

Configuration Manual

MSc Research Project

Cloud Computing

Shraddha Bhosle

Student ID: x21177252

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Shraddha Bhosle

Student ID:

X21177252

Programme:

Cloud Computing

Year:

2023

Module:

MSc Research Project

Lecturer:

Rejwanul Haque

Submission

Due Date:

14/12/2023

Project Title:

Orchestration and CI/CD automation using MLOps for Cloud-native container
deployments

Word Count:

2982 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Shraddha Bhosle

Date:

14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Shraddha Bhosle

Student ID: x21177252

1 Introduction

This configuration manual is designed to provide comprehensive steering on putting in and

managing the device advanced in the studies on "Orchestration and CI/CD Automation using

MLOps for Cloud-native container Deployments." The guide pursuits to help customers in

replicating the studies environment, configuring the important components, and

understanding the operational dynamics of the device. It covers the entire spectrum of the

setup, from preliminary environment configuration to deployment and maintenance.

The system in awareness integrates machine learning Operations (MLOps) with continuous

Integration and continuous Deployment (CI/CD) practices, specially tailored for cloud-local

field deployments. It incorporates a system studying software for phishing link detection,

leveraging logistic regression and multinomial Naive Bayes models. The utility is

containerized the use of Docker and deployed on Amazon web services (AWS) and Elastic

Kubernetes service (EKS), with Kubeflow pipelines orchestrating the Machine learning

workflows. The CI/CD pipeline is managed via GitHub actions, automating the deployment

and integration methods.

2 System requirements

2.1 Hardware requirements:

• A pc with a minimum of 8GB RAM (16GB advocated for the most useful overall

performance).

• At least 20GB of free disk area.

• Excessive-pace internet connection for cloud services get entry to and information

dealing with.

2.2 Software program conditions:

• Operating System: Windows 10, macOS, or a Linux distribution (e.g., Ubuntu 18.04 or

later).

• Programming Language: Python (version 3.6 or later), with pip for package control.

• Libraries and Frameworks: Key Python libraries which includes Pandas, NumPy, Scikit-

study, TensorFlow, and NLTK for system gaining knowledge of and statistics processing.

• Containerization device: Docker, for growing and dealing with utility containers.

• Cloud Platform: A lively AWS account with get admission to to services like EKS and

IAM (identification and access management).

• Kubernetes control: Kubeflow, for orchestrating device getting to know workflows in

Kubernetes.

2

• CI/CD tools: GitHub account for repository management and GitHub actions for CI/CD

pipeline setup.

• Text Editor/IDE: Favoured textual content editor or integrated development environment

(IDE) like visible Studio Code, PyCharm, or Jupyter notebook for code development.

Those requirements make certain that users have the essential hardware and software to

efficiently configure and make use of the system. users need to ensure that every one

software additives are up to date to their present-day versions to keep away from

compatibility problems.

3 Environment Setup

3.1 Setting up the development environment:

• Operating system preparation: Ensure that your running machine (windows, macOS, or

Linux) is up to date.

• Python installation: install Python (model 3.6 or later) from the official Python website.

confirm the setup by way of running python --version inside the command line.

• IDE/textual content Editor: deploy a desired IDE or textual content editor, along with

visible Studio Code, PyCharm, or Jupyter Notebook, for writing and executing code.

• Docker installation: download and install Docker from the professional Docker website.

Affirm the setup with docker --version.

3.2 Installing Libraries and Tools:

• Python Libraries: Install necessary Python libraries the use of pip. Run the subsequent

instructions:

o pip set up pandas numpy scikit-study nltk tensorflow

• Kubeflow and Kubernetes equipment: follow the installation guides for Kubeflow and

Kubernetes equipment likeminded with AWS EKS from their respective respectable

documentation.

4 Data Collection and Preprocessing

4.1 Acquiring the Dataset:

• PhishTank Dataset: access the PhishTank dataset from PhishTank's professional internet

site. download the dataset, generally available in CSV or JSON format.

4.2 Preprocessing the data:

• Data cleansing: Load the dataset with the use of Pandas and perform preliminary

cleansing, including removing duplicates and managing missing values.

• NLP Preprocessing: Utilize NLTK for text preprocessing. This consists of tokenization,

getting rid of stopwords, and stemming. Use instructions like nltk.download('punkt') and

nltk.download('stopwords') to get the necessary resources.

3

5 Machine Learning Model Configuration

5.1 Logistic Regression and Multinomial Naive Bayes Setup:

• Model Initialization: Initialize the logistic regression and multinomial Naive Bayes

models the usage of Scikit-analyze. as an instance, from sklearn.linear_model import

LogisticRegression and from sklearn.naive_bayes import MultinomialNB.

• Feature Extraction: Convert text data into numerical capabilities the use of strategies like

TF-IDF.

4

5.2 Model Training and Parameter Tuning:

• Training the models: Training the models in the use of the feature-extracted dataset. break

up the dataset into schooling and testing units the usage of train_test_split from Scikit-

examine.

• Hyperparameter Tuning: Utilize grid seek (GridSearchCV from Scikit-learn) for tuning

the hyperparameters of the models. cognizance on parameters like C and penalty for

logistic regression, and alpha for multinomial Naive Bayes.

• Model evaluation: Evaluate the models using metrics along with accuracy, precision,

consideration, and F1 rating.

These steps provide a comprehensive guide for putting in the surroundings, making ready the

information, and configuring the machine learning models for the studies undertaken.

#acc = pd.DataFrame.from_dict(Scores_ml,orient = 'index',columns=['Accuracy'])

#sns.set_style('darkgrid')

#sns.barplot(acc.index,acc.Accuracy)

acc = pd.DataFrame.from_dict(Scores_ml, orient='index', columns=['Accuracy'])

sns.set_style('darkgrid')

sns.barplot(x=acc.index, y=acc['Accuracy'])

5

6 Containerization with Docker

6.1 Creating a Dockerfile

• Initialize Dockerfile: Create a file named Dockerfile in the root directory of your project.

• Base Image: Start by specifying a base image. For Python applications, use FROM

python:3.8-slim.

• Set Working Directory: Set the working directory inside the container using WORKDIR

/app.

• Copy Files: Copy the necessary files into the container. Use COPY . /app to copy all files

in the current directory into /app in the container.

• Install Dependencies: Install required Python libraries. Include a line RUN pip install -r

requirements.txt assuming you have a requirements.txt file listing all dependencies.

• Set Run Command: Specify the command to run the application, such as CMD ["python",

"./your-script.py"].

Use the official Ubuntu 20.04 image
FROM ubuntu:20.04

Set the working directory inside the container
WORKDIR /app

Create the output directory
RUN mkdir output

Install system dependencies
RUN apt-get update && apt-get install -y python3 python3-pip curl && \
 curl -LO "https://dl.k8s.io/release/$(curl -L -s
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl" && \
 chmod +x kubectl && \
 mv kubectl /usr/local/bin/

Install Kubeflow Pipelines SDK
RUN pip3 install kfp==1.7.0 # Use the version that corresponds to your Kubeflow version

Copy the requirements file into the container
COPY requirements.txt .

Install Python dependencies
RUN pip3 install --no-cache-dir -r requirements.txt

Copy the application files into the container
COPY . ./

Expose the port that your application will run on
EXPOSE 8000

Command to run your application
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000", "--root-path", "/"]

•

6

6.2 Building and Testing the Docker Container

• Build Container: In the command line, navigate to the directory containing the Dockerfile

and run docker build -t your-app-name . to build the container.

• Run Container Locally: Test the container locally by running docker run -p 4000:80 your-

app-name.

• Verify Operation: Ensure the application is running correctly in the container. Check logs

or connect to the application if it has a user interface.

• To build the image –

docker build -t kubeflow-fastapi .

7 Cloud Deployment on AWS EKS

7.1 Setting Up AWS EKS:

• Create EKS Cluster: Use the AWS Management Console or AWS CLI to create an EKS

cluster. Follow AWS's documentation for detailed steps.

• Configure kubectl: Configure kubectl to interact with your EKS cluster. Run aws eks --

region region update-kubeconfig --name cluster_name.

• Create a EKS cluster
export CLUSTER_NAME=MlOps-kube
export CLUSTER_REGION=us-east-1
eksctl create cluster \
--name ${CLUSTER_NAME} \
--version 1.25 \
--region ${CLUSTER_REGION} \
--nodegroup-name linux-nodes \
--node-type m5.xlarge \
--nodes 2 \
--nodes-min 2 \
--nodes-max 5 \
--managed \
--with-oidc

#Created addon for eks 1.25

eksctl create iamserviceaccount \
 --name ebs-csi-controller-sa \
 --namespace kube-system \
 --cluster MlOps-kube \
 --role-name AmazonEKS_EBS_CSI_DriverRole \
 --role-only \
 --attach-policy-arn arn:aws:iam::aws:policy/service-
role/AmazonEBSCSIDriverPolicy \
 --approve

7.2 Deploying the Docker Container

• Push to container Registry: Push the Docker picture to a container registry, which

includes Amazon ECR (Elastic container Registry).

7

• Create Kubernetes Deployment: Write a Kubernetes deployment YAML report to define

the deployment. include the Docker image URL from ECR.

• Deploy to EKS: Practice the deployment to your EKS cluster using kubectl observe -f

deployment.yaml.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin
871927043079.dkr.ecr.us-east-1.amazonaws.com

docker build -t kubeflow .

docker tag kubeflow:latest 871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow:latest

docker push 871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow:latest

8 Kubeflow Integration

8.1 Integrating Kubeflow in AWS EKS

• Installation Kubeflow: Observe the reputable Kubeflow documentation to put in

Kubeflow on your EKS cluster. This usually includes jogging a set of kubectl

instructions.

• Configure Kubeflow Pipelines: installation Kubeflow pipelines in your ML workflows.

define pipeline additives and obligations in a pipeline definition document.

• Deploy Pipelines: Deploy your pipelines to the Kubeflow Pipelines surroundings the

usage of the Kubeflow Pipelines UI or CLI equipment.

• Test and monitor: Test the pipeline to make sure it is processing as predicted. screen

pipeline runs and overall performance via the Kubeflow dashboard.
• Installing Kubeflow steps below:

export KUBEFLOW_RELEASE_VERSION=v1.7.0
export AWS_RELEASE_VERSION=v1.7.0-aws-b1.0.3

git clone https://github.com/awslabs/kubeflow-manifests.git && cd
kubeflow-manifests

git checkout ${AWS_RELEASE_VERSION}

git clone --branch ${KUBEFLOW_RELEASE_VERSION}
https://github.com/kubeflow/manifests.git upstream

cd Kubeflow-manifest/

make the install-tools, which will install all necessary tools

make install-tools

Then make sure the default is set to python3.8

alias python=python3.8

aws configure --profile=kubeflow
AWS Access Key ID [None]: <enter access key id>
AWS Secret Access Key [None]: <enter secret access key>

8

Default region name [None]: <AWS region>
Default output format [None]: json

Set the AWS_PROFILE variable with the profile above
export AWS_PROFILE=Kubeflow

eksctl utils associate-iam-oidc-provider --cluster ${CLUSTER_NAME} \
--region ${CLUSTER_REGION} –approve

installing Kubeflow with vanilla option

make deploy-kubeflow INSTALLATION_OPTION=kustomize
DEPLOYMENT_OPTION=vanilla

to check the status of Kubeflow deployment

kubectl get pods -n cert-manager
kubectl get pods -n istio-system
kubectl get pods -n auth
kubectl get pods -n knative-eventing
kubectl get pods -n knative-serving
kubectl get pods -n kubeflow
kubectl get pods -n kubeflow-user-example-com

to change the password create a hash first

python3 -c 'from passlib.hash import bcrypt; import getpass;
print(bcrypt.using(rounds=12, ident="2y").hash(getpass.getpass()))'

edit the config-map.yaml file

nano upstream/common/dex/base/config-map.yaml

chage the value of
...
 staticPasswords:
 - email: user@example.com
 hash: <enter the generated hash here>

Access Kubeflow on the public domain for API access purpose and with the SSL:-

• kubectl config current-context

• aws eks describe-cluster --name $CLUSTER_NAME --region $CLUSTER_REGION

• cd Kubeflow-manifest/

9

Create a route 53 domain and added a subdomain for that.

Issued for subdomain

export certArn=arn:aws:acm:us-east-1:1232454:certificate/4003wea3-3434ddf-dfdf

Configure the parameters for ingress with the certificate ARN of the subdomain

printf 'certArn='$certArn'' > awsconfigs/common/istio-ingress/overlays/https/params.env

export TAG_VALUE=kubernetes.io/cluster/MlOps-kube # this is the tag value for our cluster

export CLUSTER_SUBNET_IDS=$(aws ec2 describe-subnets --region $CLUSTER_REGION --filters
Name=tag:alpha.eksctl.io/cluster-name,Values=$CLUSTER_NAME --output json | jq -r
'.Subnets[].SubnetId')
for i in "${CLUSTER_SUBNET_IDS[@]}"
do
 aws ec2 create-tags --resources ${i} --tags
Key=kubernetes.io/cluster/${CLUSTER_NAME},Value=${TAG_VALUE}
done

The Load balancer controller uses IAM roles for service accounts(IRSA) to access AWS services

eksctl utils associate-iam-oidc-provider --cluster ${CLUSTER_NAME} --region ${CLUSTER_REGION} –
approve

Create an IAM role with the necessary permissions for the Load Balancer controller to use via a
service account to access AWS services.

export LBC_POLICY_NAME=alb_ingress_controller_${CLUSTER_REGION}_${CLUSTER_NAME}

export LBC_POLICY_ARN=$(aws iam create-policy --policy-name $LBC_POLICY_NAME --policy-
document file://awsconfigs/infra_configs/iam_alb_ingress_policy.json --output text --query
'Policy.Arn')

eksctl create iamserviceaccount --name aws-load-balancer-controller --namespace kube-system --
cluster ${CLUSTER_NAME} --region ${CLUSTER_REGION} --attach-policy-arn ${LBC_POLICY_ARN} --

10

override-existing-serviceaccounts --approve

Configure the parameters for load balancer controller with the cluster name.

printf 'clusterName='$CLUSTER_NAME'' > awsconfigs/common/aws-alb-ingress-
controller/base/params.env

build and install the Load Balancer controller kustomize file

kustomize build awsconfigs/common/aws-alb-ingress-controller/base | kubectl apply -f -
kubectl wait --for condition=established crd/ingressclassparams.elbv2.k8s.aws
kustomize build awsconfigs/common/aws-alb-ingress-controller/base | kubectl apply -f –

Create an ingress that will use the certifcate we specified in certArn

kustomize build awsconfigs/common/istio-ingress/overlays/https | kubectl apply -f –

To check the ALB provisioned or not

kubectl get ingress -n istio-system istio-ingress

Setup Kubeflow Pipeline –

Login to dashboard

11

Making Kubeflow pipeline

import kfp
from kfp.dsl import ContainerOp

def deploy_fastapi_app(image: str):
 return ContainerOp(
 name='deploy-fastapi-app',
 image=image,
 command=[
 '/bin/sh', '-c',
 'kubectl apply -f phish-app-deployment.yaml -f phish-app-ingress.yaml && tar -czvf
/tmp/output.txt.tgz -C /app/output .'
],
 file_outputs={'output': '/tmp/output.txt.tgz'},
)

@kfp.dsl.pipeline(
 name='FastAPI Deployment Pipeline',
 description='Pipeline for deploying FastAPI application'
)
def deploy_pipeline(image: str):
 deploy_op = deploy_fastapi_app(image=image)

if __name__ == '__main__':
 # my ecr image
 ecr_image = '871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow:latest'

 kfp.compiler.Compiler().compile(deploy_pipeline, 'deploy-pipeline.zip')
 kfp.Client().create_run_from_pipeline_func(deploy_pipeline, arguments={'image': ecr_image})

This will create a zip for pipeline- will need to upload the pipeline in as the source in

Kubeflow pipeline dashboard.

Deploying a FastAPI application along with a HorizontalPodAutoscaler and a Service.

Deployment (phish-app-deployment.yaml):

• The deployment specifies the desired state for the FastAPI application.

• It ensures that there is always one replica of the application running.

• The container is pulled from the specified ECR image with the latest tag.

• The container exposes port 8000, and the deployment is labeled with app: phish-app.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: phish-app
spec:
 replicas: 1
 selector:
 matchLabels:

12

 app: phish-app
 template:
 metadata:
 labels:
 app: phish-app
 spec:
 containers:
 - name: phish-app
 image: 871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow:latest
 imagePullPolicy: Always
 ports:
 - containerPort: 8000

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: phish-app-autoscaler
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: phish-app
 minReplicas: 1
 maxReplicas: 4
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

apiVersion: v1
kind: Service
metadata:
 name: phish-app-service
spec:
 selector:
 app: phish-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8000
 type: LoadBalancer

Deploying a service for our FastAPI application so any HTTP request to the specified

host with a path prefix of "/" should be directed to the phish-app-service on port 80. (Ali,

2022)

Ingress service deployment (phish-app-ingress.yaml)

13

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: phish-app-ingress
spec:
 rules:
 - host: ab4cba629e82842df92029dda4352d3f-1545613426.us-east-1.elb.amazonaws.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: phish-app-service
 port:
 number: 80

This YAML manifest defines a Kubernetes Ingress resource for your FastAPI application.

The Ingress resource is used to expose your service externally and define how external

HTTP/S traffic should be directed to your service.

9 CI/CD Pipeline Setup

9.1 Setting Up CI/CD Pipeline with GitHub Actions:

1. Initialize GitHub Repository: Ensure your project is in a GitHub repository.

2. Create GitHub Actions Workflow: In your repository, create a. github/workflows

directory. Inside, create a YAML file (e.g., ci-cd-pipeline.yml) to define the workflow.

3. Define Workflow Steps:

• Trigger event: Specify the occasions that trigger the workflow, including push or pull

requests to precise branches.

• Set up the environment: Use actions like moves/checkout to test out your repository

and install the Python environment.

• Install Dependencies: Upload steps to install required dependencies, e.g., pip set up -r

necessities.txt.

• Run tests: encompass commands to run computerized exams.

• Build and Push Docker image: Add steps to construct the Docker image and push it to

a container registry like AWS ECR.

• Deploy to AWS EKS: Encompass steps to update the Kubernetes deployment on

AWS EKS with the new Docker image.

• Setup the secrets of aws which require to create a CI/CD pipeline

14

 Creating a workflow for CI/CD pipeline

name: Build and Connect to Kubeflow Pipeline

on:

 push:

 branches: [main]

jobs:

 connect_to_kubeflow:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 - name: Set up Python

 uses: actions/setup-python@v2

 with:

 python-version: 3.8

 - name: Configure AWS credentials

 run: |

 aws configure set aws_access_key_id ${{ secrets.AWS_ACCESS_KEY_ID }}

 aws configure set aws_secret_access_key ${{ secrets.AWS_SECRET_ACCESS_KEY

}}

 aws configure set region us-east-1

 - name: Login to Amazon ECR

 run: aws ecr get-login-password --region us-east-1 | docker login --username AWS --

password-stdin 871927043079.dkr.ecr.us-east-1.amazonaws.com

 - name: Build, tag, and push image to Amazon ECR

 env:

 ECR_REPOSITORY: 871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow

15

 IMAGE_TAG: latest

 run: |

 docker build -t $ECR_REPOSITORY:$IMAGE_TAG .

 docker push $ECR_REPOSITORY:$IMAGE_TAG

 - name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install kfp==1.8.22 urllib3 requests requests-toolbelt mechanize bs4 cookiejar

 pip install -r requirements.txt

 pip show kfp

 - name: Connect to Kubeflow Pipeline

 run: |

 python connect_to_kubeflow.py # replace with your script

 env:

 URL: ${{ secrets.KBFL_URL }}

 ENDPOINT: ${{ secrets.KBFL_ENDPOINT }}

 EMAIL: ${{ secrets.KBFL_LOGIN }}

 PASSWORD: ${{ secrets.KBFL_PASSWORD }}

16

CI pipeline status and running jobs.

17

connect_to_kubeflow.py – This is used to connect our github action to Kubeflow pipeline

trigger it on every push in the production environment.

import kfp

from datetime import datetime

import re

import os

import mechanize

from bs4 import BeautifulSoup

import urllib

import http.cookiejar as cookielib

Get today's date for tags

today = str(datetime.now())

Def

def get_id(text):

 """

 Function that retrieves a pipelines's ID from its logs

 Parameters

 text : str

 string version of the logs.

 Returns

 str : Id of the pipeline.

 """

 match = re.search('{\'id\': \'(.+?)\',\\n', text)

 if match:

 found = match.group(1)

 return(found)

def get_cookie(text):

 """

 Function that retrieves login cookie

 Parameters

 text : str

 string version of the logs.

 Returns

 str : cookie value.

 """

 match = re.search('authservice_session=(.+?) ', text)

 if match:

 found = match.group(1)

 return(found)

Parameters

18

URL = os.getenv('URL')

pipeline_name = "advanced_pipeline"

job_name = 'job' + today

ENDPOINT = os.getenv('ENDPOINT')

EMAIL = os.getenv('EMAIL')

PASSWORD = os.getenv('PASSWORD')

Run parameters

experiment_id = 'abc0d4b6-cea0-4681-a118-2d5715a0db10'

pipeline_id = '5eb5350c-77ad-436a-a138-d07a414efbb2'

pipeline_id = get_id(str(pipe_logs))

version_id = '1'

params = {'image': '871927043079.dkr.ecr.us-east-1.amazonaws.com/kubeflow'}

Get cookie value

cj = cookielib.CookieJar()

br = mechanize.Browser()

br.set_cookiejar(cj)

br.open(URL)

br.select_form(nr=0)

br.form['login'] = EMAIL

br.form['password'] = PASSWORD

br.submit()

authservice_session = 'authservice_session={}'.format(get_cookie(str(cj)))

Connect to Kubeflow Pipelines Manager

client = kfp.Client(host=ENDPOINT, cookies=authservice_session)

Run pipeline

client.run_pipeline(experiment_id=experiment_id,

 job_name=job_name,

 params=params,

 pipeline_id=pipeline_id)

9.2 Automated Testing and Deployment

• Automated testing: Configure automated tests to run with every push/pull request. Make

certain assessments cover essential functionalities.

• Deployment Automation: Set up the workflow to automatically deploy the application to

AWS EKS upon successful completion of tests.

To configure automated testing building and deployment we setup the workflow for every

pull and run our pipeline to roll the product with new features.

Every push will run the pipeline jobs to push our product to market

19

10 Troubleshooting

Common Issues and Solutions

• Failed Builds: Check for errors in the Dockerfile or dependency conflicts. Ensure all

necessary files are included in the build context.

• Deployment Failures: Verify Kubernetes configuration files and AWS credentials. Ensure

the Docker image is correctly tagged and accessible.

• Test Failures: Ensure test cases are up to date with the application code. Check for

environmental differences between local and CI/CD environments.

11 Conclusion

This configuration manual serves as a comprehensive guide for setting up and managing the

orchestration and CI/CD automation using MLOps for cloud-native container deployments.

The steps outlined aim to facilitate a smooth setup and operational experience.

20

References

Ali, M. (2022) Build machine learning pipeline in python and package it as a Docker
container, Medium. Available at: https://moez-62905.medium.com/build-machine-learning-
pipeline-in-python-and-package-it-as-a-docker-container-13f28972fb2b (Accessed: 14
December 2023).

Anunaya, S. (2023) Data preprocessing in data mining - A hands on guide (updated 2023),
Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2021/08/data-
preprocessing-in-data-mining-a-hands-on-guide/ (Accessed: 14 December 2023).

E, S. (2021) Mlops end-to-end machine learning pipeline-CICD, Medium. Available at:
https://medium.com/analytics-vidhya/mlops-end-to-end-machine-learning-pipeline-cicd-
1a7907698a8e (Accessed: 14 December 2023).

Ekpang, M. (2019) Creating a CI/CD pipeline using Github Actions, Medium. Available at:

https://medium.com/@michaelekpang/creating-a-ci-cd-pipeline-using-github-actions-

b65bb248edfe (Accessed: 14 December 2023).

entando (2021) Installation on Amazon Elastic Kubernetes Service (EKS), Installation on

Amazon Elastic Kubernetes Service (EKS) | Entando Developers. Available at:

https://developer.entando.com/v6.3/tutorials/devops/installation/elastic-kubernetes-

service/eks-install.html#appendix-a-troubleshooting (Accessed: 14 December 2023).

Insaid (2022) Containerization using Docker: AI end-to-end series (part - 6), Medium.

Available at: https://insaid.medium.com/containerization-using-docker-ai-end-to-end-series-

part-6-d5d8c0979292 (Accessed: 14 December 2023).

Junaid Qazi, P. (2022) A30: Logistic Regression (part-2)>> behind the scene!,

Medium. Available at: https://medium.com/mlearning-ai/a30-logistic-regression-part-2-

behind-the-scene-38a98b70192a (Accessed: 14 December 2023).

Ledenev, A. (2016) Testing strategies for Docker containers, Medium. Available at:

https://medium.com/hackernoon/testing-strategies-for-docker-containers-f633e261e75a

(Accessed: 14 December 2023).

Ratz, A.V. (2022) Multinomial NAЇVE Bayes’ for documents classification and Natural

Language Processing (NLP), Medium. Available at:

https://towardsdatascience.com/multinomial-na%C3%AFve-bayes-for-documents-

classification-and-natural-language-processing-nlp-e08cc848ce6 (Accessed: 14 December

2023).

Thomas, R. (2021) Deploy a python API with Docker and Kubernetes, Medium. Available at:

https://betterprogramming.pub/python-fastapi-kubernetes-gcp-296e0dc3abb6 (Accessed: 14

December 2023).

