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Orchestration and CI/CD automation using MLOps
for Cloud-native container deployments

Shraddha Bhosle
x21177252

Abstract

With the rise of cloud-native deployments and machine learning, there is a grow-
ing demand for efficient orchestration and automation in creating and managing
machine leraning models. Machine learning Operations (MLOps) blends machine
learning and DevOps, streamlining the process from model creation to deployment
in containerized systems. This results in a more effective development lifecycle,
increased efficiency, and less manual intervention. The ultimate objective of any
industrial machine learning work is to create ML products and deliver into pro-
duction quickly. However, it is extremely difficult to automate and operationalize
ML solutions for large datasets, therefore many ML endeavors fail to meet their
goals. This is addressed by the MLOps concept. MLOps is a relatively new concept
that inherits its main features from DevOps and applies them to Machine Learn-
ing to shorten the time it takes to implement ML model into production. This
thesis aimed to analyze this new method and explore several tools for building an
MLOps architecture. To validate the functionality of the pipeline, the developed
ML application utilized Logistic Regression and Multinomial Naive Bayes models,
implementing Natural Language Processing techniques. It is containerized using
Docker and delivered via an Elastic Kubernetes Service (EKS) built using Ku-
beflow pipelines and used GitHub actions to automate workflows directly within
GitHub repository. This paper offers an extensive analysis of entire implementation
process, starting with model development to cloud deployment. By incorporating
MLOps, the project successfully established an automated and efficient pipeline for
creating, managing, and deploying machine learning models within containerized
systems.

1 Introduction

Software development and deployment techniques have transformed due to the fast ad-
vancement of cloud-native container deployments. One of the fundamental areas of ad-
vancement in it is the integration of Machine Learning (ML) into cloud-native. This
research explores the field of orchestration and continuous integration/continuous deliv-
ery (CI/CD) automation, utilizing the newly emerging field of MLOps (Machine Learning
Operations) to tackle the difficulties related to cloud-native containerized environments.
Because of the good flexibility and scalability of cloud infrastructure, DevOps can bridge
the gap between development and operations teams by merging them into one team.
Automation facilitates CICD in DevOps. Integrating newly developed code by developers
regularly is known as continuous integration, or CI. The capacity to provide changes of
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any kind such as new features, configuration adjustments, bug repairs, and experiments
safely, swiftly, and sustainably into production or users’ hands is known as continuous
delivery, or CD. Poloskei and Istvan (2022)
Unlike traditional software development, ML models rely largely on data. Data is es-
sential for training ML models and evaluating their performance to discover areas for
development. Data scientists play an important role in solving business challenges by
studying data and building models. Building a CI/CD pipeline for ML is more difficult,
but the advantages are the same as in typical software projects, where code changes
can be immediately deployed and feedback is immediate. ML models must be deployed,
transferred, and retrained, which can take time, especially when working with huge data-
sets. With incorporation of the DevOps concepts into ML development, organizations
can improve the overall quality of ML systems and also it can reduce release problems,
which will ultimately benefit user experience Cepuc et al. (2020).
In the IT business, cloud computing has become one of the most popular concepts. Its
success belongs to its on-demand services rather than the deployment of a full infrastruc-
ture, which would require extra expenses for things like recruiting employees, buying and
maintaining equipment, and so on. In this research, AWS, a public cloud option is used
because of its extensive range of cloud services. Software applications usually include a
small amount of machine learning, however these systems have lagged behind the CI/CD
trend. In the CI/CD pipelines, machine learning systems bring new challenges and com-
plexity. MLOps, as the name implies, derives its fundamental concepts from DevOps.
MLOps is the general term for extending the DevOps technique to incorporate machine
learning system characteristics. Makinen et al. (2021)
MLOps incorporates additional elements including continuous training and monitoring,
as well as tracking and versioning of the tests conducted to develop a model. These
distinctions between standard software and ML models contribute to MLOps’ unique
qualities. Utilizing MLOps allows businesses to change their models rapidly and simply
while maintaining flexible model management. The advantages of MLOps can help create
models with greater accuracy and faster time to market by cutting down on the amount
of time needed to generate the model.di Laure and Sessione (2021)
Sections have been created and organized further. Section 2 shows a overview of the prior
research conducted by researchers in this field. Section 3 concentrates on the methods
and technique used to complete the study. Section 4 include the design details. Section
5 shows the implementation of overall project. Whereas, Section 6 highlights the evalu-
ation and discussion of research. Section 7 concludes the research paper and outlines the
expectations for the future.

1.1 Research Question

How do orchestration and CI/CD automation streamline deployment using MLOps and
contribute to improving ML model fine-tuning for enhanced flexibility in multi-cloud
environments?

1.2 Research Objective

To answer the main research question, this paper outlines particular research goals that
will enhance the knowledge and use of orchestration, CI/CD automation, and MLOps in
the context of cloud-native container deployments and it has the below objectives.
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• Create and design an effective workflow for ML operations, concentrating on model
training, deployment, and monitoring,

• Implementing automation in the software delivery process aims to reduce human
error and maintain consistency and rapid deployment of new features upon com-
pletion of development,

• Automation and orchestration enable the use of cloud-native containerization. With
the use of this technology, organizations can switch between cloud providers or
implement a hybrid approach without experiencing significant disruptions, since it
can resolve issues with OS dependencies and vendor lock-in,

• This can help with the current technique’s cross-platform compatibility problems.
MLOps methods, such as fine-tuning and deploying containerized models to the
cloud can be used to manage bigger datasets and more demanding workloads effi-
ciently,

• For partially automated testing environments, when code is integrated into the
main branch after reviewers have accepted the alterations, clients have to invest
time and effort in trial and error. Through the use of trained MLOps models, it
will automatically fix the problem with the intended outcome.

2 Related Work

2.1 MLOps: Principles and Practices

The purpose of Mäkinen, Skogström, Laaksonen and Mikkonen (2021) research, ”Who
needs MLOps: What data scientists seek to accomplish and how can MLOps help?” was
to investigate the usefulness of MLOps within the community of data science. For the
purpose of the study, 331 experts from 63 different countries were questioned to know
more about their goals and how MLOps may support them. The challenges and work put
into the paper are summed up as: Understanding the goals and challenges faced by data
scientists working in the field of ML. Acknowledging MLOps’ importance in ML model
development and application. Analyzing MLOps’ potential to improve the accuracy and
efficiency of ML models.

Zhou et al. (2020) work ”Towards MLOps: A Case Study of ML Pipeline Platform”
provides a case study that explores the construction and deployment of ML pipeline plat-
forms. The study’s major subjects include the MLOps concept and its importance in
integration of ML models in production. The study emphasizes the need of continuing
training for increasing the accuracy and efficiency of ML models and provides insight into
the challenges faced during the establishment of a ML pipeline platform. The obstacles
encountered in constructing a platform for a ML pipeline are highlighted in the paper.
Some of these challenges include data manipulation, model training, model deployment,
and continuing training. Selecting the best tool for each work in the ML pipeline.

The article ”ML Operations (MLOps): Overview, Definition, and Architecture” by
Kreuzberger et al. (2023) tackles the difficulties of automating and operationalizing ML
(ML) products in production settings and offers a thorough introduction to the MLOps
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concept. In order to offer an in-depth knowledge of the essential concepts, components,
roles, architecture, and processes, the authors executed mixed-method research that in-
cludes expert interviews, a study of the literature, and an evaluation of tools. Addition-
ally, author defined MLOps and list the problems that remain unresolved in the area.
The principles, elements, roles, architecture, and processes required for putting MLOps
into reality were covered by the writers.

Through careful examination of the amount of existing literature by Ratilainen (2023)
in ”Adopting ML Pipeline in Existing Environment”, presents a full review of the condi-
tion of the MLOps discipline today in Adopting ML Pipeline in Existing Environment.
Gaining knowledge of the most recent developments, new trends, and important issues
facing the MLOps sector is the goal. They give a general summary of the Bank of Finland
and the difficulties the company has faced in its current MLOps setting. A simplified
end-to-end ML pipeline is presented, demonstrating the use of the selected technologies.
The pipeline functions as a useful example of their functioning and integration.
All the above papers helped in finding answers about the actual concept of MLOPS.

2.2 CI/CD in Cloud-native Environments

The paper entitled by Sinde et al. (2022) ”Continuous integration and deployment auto-
mation in AWS cloud infrastructure” describes the implementation of CI and CD in the
context of AWS. The authors discuss the advantages of utilizing CI/CD, such as relieving
developers from manual duties, decreasing mistakes, and promoting regular testing. The
article also examines AWS capabilities such as AWS CodePipeline and AWS CodeBuild
that may be used to implement CI/CD. Overall, the study highlights the significance of
CI/CD as a best practice and an essential component of a DevOps project.

Implementing CI/CD in the context of ML Operations (MLOps) is covered in the
article ”On Continuous Integration / Continuous Delivery for Automated Deployment of
ML Models using MLOps” by Garg et al. (2021). The authors outline the advantages
of CI/CD in MLOps, including the ability to automate ML model development, testing,
and deployment. The article also covers a number of technologies, including Jenkins and
GitLab, that may be used to integrate CI/CD in MLOps. In order to guarantee that ML
models are created, implemented, and maintained efficiently and offer value to enterprises
and end users, the authors highlight the need of utilizing CI/CD in MLOps.

The subject of Cepuc et al. (2020) paper, ”Implementation of a Continuous Integra-
tion and Deployment Pipeline for Containerized Applications in Amazon Web Services
using Jenkins, Ansible, and Kubernetes,” is how to implement a continuous integration
and deployment pipeline for containerized applications using such tools. A wide range
of containerized applications can benefit from the CI/CD pipeline solution since it is
designed to be more adaptable and scalable to meet their demands. Setting up a CI/CD
for containerized apps on AWS may be challenging overall owing to the complexity of
the technologies and the need to ensure compatibility and security. These concerns are
addressed in the report, along with recommendations for the benefits and best practices
for implementing such a pipeline.
Above papers helped in knowing practical implementation of CI/CD in cloudnative env.
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2.3 Containerization in ML Deployment

The paper Poloskei and Istvan (2022) from 2022, ”MLOps approach in the cloud-native
data pipeline design,” looks at the potential applications of MLOps techniques and con-
cepts in the development of cloud-native data pipelines. The goal of this study is to talk
about the challenges that come with using data models because of personnel and techno-
logy shortfalls. According to various measurements, the GPU usage during the ML task
pipeline executions is sometimes high, which may cause performance bottlenecks when
training many models at simultaneously, even when the models created varied greatly in
the number of layers and parameters. By referring this, thorough and planned strategy
has been follwed in project to ensure that the best strategies for feature engineering and
hyperparameter tuning are employed to obtain the highest degree of accuracy.

The research ”Designing an open-source cloud-native MLOps pipeline,” proposed by
Makinen et al. (2021), examined the requirements for a cutting-edge ML pipeline that
provides automation and dependability at the majority of the ML process’ phases. In
order to communicate with most ML projects and teams wishing to extend and automate
their ML process, an open-source, cloud-native MLOps pipeline was developed. As per
paper, In the future, a custom operator will need to be constructed in order to manage
retraining lifecycles instead of just a simple webhook triggering system. It is necessary
to make the pipeline lighter. Currently, a powerful computer is needed to execute the
pipeline locally. If the pipeline were lighter, creating and experimenting on local devices
would be easier.

The Openja et al. (2022) work ”Studying the Practices of Deploying ML Projects on
Docker” was included in the Proceedings of the 26th International Conference. In order
to understand the evolving trends in this field, the study examines the usage of Docker
for deploying ML (ML) applications. This research looks at what kinds of ML projects
utilize Docker, why and how they use it, and what kind of Docker images are produced.
The study discovered that Docker is used for the deployment of six types of ML-based
projects: ML Applications, MLOps/AIOps, Toolkits. This article offers insightful in-
formation on the new methods for deploying ML software projects using containers. It
also emphasizes the advantages of utilizing Docker for ML projects, including resource
management, scalability.
These articles were helpful for realizing role of Docker in deploying ML projects for re-
source management and scalability.

2.4 Challenges and Solutions in MLOps Deployment

22nd International Symposium on Symbolic and Numerical Algorithms for Scientific Com-
puting (SYNASC) in 2020 included a paper titled ”Sustainable MLOps: Trends and
Challenges” by Tamburri (2020). The necessity for reproducibility, and fairness in ML
models is one of the issues, along with other concepts, that are covered in the article on
sustainable MLOps. It also emphasizes how crucial it is to take into account how MLOps
could impact the environment, particularly in light of the energy requirements of the in-
ference and training processes. The study suggests a number of approaches to deal with
these issues, such as the application of energy-efficient hardware, model compression, and
explainable AI. The study offers insightful information on the situation of MLOps today
and the issues that must be resolved to guarantee ethical and sustainable AI/ML systems.
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The paper by Testi et al. (2022) ”MLOps: A Taxonomy and a Methodology” offers a
framework for putting ML Operations (MLOps) into practice. After a thorough examin-
ation of the body of scientific literature, the writers pinpoint the main ideas and subjects
of MLOps research. The significance of MLOps in the context of AI and data science
is also covered. This involves automating the development, testing, and deployment of
ML models in addition to keeping an eye on and sustaining these models’ performance
in real-world settings.The goal of future work is to apply our suggested technique to use
cases like biological imaging and finance. The study tries to describe a high-level strategy
for handling MLOps initiatives.
These papers hepled to explore the difficulties and solutions surrounding the implement-
ation of MLOps.

2.5 Case Studies and Real-world Applications of MLOps

The utilization of ML Operations (MLOps) and Artificial Intelligence Operations (AIOps)
frameworks for the orchestration of ML/AI models by Kumar (2022) is covered in the
study titled ”Orchestration of ML/AI models using MLOps/AIOps frameworks”. In or-
der to increase team collaboration, scalability, and security of ML/AI systems, the article
highlights the necessity of automating and simplifying the process as well as the usage of
a common architecture and development techniques.The study also emphasizes the signi-
ficance of standardization and best practices in MLOps/AIOps. This paper advocates for
the adoption of advanced solutions such as TFX, Kubeflow Pipelines, and Hybrid Cloud
Build in the context of AIOps/MLOps architecture”. Furthermore, the study underlines
the need of Kubeflow, a Kubernetes framework, for developing and deploying portable
ML workloads.

According to Kohler and Anders (2022) paper from 2022, ”Evaluation of MLOps
Tools for Kubernetes: A Rudimentary Comparison Between Open Source Kubeflow, Pa-
chyderm, and Polyaxon,” three open-source MLOps solutions for Kubernetes Kubaflow,
Pachyderm, and Polyaxon are compared. The article’s objective is to evaluate the tools’
features and capabilities and provide details on how useful they are in different scenarios.
According to the study, Pachyderm, Polyaxon, and Kubeflow are all capable MLOps
solutions for Kubernetes, each with particular benefits and drawbacks. The importance
of selecting the right tool for the job is emphasized by the author, taking into account
factors like data volume, model complexity, and level of automation needed.

The article by Krishna and Gawre (2023) ”MLOps for Enhancing the Accuracy of ML
Models using DevOps, Continuous Integration, and Continuous Deployment” only covers
the incremental steps of precision processes; however, the pipeline could be enhanced with
feature engineering and feed forwarding techniques to become an enterprise-ready, fully
automated, end-to-end MLOps pipeline. In order to free up time for data scientists and
ML engineers to conduct creative thinking and research while continuously improving
their ML models, this project intends to save customers time. The primary goal of
this work is to demonstrate how hyperparameters can be dynamically changed to obtain
higher accuracy without requiring human intervention. How MLOps have been applied
in different industries helped in providing valuable insight into what works and does not
works.
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3 Methodology

3.1 Overview of the Research Approach

The Phishing Link Detection ML software starts an effective procedure to identify phish-
ing links in this organized flow. The procedure begins with gathering data from the large
Phishtank Link dataset which is publicly available, which is then carefully pre-processed
and features are extracted using natural language processing (NLP) techniques like token-
ization and stemming, improving the dataset for further ML tasks. Based on performance
measures, models such as logistic regression and multinomial Naive Bayes are chosen and
fine-tuned to yield the best possible outcomes. The deployment process is streamlined
by integration with a CI/CD pipeline, which facilitates shifting to a cloud environment.
For consistency, Docker containerization is used in the deployment process, and Git-
Hub Actions automated the deployment and continuous integration stages. Assuring
effective monitoring and scaling capabilities, the managed flow also includes Kubernetes
orchestration and Kubeflow pipelines. The diagram below provides a complete flow chart
describing project’s whole path.

Figure 1: End to end Flow Chart
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3.2 ML Model Deployment

Data collection is an important phase in ML since it involves gathering the data that
is needed to train and evaluate a model. Gathering data from PhishTank, a broad
database of affirmed phishing URLs, was the most important phase in fostering the ML
model for recognizing phishing joins. The database used here is public database which
contains 549346 URLS. The model’s training and testing were both grounded in this
dataset. Utilizing Normal Language Handling (NLP) strategies was a significant first
move toward quite a while preprocessing stage. To set up the URLs for ML calculations,
this method standardized the language, tokenized it, and separated key highlights from
it. Selecting a model was the next step. The two models chosen were multinomial Naive
Bayes and logistic regression since they were both effective in handling text data. Logistic
regression is used to separate phishing from non-phishing joins. This process is known
for its simplicity and usefulness in handling two requests at once. The Multinomial Naive
Bayes estimation well-known for its proficiency with text data was used to request the
features retrieved from the URLs. Using the handled dataset, the two models were trained
completely.

3.3 Model Training and Evaluation

It was difficult to train the algorithms to detect phishing links, involving feature selec-
tion and hyperparameter modifications for optimal performance. Crucial estimates from
the URL data were extracted, such as URL length, secure protocol utilization, and sus-
picious token existence, to help in feature selection. These characteristics were chosen
because they can be helpful in spotting fake links and are frequently observed in phishing
attempts. To address the models’ correctness, hyperparameter filtering was completed.
For the logistic regression model, two limitations were aligned: the regularization strength
and the solver type. A smooth adjustment was made to the MNB model to supervise
characteristics that were not present in the training sets. Grid search and cross-validation
were two of the strategies used to coordinate an array of basics to determine the most
desired attributes for each model’s limits.
F1 score, a consonant mean of review and accuracy, was particularly helpful in evaluating
the balance between the two metrics. These evaluation measurements confirmed that the
models would be reliable and robust in the real world.

3.4 Containerization of the ML Application

One advantage of containerization is the ability to split an application’s dependencies and
create self-managed, remotely manageable packages. Containers make development cycles
even more agile. In cloud computing, Docker is the most widely used container. The
phishing link recognition ML application was containerized using a well-known platform
that bundles apps into containers to ensure consistency across various PC configurations.
The tool that was used for this project was Docker.

3.5 Cloud Infrastructure Setup

The ML application was launched using cloud engineering-based on Amazon Web Ser-
vices (AWS), with EKS acting as the orchestrator. The initial task, to take care of it
was setting up the EKS cluster. This occurrence’s setup satisfied the ML application’s
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needs for memory and processing power. At that moment, EKS was built up to control
and grow the Kubernetes clusters. By offering a supervised environment, EKS makes
Kubernetes deployment and operation on AWS easier. Then built up Virtual Private
Clouds (VPCs) as a component of this setup to make sure the Kubernetes clusters had
their own dedicated network space.
Moreover, AWS CloudFormation was used to automatically provision the cloud assets.
Using CloudFormation layouts, computing events, networking limits, and EKS configura-
tions were all fully described. This automation not only accelerated the development cycle
by adhering to established protocols for cloud-local conditions and MLOps techniques,
but it also guaranteed consistency and durability in the cloud foundation’s deployment.

3.6 CI/CD Pipeline Integration

The implementation of a robust CI/CD workflow for ML model deployment using GitHub
Actions has been conducted effortlessly within the repository. The entire procedure is
orchestrated by a dedicated workflow file located in the github/workflows directory. This
automated process is triggered on every push to the main branch. It is made up of dif-
ferent jobs that cover important tasks such as code retrieval, environment configuration,
build tag and push the Docker image, connecting to kubeflow pipeline. Conveying the
redesigned application to the AWS EKS cluster, were started by GitHub Activities with
each code commit. Security is ensured by the use of secrets to handle private information.
This extensive automation ensures that any changes to the ML model are automatically
published to production, optimizing the development and deployment lifecycle using the
capabilities built into GitHub Actions. Scaling of application instances is done by defining
minimum and maximum replicas and threshold values.

3.7 Deployment and Orchestration with Kubeflow

Kubeflow, a Kubernetes ML system, made it more straightforward to convey the ML
application into AWS Elastic Container Service (ECS) John et al. (2021). Kubeflow was
picked up because it makes running ML work processes in a Kubernetes climate simpler
inside and out: deployment, versatility, and management. Preprocessing data, training
models, assessing them, and at long last conveying them were totally depicted by these
pipelines. Kubeflow empowered the orchestration of different work processes. By integ-
rating Kubeflow into the AWS Elastic Container Service (ECS) climate, enable the option
to send and oversee ML models productively in a cloud-local climate, demonstrating the
pragmatic use of MLOps standards.

4 Design Specification

With this architecture, developers can create and test code locally inside of containers.
When they are done, the code is published to a Git repository hosted on websites such as
GitHub. The automated creation of a new Docker image-based on the modified code is
then initiated via GitHub Actions. Elastic Container Registry (ECR) is where the final
Docker image is kept. The deployment procedure is managed via a Kubeflow pipeline
that is coordinated via the Kubeflow dashboard. Through a LoadBalancer Ingress, the
application is made accessible to the outside world, making the deployed FastAPI ap-
plication easier to access. The final deployment happens on the cloud, and the entire
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deployment is coordinated on an EKS cluster version 1.25, with AWS Cluster and CLI
managing the primary instance. The below diagram shows overall architecture of the
workflow.

Figure 2: Architecture Diagram

4.1 Security measures

To improves security and access control in cloud environments, implemented OIDC
(OpenID Connect) with limited role access in AWS. OIDC integration centralizes au-
thentication and authorization processes. Users only get permissions that are required
for their responsibilities, due to limited role access. AWS certificate manager service
has been used to issue a certificate for the domain to access Kubeflow securely on the
domain.

5 Implementation

5.1 Tools and AWS services Overview

Below tools have been used for orchestartion and automation purpose.
1. Kubeflow- Open source ML platform for Kubernetes, which facilitates end-to-end ML
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scenarios.
2. Github Actions - Used for automating developer workflows and CICD is one of the
workflows which can be automated by this.
3. Docker - Facilitates lightweight, portable application packaging through containeriza-
tion.
4. Kubernetes - In a cluster environment, Kubernetes orchestrates the deployment, scal-
ing, and administration of containerized applications.
AWS services used for implementation:

• Route 53 - It is used to host domain and access Kubeflow on a domain,

• AWS Certificate Manager - Secure Sockets Layer/Transport Layer Security certific-
ates are provisioned, managed, and deployed by this for usage with AWS services
and internal linked resources,

• Elastic Load Balancer - Over several targets, including IP addresses, EC2 instances,
and containers, AWS Elastic Load Balancer effectively divides incoming application
traffic,

• Ec2 instance - Within the AWS Cloud, scalable computing capability is offered via
Elastic Compute Cloud (EC2),

• Elastic Kubernetes Service - Containerized applications utilizing Kubernetes can
be deployed, maintained, and scaled more easily using EKS, an entirely controlled
Kubernetes service,

• Elastic container registry- Developers can easily store, manage, and deploy docker
container images with the help of ECR,

• Virtual Private Cloud- It enables user to launch AWS resources, such as EC2 in-
stances, into a network which is virtual and defined,

• AWS CloudFormation - Customers can provision and manage AWS resources in a
scalable, predictable, and safe manner by using a template file.

5.2 Setting up the ML Learning Environment

Configuring system with the essential tools and libraries for data analysis, model training,
and evaluation is part of setting up a ML environment. This configuration is now essen-
tial to ensure the phishing link detection version is developed and implemented smoothly.
Key software components included Python, a popular programming language for system
understanding, a Jupyter notebook, environments for interactive computational work. In-
tegrating necessary libraries to analyze information and learn about objects has become
the ultimate benchmark. These packages include Pandas for data processing, NumPy for
numerical calculations. Seaborn, scikit-learn, and NLTK are installed for data visualiza-
tion, ML, and natural language processing, respectively. NetworkX is added for network
analysis capabilities, while Selenium is installed for web automation. To handle object
serialization and deserialization, Python’s pickle module is used in project.
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5.3 Data Collection and Pre-processing

The first step in the procedure is to compile data from the reliable PhishTank public
dataset, which is a vast collection of phishing URLs. First, the data is preprocessed
to eliminate extraneous metadata. Next comes the standardization of textual mater-
ial, which guarantees uniform URL forms and gets rid of anomalies. Through URL
tokenization, every URL is broken down into keywords for comprehensive examination.
Stemming and stopword removal cut down on noise and preserve coherence. Feature ex-
traction, which stands for distinct components for the training and assessment of the ML
algorithm, is the last step. By using an organized method, the data is ready to be used
in the construction of machine learning models that identify and distinguish phishing
URLs.

5.4 Model Training and Optimization

During the primary research phase, the preprocessed dataset was utilized to instruct the
system in learning two models: multinomial Naive Bayes and logistic regression. Mul-
tinomial Naive Bayes is well suited to textual content kind because of its strength with
discrete facts, and logistic regression is a linear variation that performs effectively with
binary class problems. The hyperparameter tuning method allowed to improve their
overall performance. Logistic regression has highly-tuned parameters such as the al-
gorithm type and regularization power. The alpha parameter, which regulates the data
smoothing, changed into the middle of interest while discussing multinomial Naive Bayes.
The maximum hit setting was found by carefully experimenting with different parameter
combinations while utilizing techniques like grid search and go-validation. Through this
rigorous optimization procedure, the models had been suitably tweaked to achieve op-
timum accuracy and portability in phishing link identification.

5.5 Containerization with Docker

The first thing to do was to write a Dockerfile, which is a script that contains instructions
for creating the Docker image. The Dockerfile defines the operating system, libraries, and
dependencies that might be needed, along with the process for deploying the application
code into the container. The purpose of this Dockerfile is to build an image for a Python
application with dependencies for utilizing Kubernetes and Kubeflow Pipelines. The
application is a web application-based on FastAPI. Following the selection of the base
image which is often a lightweight operating system such as ubuntu in the Dockerfile,
the critical requirements were set up, the application code was copied, and the command
to send out the application was defined. After preparing the Dockerfile, the docker
build command was used to create a Docker image. This approach greatly reduced the
complexity of usage deployment, scaling, and administration.

5.6 Deployment on AWS EKS and Kubeflow Integration

An important step forward in the deployment process was the deployment of a ML ap-
plication that was Dockerized and hosted on AWS Elastic Kubernetes Service (EKS).
By utilizing AWS EKS, a managed Kubernetes provider, for scaling and reliability, an
effective infrastructure for ML workloads was guaranteed. In order to provide a robust
and expandable environment for container deployment, an EKS cluster customized to the
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application’s unique requirements was first configured as part of the deployment process.
Then, Kubeflow an open-source platform for Kubernetes ML learning was smoothly in-
cluded into the EKS setup. End-to-end ML learning procedures, training of model, assess-
ment, and deployment, were made easier by this connection. A strong basis for deploying
and administering the ML learning application was made possible by the combination
of Kubeflow and AWS Elastic Container Service. The final outcome was a seamlessly
automated and organized ML learning system that used the benefits of Kubeflow with
AWS EKS to improve deployment efficiency.

5.7 CI/CD Pipeline Setup and Automation

This project used GitHub Actions, a workflow automation tool, to build a strong CI/CD
pipeline. The pipeline was set up to automatically run tests on the code whenever changes
were made in order to maintain code quality. This automated testing made sure that
changes didn’t result in regressions or mistakes. The pipeline automatically produced a
Docker image and uploaded it to a container registry when the tests were successful.
Following this, the updated Docker image was promptly deployed to the AWS EKS envir-
onment, eliminating the need for manual intervention. This led to the creation of a con-
tinuous delivery and integration pipeline, which was crucial in accelerating the software
development lifecycle while upholding high standards of quality. Overall, the project’s
software development benefited greatly from this CI/CD pipeline, which demonstrated
its importance by guaranteeing the most recent software version. Using GitHub Actions,
the CI/CD pipeline was built up to automate testing, Docker image creation, and AWS
EKS deployment.

Figure 3: Steps in Github Actions workflow
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6 Evaluation

6.1 Model Performance and Analysis

The logistic regression and Multinomial Naive Bayes models were extensively evaluated
to determine how well they performed using a dataset that was divided into training and
testing sets. The logistic regression version’s training and testing accuracy were 97.84%
and 96.41%, respectively. A F1-rating of 93% was the result of its 91% accuracy in
figuring out phishing hyperlinks and its 97% consider non-phishing hyperlinks finished
an excellent 99% precision, 96% bear in mind, and 98% F1-rating. Especially, the metrics
for correctly identifying phishing hyperlinks highlight the version’s robustness. Training

Figure 4: Training and testing accuracy of Logistic Regression

accuracy for the multinomial Naive Bayes model changed into 97.41% even as trying
out accuracy was 95.73%. With a F1-score of 92%, it became capable of retrieving
93% of ’bad’ hyperlinks with absolute precision. A precision and keep in mind of 97%
were done for ’suitable’ linkages, ensuing in a F1-score of 97%. The model’s potential
to properly categories hyperlinks is demonstrated by those effects. When it came to

Figure 5: Training and testing accuracy of Multinomial Naive Bayes

identifying phishing URLs, each model performed well, with high accuracy, precision,
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consider, and F1-ratings. The results demonstrate that the algorithms can distinguish
between phishing and non-phishing URLs, implying that they can be employed in real-life
scenarios to improve security.

6.2 Efficiency of the Containerization Process

The Docker containerization solution dramatically improved the ML application’s de-
ployment performance. Docker containers, which encapsulate a program and all of its
dependencies, significantly reduced deployment times, allowing for consistent and quick
releases. Because the container only required its necessary dependencies, resource use
became streamlined by reducing the overhead often associated with digital devices. Con-
tainerization, which ensured consistency across many settings, also eliminated the ”it
really works on my system” problem. Whether on-premises development ML or in the
cloud, this consistency was crucial to preserving the application’s reliability and overall
performance.

6.3 Effectiveness of Cloud Deployment

The application’s implementation on AWS Elastic Kubernetes service (EKS) became
top-notch in terms of scalability, load management, and uptime. The application may
want to scale seamlessly with AWS Elastic Container Service (ECS), handling irregular
workloads quickly. The application should be able to control remarkable masses without
seeing a significant decrease in performance due to its scalability. Great uptime data,
indicating exceptional dependability and continuous application availability, has been
made possible by AWS EKS’s dependable infrastructure. The application’s performance
became optimal because of the stable and robust environment provided by the cloud
infrastructure, which dynamically adapted to the software’s operating demands.

6.4 Impact of CI/CD Pipeline Automation

After GitHub actions were used to enforce the CI/CD pipeline, there was a significant
improvement in deployment frequency, error reduction, and workflow efficiency.

Figure 6: Github Actions workflow pipeline
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Figure 7: Kubeflow Pipeline

Automatic procedures that enabled frequent and dependable deployments allowed the
software to develop continuously and iteratively. The time it required to bring new fea-
tures and upgrades to market can be reduced by the capacity to release them more often.
Because of the CI/CD method’s automation, manual mistakes have greatly decreased,
leading to a more stable and reliable deployment cycle. Because developers could spend
more time on innovation and less time on the operational aspects of deployment, the
software program improvement lifecycle as a whole can be more efficient.

6.5 Discussion

The system has demonstrated high scalability, high reliability, and robust performance
for cloud-native field deployments with the integration of MLOps with CI/CD. The ML
models performed a great job at phishing hyperlink detection, and the containerization
technique made it possible to continuously deploy in a variety of environments. The cloud
architecture made possible by AWS EKS offered excellent scalability and uptime. How-
ever, there is always opportunity for improvement in areas such as real-time processing
of data and the use of more advanced ML algorithms to increase accuracy. Future study
will focus on more advanced security measures and AI-driven analytics for predictive
remodeling.

7 Conclusion and Future Work

The purpose of this project was to build Machine Learning Operations in order to over-
come the issues related to machine learning and cloud-native deployments. The project
successfully developed an automated and efficient pipeline for creating, managing, and
deploying machine learning models within containerized systems by using MLOps. The
research delved into the relatively unclear concept of MLOps and clarified its significance
for professionals and researchers. The project contributed to the actual implementation
of MLOps in the context of cloud-native architectures by using rigorous research meth-
odologies, including a detailed literature survey. The containerization of the application
using Docker and its deployment through an Elastic Kubernetes Service with Kubeflow
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pipelines showcased the project’s commitment to delivering efficient, scalable, and cloud-
native solutions. The project essentially and successfully managed integrating machine
learning with DevOps concepts, which has an important effect on the efficient deploy-
ment of machine learning models in modern cloud-native workflows. Future research has
to focus upon including additional and significant data sets in order to improve the ver-
satility of machine learning models for phishing detection. To improve field deployment
and management in cloud-local environments, it would also be possible to investigate
the integration of additional technology and tools. Deployment methods and models
can be improved continuously based on user input and real-world performance by using
continuous feedback systems.

References

Cepuc, A., Botez, R., Craciun, O., Ivanciu, I.-A. and Dobrota, V. (2020). Implementa-
tion of a continuous integration and deployment pipeline for containerized applications
in amazon web services using jenkins, ansible and kubernetes, 2020 19th RoEduNet
Conference: Networking in Education and Research (RoEduNet), IEEE, pp. 1–6.

di Laure and Sessione, I. (2021). Mlops-standardizing the machine learning workflow,
PhD thesis, University of Bologna Bologna, Italy.

Garg, S., Pundir, P., Rathee, G., Gupta, P., Garg, S. and Ahlawat, S. (2021). On con-
tinuous integration/continuous delivery for automated deployment of machine learning
models using mlops, 2021 IEEE fourth international conference on artificial intelligence
and knowledge engineering (AIKE), IEEE, pp. 25–28.

John, M. M., Olsson, H. H. and Bosch, J. (2021). Towards mlops: A framework and ma-
turity model, 2021 47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE, pp. 1–8.

Kohler and Anders (2022). Evaluation of mlops tools for kubernetes: A rudimentary
comparison between open source kubeflow, pachyderm and polyaxon.
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