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SSD and HDD Failure Detection using Advance Deep
Learning Algorithms

Sandesh Muralidhar
x20195737

Abstract

Data centers are under demand to provide ever-more-efficient services due to
the growing need for data processing and storage. But these services effectiveness
may be effected by their dependence on hard drives—in particular, solid-state and
magnetic drives, which are now among the most widely used types of data storage.
Occasionally, these devices may fail and cause permanent data loss, which would
violate contractual service level commitments and cause financial harm to both the
customer and the hosting provider. This research aims to increase the cloud storage
service quality by predicting SSD (Solid-State Drive) and HDD(Hard disk drives)
failures using machine learning methods. Hard disks failure is a significant cause
of application failures which leads to potential data loss and downtime. This re-
search explores the application of deep learning methods and ensemble algorithms
for detecting Hard drives failure prediction. Blackblaze dataset which has details
of SMART parameters has been used for Research. This Research also explores
on finding top paramters effecting the drive failure. It explores deep learning tech-
niques, especially Convolutional Neural Networks (CNN), Gated Recurrent Units
(GRU), and a hybrid Conv-GRU model. The study takes into account both the
spatial and temporal facets of the dataset to resolve the urgent demand for trust-
worthy forecasting algorithms as a solution. To assure effectiveness, the research
employs a complete methodology that begins with thorough feature engineering
and includes the extraction of the most important characteristics. A detailed cor-
relation analysis of SMART parameters has also been performed in this research.
Three deep learning models —Convolutional Neural Network (CNN), Gated Re-
current Unit(GRU), and a hybrid CNN-GRU—are applied to study it’s efficiency
in prediction of failures. The Conv-GRU model is the best-performing algorithm of
the ones that were looked into; it performs better in terms of accuracy, precision,
recall, and F1-score metrics. Its superior performance over CNN and GRU equi-
valents is largely due to its capacity to combine spatial and temporal information.
The outcomes of this research would contribute to improve efficient storage man-
agement, hence the overall availability of datacenters and quality of cloud storage
service.

1 Introduction

Increasing adoption of cloud storage systems and the expansion of large-scale data cen-
ters, cloud computing has experienced tremendous growth. Frequent storage system
failures are becoming a significant problem to data dependability and service quality as
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the cloud storage system expandsZhou et al. (2021). Hard disk drives (HDDs) and solid-
state drives (SSDs) are two types of storage devices that are essential to maintaining
service quality. Drives have one of the greatest failure rates among hardware components
in cloud storage systems, and as a result, their Mean Time Between Failure (MTBF) is
extremely high. It poses significant challenges for data centers, including the possibility
of data loss, system failures, and higher management expensesZhou et al. (2023). Survey
conducted indicates that about 28% of data center outages are attributable to storage
component problems. The failure rate is accounted by the bulk of HDD and SSD failures
Gu et al. (2023).A different study claims that in 2016, the reported downtime costs for 63
data centers increased from $5,617 per minute in 2010 to $8,851 per minute Zhang et al.
(2023). Increased storage dependency and availability are achieved through the use of
passive tolerance techniques, such as erasure codes and Redundant Arrays of Independent
Disks (RAID). The drawbacks of this approach are long recovery time and challenges in
maintaining dependability as cloud storage starts to scale Zhou et al. (2021). Implement-
ation of Fault tolerance cannot guarantee System accessibility as the action is taken after
the failure incident. A proactive tolerance mechanism is required to predict the failure
and migrate the data before the failure of the disk. Proactive tolerance should help in
increasing system reliability and availability Zhang et al. (2023).

The growth of extensive use of data, hard disk drive (HDD) manufacturers are con-
tinuously evolving their approach to self-monitor technology with their manufactured
products. The enhancement of this approach has introduced an effort to predict failures
in hard disks at an early stage to enable users to access the data backup facility. In recent
years, with advancement to extensive data utilization, hard disks have played an essential
role in data storage and serve as a primary technology to store backup data for a long time.
In the recent decade, an emerging trend - “Solid State Drive” (SSD), which functional-
izes as semiconductor storage, has surpassed in application over hard disk drives (HDDs)
regarding response time as well as high-throughput performance. However, Djordjevic
(2021) explained that HDDs had been identified as a cheaper storage medium per byte
than SSDs. Therefore, it is considered an integral and predominant medium for data
storage available at an industrial level and in the consumer market. According to the
potential research evidence, hard disk drive (HDD) renders a more susceptible condition
to failure in stored data protection compared to other storage components in the user’s
computer system.

The failure in the hard disk drive generally causes permanent loss of data, which,
therefore, marks an expense more than the cost of an HDD. Thus, experts have intro-
duced a research paradigm to explore different technologies that can detect the HDD
failure and subsequently prevent data loss through an effective data retention strategy.
The mechanism of HDD failure has been identified as “predictable” and “unpredictable”
failure. As stated by Djordjevic (2021), the former failure option is mostly showcased
with a progressive degradation in drive performance across the HDD operation lifecycle.
This degradation is mainly caused by mechanical wear and tear of components as well
as the degradation of the storage surface. This degradation in performance is monitored
using different parameters that are typically applied to predict the occurrence of failure.
On the other hand, unpredictable failures in hard disk drives occur instantaneously, al-
though no previous indications are observed in HDD performance. It is mainly caused
due to external forces, but the occurrence is unpredictable. Apart from this, other implic-
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ations of unpredictable failures include hidden defects within HDD components typically
observed at an “early stage” and also in the “wear-out period.”

Predicting HDD component failure has become an area of research interest across
multiple industries, such as aerospace, agriculture, technology, energy, and manufactur-
ing. The suitable framework acknowledging the prediction issue typically varies based on
the analytical or business goals of the sector and data availability. One of the standard
approaches to predicting the problem is regression and estimation of the component’s
“Remaining Useful Life” (RUL) through the time series method. The suitability of the
technique suggestively entailed through its assumptions while there is enough informa-
tion according to the incremental time steps for the generation of an “RUL” estimate.
Thus, the overall understanding of the degradation inducing predictable or unpredictable
failure can be determined more smoothly than experiencing sudden failure.

Over the years, especially in the recent decade, the emerging trend of the “Internet of
Things” (IoT), along with the availability of “machine sensor” data, has increased feasib-
ility in RUL estimation while using real-world data. In modern enterprises, the prediction
of HDD component failure is performed through a “standard self-monitoring system” -
“Self-Monitoring, Analysis and Reporting Technology” (SMART). The credibility of this
technology has been suitably enhanced through its extensive ability to record “real-time”
sensor data that can serve the purpose to detect malfunctioning and also anticipated
failure in hard disk drives. The above-specified monitoring system typically monitors dif-
ferent parameters across the HDD lifetime. These parameters store information regarding
temperature, hours of operations, and the degree of “on/off” cycles. The values confined
to these parameters are then compared to predefined “threshold values,” primarily set by
an HDD manufacturer. While exploring the principle mechanism of SMART readings,
the contribution of the dataset in the prediction process promotes suitable actions.

The Backblaze dataset, which is a public hard disk drive dataset and consists of more
than 100,000 active drives, including “hard disk drives” (HDD) and “solid-state drives”
(SSD), have been vigorously used in the prediction process. The dataset comprised
SMART readings from the above-specified hard drives developed by various brands and
of different models. The contribution of this dataset in the prediction of hard disk failure
has become a potential aspect to consider due to its availability and feasibility in gaining
insights into the malfunctioning and failure of HDD components.

The identification of the failure in HDD components through SMART readings is a
common prediction approach in data centers and enterprises since it uses threshold values
and enables real-time data backup, preventing data loss upon replacing the failing one.
It has been determined that manufacturers set the threshold value at a level significantly
higher to prevent false alarm rates and minimize the return of HDD during the “war-
ranty” period Djordjevic (2021). Contributing to this fact, experts have verified numerous
attempts to reduce prediction failure, thus integrating threshold-based algorithms into
action to increase the accuracy and feasibility of the detection process. While regarding
this fact, some advanced approaches in the comprehensive failure detection of hard disks
are achieved through machine learning and advanced deep learning algorithms. Thus,
emphasis has been given to the critical exploration of the research paradigm, indicating a
comprehensive approach to detecting hard drive failures such as HDD and SSD. Feature
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Engineering has been applied in this study to find the top features affecting drive failures.
This research deploys three different deep-learning models which are CNN (Convolutional
Neural network), GRU (Gated Recurrent Unit), and Conv-GRU (Con-volutional Gated
Recurrent Unit). To identify the most optimal model for disk failure prediction evalu-
ation of each model is conducted by calculating the Accuracy, Precision, Recall, and F1
score on the test set, and the model with the highest metric scores has been deployed to
the web application.

2 Related Work

The contribution of knowledge in this chapter is based on a comprehensive evaluation
of information on Disk failure detection using various algorithms and further comparing
the prediction outcome to develop insights into the accuracy level of the models. The
prediction of failure is further interpreted using the Backblaze dataset and subsequently
explores the pre-processing criteria and feasibility of the dataset in the detection process.

2.1 Backblaze Dataset - Application and Implications

With a comprehensive understanding of the importance of hard drives as an effective
data storage component, research has typically emphasized the data loss and pertained
risk of HDD failure. As explained by Aussel et al. (2017) the prediction of this fail-
ure has been enhanced with the application of the SMART method, where operational
data is primarily used. In this regard, the Backblaze dataset consisting of large num-
ber of hard drives has induced a potential operational implication that exhibits hard
drive (HD) heterogeneity with nearly 81 models. Manufacturers, while developing the
hard drive, potentially used this dataset in recent times to assess and control the failure
upon using an “unbalanced data ratio” of 5000:1 between the healthy and the defective
samples within a real-world environment which is sparsely controlled. The contribution
of this dataset, as explained by Tomer et al. (2021) to the prediction process typically
optimizes the data evaluation with higher accuracy, especially when using cutting-edge
technologies in research in recent times. Upon focusing on the importance of this dataset,
an actual specification has been enhanced with its origin. Backblaze has been identified
as an online “backup & cloud storage provider” that provides necessary information on
hard drives using SMART attributes across a period of 2013-2019 (Tomer et al. 2021).
Tomer et al. (2021) explained these hard disk drives (HDDs) are integrated from differ-
ent HDD vendors such as Hitachi, Seagate, Western Digital, and others. Thus, it can
be considered that this heterogeneous dataset serves real-time application in predicting
hard drive (HDD and SSD) failures with the application of SMART readings.

2.2 Hard Drive failure detection using Machine Learning Al-
gorithms

The prediction of hard disk failure is a vital approach that requires forecasting of data
to understand whether there is a significant failure in the “material system.” According
to the explanation provided by Leukel et al. (2021) task accomplishment attains sig-
nificant strategies that retain effective industrial maintenance, for example, predictive
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maintenance. Therefore, researchers typically solve this prediction task using different
algorithms, especially machine learning algorithms, since they allow an adequate predic-
tion of hard disk drive failure (HDD). An effective prediction process discreetly indulges
the necessary data extraction process that has increased exponentially because of the
application of various sensing technologies. As explained by Carvalho et al. (2019) with
a progression toward Industry 4.0, there has been a strong embrace of the digital system
in industrial applications to enable a faster and more reliable information exchange. In
this regard, extensive use of data in contemporary industrial systems is essential to keep
a significant pace in the long-term success. While understanding the necessity of vast
data in industrial applications and consumer markets, adequate storage space and com-
ponents are essential to increase efficiency and reliability. The application of hard drives
such as hard disk drives (HDD) and solid-state drives (SSD) has presented comprehensive
options with enhanced build-up. But, due to unprecedented incidences related to storage
degradation, failure in hard disks is a common consequence.

In a study conducted by Shen et al. (2018), the author specified the necessary ap-
proach to detect this failure at an early stage to prevent service interruption in the user’s
computer system. In this regard, the primary consideration for machine learning mod-
els serves as better prediction accuracy algorithms using different prediction classifiers.
As the author further stated, SMART attributes have been used by manufacturers and
research experts to analyze the condition of hard drives in the interior region and also
HDD data of the exterior region through sensors countries. Although the technology has
served potential applications for a long time, the detection consistency rate is estimated
to be only 3-10%. Shen et al. (2018) implied that different methods are proposed and
applied to enhance prediction accuracy; however, specific disadvantages are aligned with
the approaches. The above study has introduced an ensemble algorithm - random forest
(RF) for classification. The model is a “multitude” or constructed by combining multiple
decision trees and utilizes randomized training samples as well as features to obtain ac-
curate prediction results. The model has used the Backblaze dataset containing SMART
records of nearly 64,193 drives and provided an experimental result showing improved
accuracy compared to existing “state-of-the-art” methods.

In another study conducted by Li et al. (2017), the author applied two classific-
ation and prediction models -”decision trees” (DT) and “gradient-boosted regression
trees” (GBRT) and compared the prediction accuracy of both models. While using two
distinctive models, a real-world hard drive dataset containing approximately 121,698
drives has been used, thus, the study aimed at providing a suitable prediction outcome
with real-world testified datasets. As per the experimental outcome, decision trees have
provided a prediction accuracy of 93% with a “false alarm” rate of less than 0.01%, while
the gradient-boosted regression trees have provided a prediction accuracy result of 90%
without any indication of false alarms. Thus, the evaluation explained the potentiality
of both models in the hard drive failure prediction process, although GBRT proves to be
more reliable with no false alarm rates. Understandably, hard drives such as HDD are an
essential storage component in the user’s computer system. It has been identified that
the speed with which data is suggestively transferred, as well as programs loaded in the
system, typically depends on the compatibility of the disk drive. As discussed, excessive
reliance on IT infrastructures on this disk drive can reduce its effectiveness and induce
challenges in predicting failure, thus impacting the data integrity and availability as well
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as the business continuity.

Over the years, experts have recognized the credibility of datasets in enhancing the
predictability level through advanced classifiers. Ganesh et al. (2023) explained that a
potential challenge with the public dataset such as the Backblaze dataset is recognizing
the “class imbalance”, which is further addressed through an “oversampling” approach
by using an “adaptive Synthetic Algorithm”. Apart from this, the study has introduced
three different feature selection classifiers - Logistic regression (LR), Decision Tree (DT),
and Random Forest (RF) to substantially approach the prediction of disk failure. As
per the review of the experimental result, it has been observed that the random forest
classifier has precisely predicted the disk failure with an accuracy of 92%, precision rate
of 86%, recall rate of 90%, and F1-score of 88%, respectively. Thus, it can be stated that
among all the machine learning models, random forest has proven to be more effective in
the prediction of HDD failure.

2.3 Hard Drive failure detection using Deep Learning Algorithms

An extensive approach to cloud-based computing systems in recent decades, data centers
are aimed at providing high service to users with almost negligent failure occurrence.
Gao et al. (2019) explained that with an extensive count of large-scale data centers,
cloud providers are facing immense challenges with hardware software failures. Among
these hardware, challenges are rigorously perceivable in predicting the failure in hard
disk drives, thus resulting in task failure as well as incompetent storage capacity. The
system reliability with suitable prediction of the failure is specifically addressed as an
underlying issue by hard disk manufacturers therefore, they have instigated the necessity
for combining improved methods with SMART attributes for detection purposes. Gao
et al. (2019) in their study introduced an advanced deep neural architectural model -
a bidirectional long-short-term-memory (Bi-LSTM) model, which suggestively identifies
the risk related to hard disk failure. The experimental result shows that the algorithm
has outperformed previous machine learning and deep learning methods in the prediction
process.

According to De Santo et al. (2022)), hard disk drive (HDD) component failure has
been identified as a common problem of service downtime within data centers. The au-
thor specified that distinct approaches, such as “predictive maintenance techniques,” are
introduced to reduce the RUL of HDDs while minimizing service shortage data loss.
While recognizing the need for successive prediction of HDD failure, De Santo et al.
(2022)) have introduced a proposed deep learning model - LSTM, which combined with
SMART attributes to estimate the condition of hard drives and predict the failure rate.
The experiment has been performed using two real-world datasets containing 23,395 disks
and 29,878 disks, thus establishing a predictive failure 45 days earlier than the meantime.
Another study performed by Cahyadi and Forshaw (2021)) introduced a research interest
in predicting hard disk failure by using public datasets, which are highly imbalanced.
The study showcased the prediction leverage obtained using the LSTM model on the
Backblaze Dataset when combined with SMART attributes and thereby achieved a cor-
relation coefficient estimated to be 0.71. The result shows that this model is universally
applicable and portable to enhanced operational datasets as well as disk types.
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Apart from this understanding of the suitability of the LSTM model combined with
SMART attributes when using the Backblaze dataset, studies have further preferred con-
volutional deep learning models, which combined with LSTM architecture to develop a
“Convolution-LSTM” (C-LSTM) model for the accurate prediction process. Shi et al.
(2022) introduced a similar model for predicting hard disk drives and SSD failures while
achieving successive fault warnings. The experimental conduct performed in the above
study has included different parameters and critically evaluated the outcome, showing
that the proposed model has performed better than most other algorithms in predict-
ing the failure of mechanical HDD storage components. Another study conducted by
Wu et al. (2021) has introduced a similar convolutional LSTM model, although multi-
channeled, has achieved a prediction accuracy of 99.8% with a reduced false-alarm rate of
0.2%. The overall information, therefore, explained that advanced deep learning models,
particularly enhanced neural architectures, are more effective in predicting mechanical
hard disk drive failure with the Backblaze dataset than existing models. However, it is
recommended that the area needs further attention from experts to explore as a future
research scope while using extensively imbalanced datasets for HDD failure detection.

2.4 Hard Drive failure detection using Hybrid Models

In the above sections, the specification of models in accurate prediction of HDD failures
has been explored based on the understanding of the contribution of machine learning
and deep learning classifiers. Apart from deploying these models, researchers have also
focused on other algorithms and improved models. In the study conducted by Wang
et al. (2022), the author has introduced a novel algorithm that combines “Generative
Adversarial Network” (GAN) and “Long-Short-Term-Memory.” The hybrid model has
shown its capability to alleviate the issue of “data imbalance” while expanding the data-
set of failed disks. The application of this trained model has shown improved accuracy
in the failure detection process, Approximately 300 originally obtained failed disk data
have been found to induce a significant impact on improving the fault detection of hard
disks.

Apart from the above understanding of the model used, the preference for an improved
algorithm has distinctly explored the research paradigm of novel HDD failure detection
models. In Xu and Xu (2023) their study, tested the health status of hard disk drives
from the selected dataset, which contains highly unbalanced data. The approach has
been aimed at understanding the application of the proposed “convolutional transformer
model” (ConvTrans-TPS) in the prediction of disk failures. The accuracy of the model
has been determined using a large-scale dataset, typically the Backblaze dataset, thus
specifying a comprehensive approach with an accuracy level of 96% and a correlation
coefficient estimated to be 0.92. As per the understanding of the suitability of the model,
it can be stated that the detection accuracy of HDD failures has shown an improvement
compared to the CNN-LSTM model.
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2.5 Research Gap

Existing literature in the domain of predictive maintenance in cloud computing often
addresses various aspects of hardware failure prediction, a comprehensive integration of
novel approaches remains scarce. The current body of work lacks in-depth exploration
of the correlation metrics for smart metrics, which are crucial for understanding the
dynamics of predictive maintenance. The extraction and analysis of the top features from
smart parameters are not extensively covered in the existing research. The combination
of deep learning models, specifically the integration of CNN, GRU, and their hybrid
forms, presents an unexplored avenue in optimizing predictive maintenance models for
cloud environments. Addressing these gaps would not only enhance our understanding
of predictive maintenance but also contribute to the development of more robust and
efficient strategies for hardware failure mitigation in cloud computing and Datacenter
management.

2.6 Research question

How can machine learning methods leveraging SMART parameters can be effectively
utilized to predict Drive failures and enhance the quality of cloud storage services ?.

2.7 Research objectives

Below are the research objective for the research
1) Investigate and analyze the correlation metrics for smart metrics in the context of
predictive maintenance for hardware in cloud computing environments.
2) Identify and extract the top 15 features from smart parameters to enhance the under-
standing of their significance in predicting hardware failures in cloud systems.
3) Evaluate the individual and combined performance of deep learning models, including
CNN, GRU, and hybrid architectures, for optimizing predictive maintenance in cloud
computing environments.

2.8 Document Structure

There are multiple sections in this research report. Related work of different machine
learning approaches on failure detection and their findings are provided in Section 2.
The methodology followed in this research along with the Dataset description and Data
Processing is explained in Section 3, Descriptive Analysis of the deep learning model that
has been applied is presented in Section 4, The Implementation of the described models
is explained in Section 5, Results obtained from the model is presented in Section 6.

3 Methodology

The reliability of data centers is significantly impacted by the performance and health
of storage devices, encompassing both hard disk drives (HDDs) and solid-state drives
(SSDs). Precise anticipation of potential failures in storage devices enhances the overall
dependability of data centers by facilitating preemptive measures to mitigate data loss
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risks. This research flows into an in-depth investigation of HDD and SSD failures, con-
ducting a thorough analysis of disk logs sourced from real-world data centers spanning
a comprehensive a-year duration. The analytical focus encompasses the examination of
Self-Monitoring, Analysis, and Reporting Technology (SMART) traces extracted from
HDDs specifically obtained from the real-world data center. To implement an effective
and efficient method that can automatically predict the failure of such drives, a rigorous
methodology is followed which is shown in Fig1. Various steps are carefully considered
to make a real-world solution starting with the collection of data from a valid source,
followed by in-depth data preprocessing and exploratory data analysis which can derive
a better path for feature extraction and feature engineering which are subsequent steps
followed in this methodology. Since different deep learning models are deployed in this
research, a critical evaluation step is accounted for by employing different evaluation met-
rics to select the best-performing algorithm. Each step performed in this methodology is
detailed in further subsections.

Figure 1: Methodology

3.1 Dataset Description:

In the pursuit of developing a robust predictive model for SSD/HDD failure, the initial
phase involved comprehensive data collection from the Backblaze site. The dataset, ex-
tracted from the year 2022, contained detailed information about various hard drives,
each characterized by distinct attributes. These attributes include essential parameters
such as model specifications, capacity in bytes, and SMART (Self-Monitoring, Analysis,
and Reporting Technology) metrics, which are indicative of the drive’s health and per-
formance. The dataset exhibits a binary classification task, with the target variable ’fail-
ure’ indicating the occurrence of failure events. Notably, the dataset offers a substantial
volume of non-failure instances, with a class distribution of 206,951 instances classified as
non-failures and only three instances marked as failures. Blackblze in their website has
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declared that their dataset can be used for Research purpose. The wealth of information
embedded in the dataset serves as a foundation for training a predictive model capable of
discriminating patterns indicative of potential failures in storage devices. The diverse set
of features, ranging from raw SMART metrics to normalized values, facilitates a refined
analysis. The dataset, thus, forms a pivotal component in the overarching objective of
constructing an effective and reliable SSD/HDD failure prediction model.

3.2 Data Preprocessing:

A solid basis of data preprocessing is essential to building reliable and accurate predic-
tion models. The first stage in this preparation method was dealing with the dataset’s
intrinsic class imbalance problem. The frequency of non-failure cases much exceeded the
frequency of failures, which might introduce bias and impair the generalized ability of the
model. A well-planned strategy was used to reduce this disparity. The dataset’s quarterly
interval organization and temporal nature offered a special chance to use temporal data
to address the class imbalance. A more representative dataset was created by methodic-
ally removing failure occurrences from all files that were accessible and balancing them
with a sample of non-failure examples. The goal of this methodological enhancement was
to increase the model’s exposure to failure cases thereby enhancing its skill in detecting
subtle indications pointing towards possible failures in storage devices. Subsequent data
preparation methods ensured the dataset’s relevance and purity, going beyond correct-
ing the class imbalance. The ’date’ column was arranged chronologically to help with
temporal comprehension of the data (an important feature in failure prediction because
patterns may show temporal relationships). Duplicate entries were also removed. Since
null values are frequently present in real-world datasets, they were handled with care.
Excessively high null rate columns were removed to ensure data integrity and strike a
balance between the volume of data and informativeness.

The preference for normalized SMART characteristics over raw data highlighted the
significance of feature engineering in achieving the best possible model performance. The
dataset was simplified by placing a strong emphasis on normalized values, giving priority
to characteristics that significantly aid in failure prediction and eliminating unnecessary
features. Given that the dataset includes certain columns with null values, inputting
’0’ to these columns eliminates the null values from the data. To ensure that the re-
maining features conveyed a variety of useful information, potential sources of noise were
addressed by excluding columns that had a single unique value. These procedures in data
preparation provide a dataset that is more balanced, informative, and temporally aware,
making it a powerful tool for later model training and assessment in the difficult task of
SSD/HDD failure prediction.

3.3 Exploratory Data Analysis:

The exploratory data analysis (EDA) deals into various facets of the SSD/HDD failure
prediction dataset, offering valuable insights into its characteristics and potential pat-
terns. Initial explorations centered around understanding the distribution of different
HDD models visualized through a scatter plot showcasing the count of each model

The distribution of failure and non-failure instances across different HDD models was
examined through a grouped bar plot as shown in Fig2. This visualization explains the
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varying counts of failures and non-failures for each model, contributing to a comprehensive
understanding of model-specific performance in failure prediction.

Figure 2: Failure Vs Non-Failure Counts of Each Model

An analysis is exhibited in Fig3 represents the counts of HDD failure in each month.
From the Figure below it is evident that the maximum number of failures accounted for
in August followed by October and September.

Figure 3: Counts of HDD Failure in a Month

Co-relation metrics was plotted to relate the relationship between the smart metrics,
As represented in Fig4. Each cell in the diagram represents co-relation co-efficient. Some
of the main observations is that smart 196 which is reallocation event count is strongly as-
sociated with smart-187(Reported uncorrected error and smart-188(command time out).
Similarly, Smart-184(End-to-End error) is strongly associated with smart-9(Power-On
Hours) parameter.
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Figure 4: Corelation-metrics of SMART parameter

3.4 Feature Engineering

:
Feature engineering was a crucial step in refining the dataset for optimal model per-

formance. Initially, the target column, ’failure,’ was extracted as it represents the outcome
to be predicted. Following this, categorical columns such as ’model’ and ’serialnumber’
were encoded using label encoding, converting them to a format suitable for modeling. To
address the class imbalance as presented in Fig5, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied, effectively balancing the representation of failure and
non-failure instances in the dataset as depicted in Fig6.

Figure 5: Imbalance Class Counts in Target Variable
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Figure 6: Balanced Classes After SMOTE Oversampling

Next, scaling down the features to a range of [0, 1] using MinMaxScaler was under-
taken to ensure uniformity in feature magnitudes. The importance of this transformation
lies in mitigating the curse of dimensionality associated with datasets containing numer-
ous columns.

A feature importance analysis was conducted using the XGBoost classifier to enhance
model interpret ability and efficiency. This involved training the model on the dataset
and extracting feature importances as depicted in Fig7. The resulting feature importance
scores were then used to identify the top 15 features contributing most significantly to
the predictive capacity of the model.

Figure 7: Feature Importance of Variables

The top features, including ’smart 196 normalized,’ ’smart 5 normalized,’ and
’smart 198 normalized,’ were selected based on their importance scores. Subsequently,
these features were retained in the final dataset, ensuring a efficient set of predictors
for improved model efficiency. The entire feature engineering process, encompassing
target extraction, label encoding, class balancing, feature scaling, and feature importance
analysis, collectively aimed to optimize the dataset for subsequent machine learning model
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training, ensuring a more effective and interpretable predictive model for HDD failure
prediction.

3.5 Model Training

:
The model training process involved the utilization of a Convolutional Neural Net-

work (CNN), a Gated Recurrent Unit (GRU), and a combination of both, known as
Convolutional-GRU (Conv-GRU). Following the data split into training and test sets,
the data was reshaped to meet the input requirements of the models. For this purpose,
the training and test data were reshaped into a three-dimensional format, to accommod-
ate the input shape expected by the models. Subsequently, a TensorFlow session was
cleared to ensure a clean slate for model training. For each model, a customized architec-
ture was defined. In this work, each model underwent compilation using appropriate loss
functions (binary crossentorpy), optimizers, and evaluation metrics. The training process
involved fitting the models to the training data with 15 epochs, allowing the models to
learn patterns and relationships within the data. The performance of each model was
evaluated on the test set to measure its generalization capabilities.

3.6 Model Evaluation

: The evaluation of each model was conducted using the reserved test data, highlighting
the significance of assessing model performance on unseen samples to gauge its generaliz-
ation capabilities. The chosen evaluation metrics, including Accuracy, Precision, Recall,
and F1-Score, collectively provided a comprehensive assessment of the models’ predict-
ive ability. Accuracy served as a fundamental measure of overall correctness, capturing
the proportion of correctly predicted instances. Precision and Recall root deeper into the
model’s ability to minimize false positives and false negatives, respectively. The F1-Score,
being a harmonic mean of Precision and Recall, offered a balanced metric that considered
both aspects of classification performance. Employing multiple evaluation metrics was
justified as it allowed for an understanding of the model’s strengths and weaknesses, of-
fering insights into their capacity to correctly identify positive and negative instances.
The Integrated evaluation strategy ensured a robust and insightful assessment of the
predictive models on the task of HDD failure prediction.

4 Design Specification

In this exploration of deep learning, three distinct models—Convolutional Neural Network
(CNN), Gated Recurrent Unit (GRU), and Convolutional-Gated Recurrent Unit (Conv-
GRU)—a combination of two models to exhibit properties of both algorithms. A clear
technical blueprint of these models is specified in the below subsections.

4.1 Convolutional Neural network (CNN)

CNNs are a class of deep neural networks specifically designed to handle data with a
grid-like structure, such as images and time-series data. CNNs are primarily used for
image processing but can be adapted for time-series data, which is relevant in monitoring
HDD and SSD performance and can be used for predicting Hard disk and SSD Failures.
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CNN can extract spatial features from the raw input data, such as patterns in disk usage
or temperature fluctuations. This feature extraction is critical for identifying potential
precursors to hardware failure. The key Component of CNN includes the Convolution
layers, pooling layers, and fully connected layers. Where each layer plays an important
role in performing accurate prediction. CNN is considered as most commonly used, yet
effective architecture in the deep learning paradigm. The architecture of CNN is shown
in Fig8. Reference for FigurePhung and Rhee (2019)

Figure 8: Architecture of Convolutional Neural Network

4.2 Gated recurrent units (GRUs)

Gated recurrent units (GRUs) are a powerful type of neural network designed to handle
sequential data, like text, speech, and sensor readings. Unlike traditional RNNs that
struggle with long-term dependencies, GRUs excel at remembering relevant information
over extended periods while efficiently discarding irrelevant details, which is crucial for
predicting future events like failures. As per analysis, GRU can offer significant value in
predective maintenance and reducing failure rate. GRU uses input layers, one or more
GRU layers and dense layers for output. The gated Recurrent Units architecture is shown
in Fig9.Reference for Figure Wu et al. (2020)

Figure 9: Architecture of Gated recurrent units (GRUs)

4.3 Conv-GRU (Convolutional Gated Recurrent Unit)

ConvGRUs combine the strengths of CNNs and GRUs, making them ideal for tasks like
HDD/SSD failure prediction. It leverages CNNs’ ability to extract features from raw
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data and GRUs’ ability for understanding temporal relationships. Convolutional GRU
can simultaneously analyze spatial and temporal features of the disk drive data, such as
detecting anomalies in data write/read patterns while considering the temporal context
of these events which helps GRU in understanding the disk’s health, leading to more
accurate predictions of potential failures. As compared to CNN and GRU, ConvGRU is
more complex to train and optimize and requires more data for accurate prediction. The
architecture of Conv GRU is shown in Fig10. Reference for figure Wang et al. (2019)

Figure 10: Architecture of Convolutional Gated Recurrent Unit

5 Implementation

The implementation of this Research commenced with data preprocessing phase aimed
at addressing challenges inherent in the raw dataset. Recognizing the issue of imbalanced
data, a systematic approach was adopted, involving the extraction and concatenation of
failure instances from multiple quarters to form a more balanced dataset. The subsequent
steps involved random sampling of non-failure instances, concatenating these datasets,
and undertaking necessary data cleaning operations. The preprocessing steps were con-
ducted using essential libraries such as Pandas for data manipulation and AWS Boto3 for
interacting with the S3 storage. Further steps included handling missing values, dropping
columns with excessive null rates, and eliminating features with raw data, all of which
were crucial for refining the dataset.

Following data preprocessing, a comprehensive Exploratory Data Analysis (EDA) was
performed to gain insights into the dataset’s characteristics. Various visualizations, in-
cluding scatter plots, bar charts, and pie charts, were generated using the Plotly and
Seaborn libraries. Feature engineering was a critical phase in enhancing the dataset
for model training. Removing redundant columns, encoding categorical variables using
LabelEncoder and employing the Synthetic Minority Over-sampling Technique (SMOTE)
for addressing imbalanced labels were pivotal steps.

Scaling features to a range of [0, 1] using MinMaxScaler was undertaken to ensure
uniformity in feature magnitudes. Feature importance analysis using XGBoost aided in
identifying and selecting the top features crucial for model performance. The chosen
features were then scaled down for improved model efficiency. Subsequently, the thesis
delved into model training using a Convolutional Neural Network (CNN), a Gated Recur-
rent Unit (GRU), and a hybrid Conv-GRU architecture. The data was split into training
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and testing sets. Each model was implemented from scratch using TensorFlow and Keras,
incorporating relevant layers, activations, and dropout mechanisms to enhance generaliz-
ation. The model evaluation involved assessing accuracy, precision, recall, and F1-Score
on the test data, This highlighted the importance of evaluating model performance on
unseen samples. The XGBoost library facilitated feature importance analysis, providing
insights into the crucial contributors to the models’ predictions. This multifaceted imple-
mentation strategy ensured a thorough exploration of the dataset, robust model training,
and comprehensive evaluation, collectively contributing to the successful realization of
the thesis objectives.

5.1 Cloud services

Amazon S3: Amazon S3 provides scalable object storage in the cloud, allowing efficient
and secure storage of Blackblaze datasets for all four quarters of 2022, supporting seam-
less data access and retrieval for machine learning tasks.

Amazon SageMaker: Utilizing Amazon SageMaker, I deployed and trained convo-
lutional neural networks (CNN), gated recurrent units (GRU), and an ensemble model
combining both (Conv-GRU) for HDD failure prediction, benefiting from a managed en-
vironment for machine learning model development and deployment.

Amazon EC2: Amazon EC2 instances host a web application dedicated to HDD fail-
ure prediction based on smart parameters, providing a scalable and reliable environment
for serving predictions to end-users, with the capability to deploy and scale applications
as needed.

Amazon CloudWatch: Amazon CloudWatch, integrated with EC2, monitors and
ensures the health and performance of the deployed web application, offering real-time
insights and alerts for proactive management, optimization, and troubleshooting.

5.1.1 Web Application Development

The web application is designed to predict disk failures based on a set of input parameters.
It uses a pre-trained machine learning model (CONV GRU.h5) and is built using Flask,
a Python web framework. The application features an interface that allows users to
input specific data points, which are then used to predict the likelihood of disk failure.
Technologies Used to develop the web application are as follows.

• Flask: For creating the web server and handling requests.

• HTML/CSS: For frontend development and styling.

• TensorFlow/Keras: For loading and utilizing the pre-trained Deep learning model.

• Python: As the primary programming language for backend development.
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Figure 11: Web Application For Predicting Disk Failure based on SMART Parameters

Web URL For the application: http://18.206.229.126:5000/ (http://ec2-18-206-229-
126.compute-1.amazonaws.com:5000)

6 Evaluation

This research task composes of three distinctive algorithms which are Convolutional
Neural Network (CNN), Gated Recurrent Unit (GRU) and Convolutional-Gated Recur-
rent Unit (Conv-GRU). Analysis of obtained results and evaluation of executed models
on various metrics on the test data is highly recommendable in opting out the most effect-
ive and best-performing model among other models. In this work, four different metrics
accuracy, precision, recall, and F1-score are considered for the evaluation purpose there-
fore the results obtained by these models on all these metrics are discussed in the below
subsections. The plotted graphs in this section reflects the model’s performance on the
validation set during the training phase.

6.1 Evaluation Based on Accuracy:

In evaluating the models based on the accuracy metric epoch-wise, the CNNmodel started
with an initial accuracy of 0.7524 in the first epoch, gradually decreasing to 0.7059 by the
fifteenth epoch. The GRU model exhibited a almost steady trend with little varriation,
initiating at 0.7766 and achieving 0.7740 accuracy at the end of the training which is
lower than it’s initial phase value. On the other hand, the Conv-GRU model started
at high note of 0.7640 and reaching an accuracy of 0.7879 in the final epoch. Notably,
the Conv-GRU model outperformed both the CNN and GRU models in accuracy at the
end of training phase. The CNN model exhibited fluctuating accuracy values, suggesting
a varying degree of performance across different epochs. In contrast, the GRU and
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CNN-GRU model demonstrated more stablity comparited to CNN model. The Conv-
GRU model showed superior accuracy, making it the best-performing algorithm among
the three. The accuracy values of ensemble model achieved by the Conv-GRU model
underscores its effectiveness in accurately classifying the test data, showcasing its robust
performance in comparison to the CNN and GRU models. The comparison of models
based on Accuracy is displayed in Fig12.

Figure 12: Test Accuracy Comparison of Models

6.2 Evaluation Based on Precision:

In the precision evaluation across epochs, the CNN model began with an initial precision
of 0.8836 in the first epoch, experiencing a decline to a minimum of 0.6885 by the fifteenth
epoch. This model exhibited decline in precision, indicating varying precision levels across
different epochs. A similar trend was observed in the GRU model, starting at 0.9753 and
ending at a precision of 0.9818 in the final epoch. In contrast, the Conv-GRU model
consistently demonstrated precision enhancements, commencing impressively at 0.9607
and achieving a noteworthy precision of 0.9780 in the concluding epoch. Notably, while
the Conv-GRU model consistently outperformed the CNN model in precision throughout
the entire training period, the GRU model showcased a more consistent and stable ascent
in precision over the epochs. The Conv-GRU model, while generally surpassing the CNN
model, demonstrated a slightly lower precision compared to the GRU model, Analyzing
the training validation value It can be observed that both GRU model and Ensemble
model almost displayed same precision value during each Epoch. The comparison of
models based on precision is displayed in Fig13.
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Figure 13: Test Precision Comparison of Models

6.3 Evaluation Based on Recall:

In the assessment of models based on the recall metric throughout the epochs, distinctive
patterns emerge for each algorithm. The CNN model initiated with a recall of 0.5813,
reaching a peak of 0.7517 in the fifteenth epoch. Meanwhile, the GRU model started with
a recall of 0.5674, achieving a final recall of 0.5582. The Conv-GRU model started with
value 0.5502 also showed different variations reaching the lowest point comparatively at
epoch-1 but gradually gained and fluctuating again, reaching the final recall of 0.5888.
Examining the recall values epoch-wise, the CNN model exhibited fluctuations, indicative
of varying sensitivity to true positive instances across epochs and displayed better results
than the other 2 models. Both GRU model and CNN-GRU model displayed different
variations but the ensemble model at the end of Training phase ended having Recall
value higher than GRU model. The comparison of models based on recall is displayed in
Fig14.
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Figure 14: Test Recall Comparison of Models

6.4 Evaluation Based on F1-Score:

Evaluating the models based on the F1-score metric reveals fine insights into their per-
formance throughout the epochs. The CNNmodel commenced with an F1-score of 0.6464,
showcasing fluctuations in its ability to balance precision and recall. The GRU model
demonstrated an increasing trend and achieved F1-score of 0.7269 Notably, the Conv-
GRU model exhibited consistent improvement, with an F1-score of 0.7263. Analyzing
the F1-score values epoch-wise, the CNN model displayed variability, indicating the del-
icate balance between precision and recall across training iterations. Overall it can be said
that in terms of F1-Score CNN model outperforms as compared to GRU and CONV-GRU
algorithms over the test data. The comparison of models based on F1-Score is displayed
in Fig15.
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Figure 15: F1 score Comparison of Models

6.5 Evaluation Discussion

The below Table 1 represents the results obtained of the trained model on test data

Model Accuracy Precision Recall F1 score
CNN 70.59% 0.7076 0.7059 0.7053
GRU 77.40% 0.8366 0.7740 0.7630

CNN-GRU 78.79% 0.8419 0.7879 0.7791

Table 1: Performance metrics of trained model on Test Data

The Summary of the of three distinct algorithms – CNN, GRU, and Conv-GRU – ap-
plied to the task at hand. Among these algorithms, the Conv-GRU model emerged as the
most robust performer across multiple evaluation metrics, including accuracy, precision,
recall, and F1-score. The Conv-GRU model achieved an accuracy of 78.79%, precision
of 0.8419, recall of 0.7879, and an F1-score of 0.7791. The superior performance of the
Conv-GRU model can be attributed to its inherent architecture, which combines the
strengths of both convolutional and gated recurrent units. This combination allows the
model to capture intricate spatial features through convolutional layers while retaining
the ability to comprehend temporal dependencies crucial in sequential data, as facilitated
by the GRU component. The novel combination of these architectural elements enables
the Conv-GRU model to effectively discern patterns and dependencies within the data-
set, contributing to its predictive capacity. In contrast, while both the CNN and GRU
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models demonstrated commendable performance, they exhibited limitations in achiev-
ing the same level of balanced accuracy, precision, recall, and F1-score as the Conv-GRU
model. The CNN model showed competitive accuracy but faced challenges in maintaining
a balanced trade-off between precision and recall. The GRU model exhibited consistent
improvement but did not surpass the Conv-GRU model across all metrics. In conclusion,
the Conv-GRU model stands out as the algorithm of choice for this particular task due
to its ability to synthesize spatial and temporal features effectively. This discussion un-
derscores the significance of model architecture in influencing performance outcomes and
highlights the Conv-GRU model as a potent tool for predictive analytics in the context
of the presented research.

7 Conclusion and Future Work

The implemented Research presents an exploration of diverse deep learning algorithms,
namely CNN, GRU and Conv-GRU, in the context of the specified task. The noble
approach of integrating convolutional and recurrent architectures has been a hallmark of
this work, fostering a novel understanding of spatial and temporal intricacies within the
dataset. In the pursuit of optimal predictive performance, the Conv-GRU model emerged
as the standout algorithm, exhibiting superior accuracy, precision, recall, and F1-score
metrics. The model’s adeptness in synthesizing spatial and temporal features contributed
significantly to its elevated performance, surpassing both CNN and GRU counterparts.
The significance of this research lies in its contribution to advancing predictive analytics
methodologies. By evaluating the strengths and limitations of each model, The research
answers the research question on how deep learning algorithm fares in the study of drive
failure prediction. The research also showcased co-relation metrics and extracted top
15 features impacting drive failures which fulfilled research objective. It also provides
valuable insights for practitioners seeking effective solutions in similar domains. The
Conv-GRU model, with its balanced proficiency in handling spatial and temporal aspects,
stands as a robust tool for predictive modeling. The future scope of this research involves
exploring more complex architectures and incorporating advanced techniques for feature
engineering. Considering larger datasets and addressing domain-specific challenges could
further enhance the models’ generalizability. The comprehensive evaluation undertaken in
this research lays the foundation for future endeavors in refining deep learning models for
similar predictive tasks, promoting on-going advancements in the field and contributing
to lower the downtime of on-premises datacenter and cloud storage environments.
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