity field. Pod affinity, for example, can
be used to make sure that pods on the same node share common features, such a label.
Conversely, node affinity enables constraints or preferences based on node attributes by
defining the circumstances under which a pod should be scheduled on specified nodes.
Within a Kubernetes cluster, these affinity rules offer a reliable method for fine-tuning
pod placement, meeting deployment limitations, and optimizing resource allocation.

Author

Workload Target

Main Idea

Limitations

(Ning; Heterogeneous Optimizing Resource | Euclidean Distance Bias Con-
2023) Utilization cerns for metrics optimization
| (Lai et al} | IOT Enhance network | Challenges in Edge Heterogen-
2023) bandwidth eity
(Bac and | Cloud Intent-based Schedul- | Manual implementation of
Kim; 2023)) ing for Kubernetes | complicated configurations,
Workloads hindering enterprise service
management.
(Marchese | | Edge Enhancing Kuber- | lack of consideration for com-
and To- netes for Edge Mi- | munication aspects, network
marchio; croservices conditions, and historical in-
2022) formation related to resource
utilization and application per-
formance.
(Lebesbye || Cloud Boreas: Optimizing | slower than the default sched-
et al.; Kubernetes Place- | uler.
2021) ment Constraints
" (Ungureanu| Hybrid addresses issues of | Conceptual Hybrid Scheduler,
et al. uneven workload | lacks implementation
2019) distribution, resource
fluctuations, and
problems with exist-
ing centralized and
distributed scheduling
frameworks.
(Shen Edge-Cloud Decentralized Edge | Focus on scheduling optimiz-
et al.; Scheduling for Kuber- | ation, less on overall system
2023) netes for overall | design
system performance
enhancement

3 Methodology

3.1

Components of Kubernetes and Proposed Design

e API server This component is responsible for the communication with Kubelet
on the worker nodes. also provide functionality of auth-entication and check for the
authorization of the requestor.

e Etcd This is the key-value store for the system’s critical state. The Kubernetes
cluster’s status snapshots are taken using etcd.

e Controller manager Responsible for using the apiserver to monitor the cluster’s
shared state and for making modifications to try to bring the current state closer
to the intended state. The namespace controller, endpoints controller, replication
controller, and service accounts controller are a few of the controllers that come
with Kubernetes.

10

e Kube-Scheduler The Kube Scheduler is in the role of choosing the worker node
for a POD and setting up the POD on the intended node with the resources that
it requires.

e Namespaces When multiple teams or group of developers share a Kubernetes
cluster, namespaces can be useful for organizing the cluster into virtual subclusters.
Within a cluster, any number of namespaces can be maintained, each logically
isolated from the others yet able to interact with one another.

e Monitoring Tools The Prometheus application will be made available for external
access by the Prometheus Kubernetes Service. The Grafana application will be
made available by the Prometheus Kubernetes Service, enabling external users to
view the Grafana dashboards.

o
Create Pod from

d I
YAML manifest I Parse, validate and

»
L) convert to internal
Pod object
create_to_schedule
Persist Pod object in

database

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i

Get unscheduled Pod object

?

|
I
H :
i '
-------------------------------- e e oo o2
} : —. Assign the Pod to a
cubelet
} : Update Pod Object T
-
| |
| | | Create namespaces,
| o i | Get schaduled Fod object prepare environement
schedule_to_run r f f and start containers
-] ———
| | |
| o | I Report Pod status
T T
run_to_watch e ! | i

Figure 4: Pod Scheduling Phases

3.2 Custom scheduler’s objective

The custom scheduler that proposing designed aims to performance enhancement for mi-
croservices. The custom scheduler is more focused on the amount of network and cpu
that the nodes are using during their communication within the kubernetes cluster and
also check for dependency, even if the default scheduler also accounts for CPU and net-
work requests upto certain extent but it fails in case of having multiple microservices
placed within the kubernetes cluster.Yet, because of their strongly interdependency, a
significant problem with microservices deployment still exists. Ineffective resource man-
agement, network bottlenecks, uneven scaling choices, higher latency, and data transfer
overhead are just a few of the adverse impacts of improper scheduling that can lower the
performance of an application as a whole. Comparing the behavior of the default and
custom schedulers will clearly shows difference in final results.

11

When we consider the deployment of microservices on kuberentes cluster , it depends
on factors like available nodes, dependencies, resource constraints, and memory avail-
ability. For the purpose of determining which nodes provides the most resources and
efficiency will be pick by scheduler, Node exporter will help in this situation to collect
the real time metrics and send it to the master node and finally it takes best decision
of picking right node for the deployment of microservice. In case of proposed custom
scheduler, the Bash script initially perform a number of steps to optimize the schedul-
ing of a service within a Kubernetes environment. It initially identify_available_nodes
and get a list of available node names using the Kubernetes command ‘"kubectl get
nodes”. then, it assesses dependencies on a specified location-constrained node through
”check_dependencies_running_on_node,” crucial for determining whether the dependent
microservice assigned to the designated node. if they are not dependent then proposed
scheduler go for the ”selecting the node with most resources available function, intel-
ligently opting for the node with optimal resources, enhancing deployment efficiency.
The script efficiently navigates through these steps, ensuring an optimized deployment
strategy within the Kubernetes cluster.

3.3 Functioning of the proposed custom scheduler

Custom Scheduler Functioning

Start }47

mﬁ) é) 6 Get List of Available Nodes
Bash Script to Find Dependency
‘ Initialize custom
hedul
‘—[Check Dependencies running on Nude] L seheduler

Schedule Pod on Same Node

Initialize Informers

:

ScheduleOne

N -
J ¢

FindFit

~ P
J L

Bind pod on same node

} Bind Pod

‘ Emit Event }7

Figure 5: Architecture Diagram

~ e
/ .

The custom scheduler written in Go langauge start by setting up the scheduler com-
ponent. For accessing the scheduler components, kubernetes provided list of kubernetes
API to directly communicate with the components and get the result instead of going
by imperative way.After that scheduler will initialize the informers which helps in mon-
itoring the unscheduled nodes and pods, then it will actually start scheduling process by
taking one pod in queue, go to the bash script and check for dependency if not then find
fit node that is identifying a suitable node for pod deployment and bind the pod to that
node,on other hand if any pod contains depdency with any other pod on any node and if

12

that node is having enough memory it will directly schedule the pod on the same node.

Bash script written aims to replicate key functionalities of a Kubernetes scheduler for
service deployment.Using the identify_available nodes() function, the script demon-
strates the process of listing down available nodes within the Kubernetes cluster in the
first phase. Then, using the check_dependencies running on_node function, it de-
termines whether dependencies are available on a given node and verifies that the neces-
sary microservice—represented by the ”hello-payment” which s functioning on that node.
In order to determine whether the another microservice may be scheduled on the same
node without going against dependency limitations, this step is essential. If dependen-
cies are not satisfied, the script moves back to the custom scheduler function. All things
considered, custom scheduler do better job than default scheduler.

For network optimization custom script has caching function which takes into con-
sideration when two microservices share same amount of data, in this case microservices
which is having dependencies share a common redis cache, so whenever microservice
want to take some data from other microservice it will firstly check in the cache, if it is
there data trasnfer rate and ultimately bandwidth usage will be less. This approach will
drastically reduce network usage in kubernetes.

4 Design Specification

The following resources were utilized to create and test the custom scheduler, decided
to use AWS cloud services in order to set up a Kubernetes cluster formation so that it
may avail the benefits of cloud services Elastic Compute.For the purpose of this research
experiment,

cluster of Kubernetes created by utilizing the Kubeadm-cluster to create multinode
cluster. For forming cluster Kubernetes and Docker required. Cluster contains master
node, which is having 2 CPUs and the 16GB storage, instance type is t3.large, as master
node require more storage and computation power than worker nodes, on other hand
worker node is hosted on t2.medium,Bash Scripting with YAML was chosen to develop
the scheduler because it increase the flexibility, and adaptability with low runtime over-
head, Also, Bash scripting offers a simple and user-friendly method for integrating custom
scheduling logic. It is by far the most common language used for putting microservices
into action.Use of a node exporter done, which has to be installed in the slave nodes as
well master node to export metrics to the prometheus, After that, For monitoring purpose
prometheus installed on master node along with the grafana for getting effective visuliz-
ation of node health. For installation of prometheus and grafana helm used. With Helm,
you can create, package, configure, and launch Kubernetes applications automatically by
grouping all of your configuration files into a single, reusable package.Event monitoring
and alerting can be done with Prometheus, it is a free tool for analysis. Also Users can
view their data using charts and graphs that are combined into a single dashboard using
Grafana, an open source interactive data-visualization platform created by Grafana Labs.

13

Tools and Technologies Description/Version

Cluster Creation Platform AWSEC2

Operating System Ubuntu Server 22.04 LTS

Application Container User Defined Microservice
Containerization Orchestrator Software Kubernetes 1.28.4

Software for Containerization Docker 24.0.7

Monitoring tools Prometheus, Node Exporter and Grafana
Number of CPUs for Worker and Master 2 for each

Storage 16GE for master and 12 GB for Workers
Coding Language used Go Language

File used for communication between pods and | YAML

nodes

4.1 Proposed Kubernetes Scheduler-Architecture

When it comes to choosing where to best arrange pods on available nodes in the cluster,
Kubernetes’ scheduler is essential. User-defined logic for node selection is incorporated
into the custom scheduler, which expands on this functionality. This is demonstrated
in the corresponding Bash script. To intelligently determine where to deploy a pod, the
scheduler takes into account resource limits, checks for specific dependencies, and evalu-
ates factors like node availability. With this customization, users can adjust the schedul-
ing process to meet their own needs, making sure that resources are used effectively
placed and that dependencies are followed strictly. All things considered, the customized
scheduler improves Kubernetes by offering a customizable and adaptable method of pod
placement, which helps with workload orchestration and cluster optimization and making
the system reliable and fault tolerant even for heavy workload.

@ 1
New Incoming
@ ® ® Ricroservice Pod
K1-Pod K2.Pod K3-Pod Kubernetes API _fw

i 2 Bash script checking
main.go déggndency before bind pod.te
node
3 MonitorUnscheduledPods()
) ‘_E : o (
J @ } reconcileUnscheduledPods{) 5 i

Kube-apiserver kube-scheduler
[fitNodesList
||| WatchUnscheduledPods()
schedulePods()

Kube Controller Manager

4
B | [fitNodesList

etcd ECZInstance
(t2.Large)

PromaL.

schedulePod() l—»l getNode() }—» g

for each pod bestNode N
Merncban Prometheus
DpodsList

5 getUnscheduledPods() Ppod,bestNode ond
b4 b4 b4 in

Kubelet Kubelet Kubelet d

@ @ @ @ Custom Scheduler

Hello-Payment Hello-Booking Pod4

Pod3 | |

EC2Instance EC2nstance EC2-Instance
(t2.Medium) (t2.Large) (t2.Large)

. / S

Node1 Node2 Node3

Figure 6: Custom Scheduler Flow Diagram

14

Figure 6 displays the custom scheduler’s elaborate architecture diagram, and thereby
explaining the steps which are involved in this process.

e Stepl First stage consist of formation of the Kubernetes cluster on AWS cloud .I
utilized an EC2 instance to achieve this objective. The entire network consists of
two slave nodes and one worker node. In addition, as scripting language for pod
definition and deployment we need different Yaml files.

e Step2 Docker, Kubernetes, and Kubeadm were downloaded with the use of a shell
script that included all the instructions required to download the technologies cor-
rectly. Both the worker nodes and each of the master nodes require to execute set
of instruction in this step.

e Step3 To get BestNode using custom scheduler, there is requirement of installing
observability tool like Prometheus client , which expose important information like
node availability and resource use, bandwidth usage and data transfer and then
integrating Prometheus with Grafana, and Node Exporter will help in gathering and
analyzing data for our custom scheduler effectively. With help of Node Exporter
on each Kubernetes node system-level metrics can be obtained.

e step4 During the execution of the custom scheduler which was written in go
langauge, Filtering and binding methods implemented in the scheduling process
using and using Bash scripting language will allow us to obtain the the best node
to fit depndent microservices together in same node.Assisting developer place the
pod in particular node rather than placing randomly to reduce data transfer latency
between pods and hence,will be able to get the best node to achieve desired object-
ive.

5 Implementation

Within the context of Kubernetes orchestration, the data transfer rate is crucial in de-
termining how a dependency-aware scheduler performs. This scheduler is specifically
meant to improve the coordination of connected microservices; it relies on placing pods
in the best possible positions to facilitate effective communication. The impact of data
transfer rate also extends to the critical factor of network latency. Microservices are highly
dependent on smooth data transmission, hence the scheduler’s job is to reduce latency
through placing related microservices on the same nodes in a planned way. In along
with speeding up data transfer across the network, this purposeful co-location guarantees
low-latency communication between these interdependent components, creating an eco-
system that promotes low-latency communication. The scheduling script is inspired by
Hungarian Algorithm, which is a probabilistic optimization technique that can be used for
microservices scheduling in a dependency-based system. By determining the best way to
distribute microservices among nodes while minimizing total cost or optimizing efficiency,
it solves the assignment problem. The algorithm iteratively decreases rows and columns,
determines assignments, and augments paths until an optimal solution is obtained, rep-
resenting the scheduling problem as a cost matrix. The Hungarian Algorithm can be
used in a dependency-based scheduler to distribute microservices to nodes intelligently
while taking into account their dependencies and reducing data transmission costs. This
optimization helps to achieve a balanced and effective resource allocation, which improves
system performance and lowers latency.

15

5.1 Kubernetes Cluster Formation

This section will discuss the EC2 instance creation with formation of the Kubernetes
cluster on AWS. we have created one master and two slave nodes. Since the master
nodes have the custom scheduler, Control Panel, and APIserver, it requires more com-
puting workthat can be addressed by go with T2.Large size instance and having Ubuntu
22.04 LTS as the operating system of choice. Two T2.Medium slave nodes, each with two
CPUs, have been created. For cluster formation commands needs to be executed on each
instance.containerd used which is a container runtime that handles every component of
the container lifecycle, such as execution, storage, and image transfer. It facilitates the
creation, execution, and termination of containers by serving as a bridge between the un-
derlying operating system and the container orchestration platform, such as Kubernetes.
for Kubernetes ecosystem kubelet, kubeadm, and kubectl are important components of
kubernetes to run orchestration of containers sommothly. The command-line tool for
communicating with Kubernetes clusters is kubectl, while kubelet is in responsible of en-
suring that containers are operating within a pod. Kubeadm also helps with Kubernetes
cluster configuration. Container Network Interface also known as kubernetes-cni, gives
containers in a Kubernetes cluster networking capabilities. Together, these elements sup-
port Kubernetes cluster deployment, administration, and interaction. Also Docker is a
platform that facilitates the development, transportation, and execution of applications
within containers. Docker is a well-liked option for building and packaging containers,
even though Kubernetes may operate with a variety of container runtimes

Master Node

Exporters
|||| 172.31.19.75 k8s-master

Worker Node 1 Visualize

@ Pull Metrics Get Data f,:*

-—

|||| Fxporters Prometheus Grafana

172.31.20.61 k8s-nodet

Exporters
|||| 172.31.18.191 k8s-node2 -

Figure 7: Architecture For observability tools

5.2 Proposed scheduling algorithm working

Using relevant Kubernetes API calls included within the scheduler script, our Go-based
custom scheduler communicates with the Kubernetes control plane during the start-up
phase. The scheduler then sets up informers to watch nodes and pods in the Kubernetes
cluster closely to check available nodes and unscheduled pods. The ScheduleOne stage
begins when a new pod needs to be scheduled. Here, the scheduler carefully chooses

16

which node is most suited for deployment. In parallel, it runs a customized bash script
that is meant to perform dependencies across microservices. Using methods such as
”identify available nodes()” and ”check dependencies running on node(),” the script gen-
erates a complete list of nodes that are available and examines any dependencies that
are present.After that, the scheduler carefully assesses each of these nodes to determ-
ine which one is the best fit for the pod based on variables like resource availability
and script outcome. The scheduler broadcasts its decision by binding the pod to the
selected node and emitting an event upon identification. Most importantly, a caching
mechanism is integrated to enhance network efficiency through facilitating data exchange
among microservices, hence considerably minimizing bandwidth usage within the Kuber-
netes framework. The complete approach guarantees effective deployment while reducing
network overhead for improved system performance.

5.3 Monitoring tool-Prometheus tool

Monitoring in the kubernetes is one of essential part that every developer need to take
into consideration.Prometheus with Node Exporter captures detailed node-level metrics,
which improves monitoring capabilities. Node Exporter provides various system-level
metrics from a host computer available. By integrating Node Exporter with Prometheus,
detailed information regarding the resource usage, network activity, and general system
health of each node can be gathered. It would be possible to improve the custom sched-
uler script to incorporate the settings required for each node’s by collecting real-time
important metric.

Prometheus obtains insights into the underlying infrastructure when it is set up to
pull metrics from Node Exporter endpoints. This allows for an in-depth knowledge of
node-specific performance characteristics. Operators can then have an in-depth picture
of the cluster and individual nodes by adding visualizations of these additional node-level
metrics to their Grafana dashboards. In addition to assisting in identifying cluster-
wide patterns, this integrated monitoring system enables detailed analysis at the node
level, enabling operators to take accurate choices about workload distribution, resource
optimization, and cluster management in general. overall, the integration of Prometheus,
Grafana, and Node Exporter results in an effective observability stack that improves the
monitoring capabilities of the custom scheduler for both high-level and low-level insights
into the Kubernetes cluster.

Here are few components of prometheus and grafana that can be use to obtain metrics
details:

5.3.1 Components of Monitoring Tools

e Node Exporter: A metrics exporter for machine level metrics such as CPU,
memory, disk, and network usage on each node.

e PromQL: The query language used to retrieve and analyze data from Prometheus.

e Dashboards: Customizable visualizations that display metrics in user understand-
able graphs and allow users to monitor and analyze data.

e Data Sources: Connections to databases or monitoring systems, with Prometheus
being a common data source for Kubernetes monitoring.

17

Prometheus
Server

l Pull metrics

Node
Exporter

Exposes metrics

_[diskstats

collector

cpu
i collector

GET metrics through
APls

Figure 8: Monitoring Tools used for Custom Scheduler

5.4 Distinctive Features Compared to Default Kubernetes Sched-
ulers

e Dependency-Aware Node Selection: Intelligent node selection is made possible
by the custom scheduler’s efficient knowledge and utilization of microservices de-
pendencies. The custom Kubernetes scheduler optimizes resource allocation based
on complex relationships, in contrast to default schedulers, which do not have this
level of dependence awareness.

e Dynamic Resource Allocation and Optimization: In a dynamic microservices
context, the custom scheduler ensures optimal consumption and efficiency by dy-
namically adjusting resources based on evolving dependencies and workload, in
contrast to default Kubernetes schedulers that frequently rely on static resource
allocation.

e Optimized Data Transfer and Bandwidth Management: By incorporating
advanced data transmission optimization strategies like differential updates and
compression, the custom scheduler surpasses default schedulers. This reduces the
amount of bandwidth used, which is important in situations where there are complex
microservice dependencies.

e Cloud Integration and Elasticity: Utilizing the elasticity of resources in services
like AWS EC2, the custom scheduler integrates with cloud architecture with ease.
This guarantees effective scalability and flexibility to changing workloads, something
that default Kubernetes schedulers might not be as good at naturally.

6 Evaluation
The experiment was carried out utilizing on AWS EC2 services, and Ubuntu Server 22.04

to build the Kubernetes cluster. In order to assess the performance of the custom sched-
uler against the Kubernetes default scheduler, we install two pods. These are the names

18

of these pods: Payment and booking apps on the custom scheduler and the default sched-
uler with two different namespaces

[addons] Applied essential addon: kube-proxy

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.

Run "kubectl apply —f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 172.31.27.184:6U443 —-token 86tce3.5b3gkwvxlolluxtf \
-—-discovery-token-ca-cert-hash sha256:47836fb0{d831853babd6fb5f326a9472a91d3d3b3f9d0776791ac0a6ld5ef85

Figure 9: Cluster Formation

A Kubernetes cluster’s control plane can be initialized using the kubeadm init com-
mand. The machine that is supposed to serve as the master node is usually the one
running it. The scheduler, controller manager, and API server belong to the main Kuber-
netes components that are configured with default values by using this command. To
provide secure communication within the cluster, it also creates the certificates and au-
thentication tokens needed. Users can start Kubernetes operations more easily by using
the kubeadm init command, which offers a standardized and efficient method of boot-
strapping a cluster.

In Kubernetes, the kubeadm token create —print-join-command command generates
a bootstrap token and outputs the matching kubeadm join command right away. This
command makes it easier to add worker nodes to a Kubernetes cluster. It is run on the
master node after cluster initialization with kubeadm init. The created token and the
API server address are included in the printed join command, which simplifies the node
joining process for administrators which then pass to slave node for forming the cluster.

:~$ kubectl get nodes
NAME STATUS ROLES VERSION
k8s-master Ready control-plane v1.28.4

k8s-nodel Ready <none> vl.28.4
k8s-node2 Ready <none> v1.28.4

Figure 10: List Of Nodes

Kubectl get nodes is the command we need to use to see if the cluster has formed.

6.1 Configuring Prometheus and Grafana to Work with Node
Exporter on a Kubernetes Cluster

Helm charts are used to deploy Prometheus, a preferred Kubernetes monitoring and alert-
ing solution, using the commands provided. To access pre-configured charts, first install
the Prometheus Community Helm repository using the helm repo add command. The

19

local repository cache is refreshed by the next helm repo update command. To examine
available charts, particularly those from the Prometheus Community repository, use the
helm search repo command. For the Prometheus deployment, a specific namespace called
"prometheus” is created using the kubectl create namespace command.Prometheus is de-
ployed into the ”"prometheus” namespace by the helm install command, which makes use
of the "kube-prometheus-stack” chart from the Prometheus Community repository. This
Helm chart provides a standardized and easy method for configuring Prometheus in a
Kubernetes environment by encapsulating the full monitoring stack.

(a) Scheduled Pods on Same Node (b) Prometheus Dashboard

6.2 Conducting tests with the Custom Scheduler

There are two parts in evaluation which basically focuses on microservices deployment and
network optimization, First objective is to place the dependent microservices in the same
node and second objective is while placing the pods on the node, network consumption
and data transfer rate should be low as compared to default scheduler.

e Step 1: Deploy the microservices call Hello booking on one node and while deploy-
ment of dependent microservices called Hello Payment, it should go on the same
node using our custom scheduler as shown in figure

: $ bash script.sh -d
Available Nodes: Dry-run: Identifying available nodes...

Dry-run: Checking dependencies on node ip-172.31.27.184...
Checking dependency: hello-payment
Dependencies are already running on ip-172.31.27.184. Scheduling on the same node.

Figure 11: Scheduler Script

e Step 2: For demonstration of optimization of network utilization will deploy the
microservice using default scheduler as well as using custom scheduler and assess
the performance difference

6.3 Results and Discussion

To assess the efficiency of the custom scheduler alongside to the default scheduler’s per-
formance, two nodes along with master node deployed and formed a cluster. The Booking
microservice deployed on one random node and second dependent microservice deployed
and checked whether it will go to same node and their network utilization is less as
compared to default scheduler network utilization. When determining the bestNode,

20

(a) Default Scheduler (b) Custom Scheduler

the proposed custom scheduler will make use of the node exporter tool in conjunction
with the Prometheus and grafana tool. The combination of node exporter, Prometheus,
and Grafana enabled the evaluation process, which included dependency-aware decision-
making, intelligent placement of microservices, and a thorough examination of network
usage. The main objective was to show that the proposed custom scheduler, offered
with these monitoring tools, could satisfy dependency requirements and surpass the per-
formance of the default scheduler by strategically placing microservices for enhanced
effectiveness and decreased network overhead in the Kubernetes cluster.

PODS Default Scheduler Custom Scheduler

Hello Booking Mode 1 Mode 1
Microservice,

Hello Payment Mode 2 Mode 1
Microservice,

Metwork Utilization 63.8 kB/= 17.7B/s

Figure 12: Performance Evaluation

There are possible scalability concerns as well as challenges associated with implement-
ing a dependency-based scheduler. The growth of microservices and their dependencies
may add to the inherent complexity of the scheduler’s logic, increasing computing over-
head and affecting the effectiveness of scheduling decisions. It is difficult to maintain and
accurately handle dependence information, especially in dynamic microservices systems
where changes are frequently error-prone and resource-intensive. When microservices are
co-located on a single node, a phenomenon known as node fragmentation occurs. This
can lead to resource underutilization on individual nodes, which may compromise sys-
tem performance. The scheduler may be less flexible in a variety of scenarios due to its
emphasis on inter-service dependencies at the expense of external resource dependencies.
As the dependency graph grows, computationally demanding graph processing activities
and more computational overhead in determining optimal assignments give rise to scalab-
ility difficulties. Real-time modifications to dependencies and connection overhead could
make it harder for the scheduler to decide quickly.

For Kubernetes deployments, some developers might still favor utilizing EC2 directly
over EKS because of advantages like more control and customization possibilities. More
precise control over the underlying infrastructure is possible by directly controlling EC2
instances, which can be tailored to meet particular needs or preferences for instance kinds,

21

networking setups, and storage options.Enterprises can discover that directly managing
EC2 instances is a more economical option, since it allows them to optimize expenses
according to the nature of their workload.

7 Conclusion and Future Work

The objective of the project is to create a unique dependency-based scheduler for mi-
croservices that takes into account the dependencies and minimze the data transfer among
them achieved succesfully. Through the use of test scenarios and evaluations against the
Kubernetes default scheduler, custom scheduler were developed with the goal of improv-
ing performance in a microservices architecture. The experimentation findings seemed
promising because our scheduler was able to select from a number of suitable nodes, which
enabled it to optimize the microservices deployment in the cloud, decrease workload, and
enhance QoS while lowering latency.

Overall, the custom scheduler, developed in Go language for Kubernetes, showcases
a robust approach to microservices orchestration scheduling. It configures the sched-
uler components and uses informers to monitor unscheduled nodes and pods by utiliz-
ing Kubernetes APIs. Intelligent dependency checks and node selection are part of the
scheduling process, which improves deployment efficiency. Key Kubernetes scheduler fea-
tures are replicated using bash script, which emphasizes node availability and dependency
considerations. Notably, by taking into account the nuances in service deployment, the
custom scheduler performs better than default schedulers. The custom script also incor-
porates a caching function for network optimization, using a shared cache technique for
microservices with dependencies. This creative solution significantly decreases Kuber-
netes’ overall bandwidth consumption and data transfer rates, demonstrating the custom
scheduler’s power in maximizing network efficiency and deployment.

This Proposed scheduler will able to efficiently handle the microservice dependencies
at small scale and it check dependency only while deployment,suppose developer have
changed dependencies among them after deployment, that is not address in given scenario
which can be achieved as part of future work it might be with the strategic integration
of machine learning (ML) and artificial intelligence (AI) approaches to improve the ac-
curacy and adaptability of dependence forecasts in schedulers. More precise forecasts are
made possible by the scheduler’s ability to learn from and adjust to changing patterns
in microservice dependencies by utilizing advanced algorithms. By incorporating real-
time evaluations, historical data, and dynamic shifts in the microservices ecosystem, Al
and ML models can further improve the decision-making process. This method not only
improves the scheduler’s accuracy in predicting dependencies, but it also offers a more
adaptable and flexible framework that can handle complex situations in the Kubernetes
environment.

References

Bac, T. P. and Kim, Y. (2023). Intent-based scheduling approach for kubernetes-oriented
cloud systems, pp. 884-885.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes, J. (2016). Borg, omega,

22

and kubernetes, Commun. ACM 59(5): 50-57.
URL: https://doi.org/10.1145/2890784

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-native applications after 10
years of cloud computing - a systematic mapping study, Journal of Systems and Soft-
ware 126: 1-16.

URL: https://www.sciencedirect.com/science/article/pii/S0164121217300018

Lai, W.-K., Wang, Y.-C. and Wei, S.-C. (2023). Delay-aware container scheduling in
kubernetes, IEEE Internet of Things Journal .

Lebesbye, T., Mauro, J., Turin, G. and Yu, I. C. (2021). Boreas—a service scheduler for
optimal kubernetes deployment, Service-Oriented Computing: 19th International Con-
ference, ICSOC 2021, Virtual Event, November 22-25, 2021, Proceedings 19, Springer,
pp. 221-237.

Marchese, A. and Tomarchio, O. (2022). Communication aware scheduling of
microservices-based applications on kubernetes clusters., CLOSER, pp. 190-198.

Merkouche, S., Haroun, T., Bouanaka, C. and Smaali, M. (2022). Tera-scheduler for
a dependency-based orchestration of microservices, 2022 International Conference on
Advanced Aspects of Software Engineering (ICAASE), pp. 1-8.

Narasimhulu, M., Mounika, D. V., Varshini, P., K, A. and Rao, T. R. K. (2023). Invest-
igating the impact of containerization on the deployment process in devops, 2023 2nd
International Conference on Edge Computing and Applications (ICECAA), pp. 679—
685.

Ning, A. (2023). A customized kubernetes scheduling algorithm to improve resource

utilization of nodes, 2023 3rd Asia-Pacific Conference on Communications Technology
and Computer Science (ACCTCS), pp. 588-591.

Pontarolli, R., Bigheti, J., Fernandes, M., Domingues, F., Risso, S. and Godoy, E. (2020).
Microservice orchestration for process control in industry 4.0, pp. 245-249.

Shen, S., Han, Y., Wang, X., Wang, S. and Leung, V. C. M. (2023). Collaborat-
ive learning-based scheduling for kubernetes-oriented edge-cloud network, IEEE/ACM
Transactions on Networking p. 1-15.

URL: http://dz.doi.org/10.1109/TNET.2025.3267168

Ungureanu, O.-M., Vladeanu, C. and Kooij, R. (2019). Kubernetes cluster optimization
using hybrid shared-state scheduling framework, Proceedings of the 3rd International
Conference on Future Networks and Distributed Systems, pp. 1-12.

Vayghan, L. A., Saied, M. A., Toeroe, M. and Khendek, F. (2021). A kubernetes controller
for managing the availability of elastic microservice based stateful applications, Journal
of Systems and Software 175: 110924.

URL: https://www.sciencedirect.com/science/article/pii/S0164121221000212

Zheng, G., Fu, Y. and Wu, T. (2021). Research on docker cluster scheduling based on
self-define kubernetes scheduler, Journal of Physics: Conference Series 1848: 012008.

23

	Introduction
	Background
	Motivation
	Research question
	Objective
	Paper Structure

	Literature Review
	Kubernetes Survey
	Scheduling in Kubernetes
	Working of Default Scheduler

	Custom based scheduling
	Need of Custom Scheduler
	Summary

	Methodology
	Components of Kubernetes and Proposed Design
	Custom scheduler's objective
	Functioning of the proposed custom scheduler

	Design Specification
	Proposed Kubernetes Scheduler-Architecture

	Implementation
	Kubernetes Cluster Formation
	Proposed scheduling algorithm working
	Monitoring tool-Prometheus tool
	Components of Monitoring Tools

	Distinctive Features Compared to Default Kubernetes Schedulers

	Evaluation
	Configuring Prometheus and Grafana to Work with Node Exporter on a Kubernetes Cluster
	Conducting tests with the Custom Scheduler
	Results and Discussion

	Conclusion and Future Work

