
Crypto Security Layer for Healthcare
Applications and Data Storage in a

Multi-Cloud Environment

MSc Research Project

Cloud Computing

Achal Bhangre
Student ID: 22181946

School of Computing

National College of Ireland

Supervisor: Dr. Punit Gupta

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Achal Bhangre

Student ID: 22181946

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Dr. Punit Gupta

Submission Due Date: 14/12/2023

Project Title: Crypto Security Layer for Healthcare Applications and Data
Storage in a Multi-Cloud Environment

Word Count: XXX

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Achal.Bhangre

Date: 24th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Crypto Security Layer for Healthcare Applications
and Data Storage in a Multi-Cloud Environment

Achal Bhangre
22181946

Table of Contents

1 Introduction 2

2 Requirements 2

3 Installation 3

4 Connect to Multi-cloud Environment 4

5 Proposed Model Flow and Implementation 5
5.1 Steps Involved in Proposed Model . 5
5.2 Cipher Process . 5

6 Obtained Results 6

7 Evaluating the result 7

8 Final Result 8

1

1 Introduction

In the past few years, more and more people have been saving and using data on multi-
cloud storage platforms. It has many benefits, such as making sure that data is safe,
keeping information from getting messed up, and stopping illegal problems from sellers.
This project came up with a mixed method to make cloud data more secure and private.
A multi-cloud server setup is used for the mixed method. There are two different parts to
this combination method. An encryption layer that can handle security holes and keep
the service running without stopping. When you use encoding and decoding methods
through multi-cloud design, the data you store in the cloud is safer and more private.
Using encryption methods makes it safer and more private to store data without slowing
things down. For several types of medical information, different encryption methods
are used and compared. The privacy and security problems with the mixed method
are also looked at. In terms of speed, the mixed approach is better than multi-level
encryption methods like Twofish, ChaCha2, Serpent, Camellia, and TripleDES. This is
true no matter how much memory is used, how long it takes to secure and decode, or how
long it takes to authenticate everything. The average precision measures, the amount of
memory used, and the time needed for encryption and decoding were all better with the
mixed method.

2 Requirements

1. Setup API environment in IntelliJ for SpringBoot(de Oliveira et al.; 2018) applic-
ation.

2. Setup java jdk 8 version environment in the system.

3. Setup AWS account with S3 Bucket

4. Setup Postman Tool to access the service

Figure 1: AWS S3 bucket service

.

2

3 Installation

1. Add Bouncy Castle dependency to the Pom.XML

2. Add AWS s3 cloud dependency in pom.XML to connect AWS cloud.(Saeed et al.;
2019)

Figure 2: MVN dependency list

1. Import all the required packages as per code implementation snippet 3 classes
(de Oliveira et al.; 2018).

2. The Bouncy Castle Jar was used to secure and decrypt the files. With Bouncy
Castle, you can quickly secure and decrypt data, no matter what it is. The Boun-
cyCastle JCE service is free and works with Java Cryptographic Extensions. It
was written code for the spring boot program for this exercise. It is possible to
use safe methods in Java with the Bouncy Castle Crypto package. The package
is made so that it has a simple API that can be used anywhere, even with the
brand-new J2ME. It also has extra features that let the algorithms work with the
JCE framework.

3

Figure 3: import packages

4 Connect to Multi-cloud Environment

The approach behind this study is that a multi-cloud system will be set up that uses both
Amazon S3 structures and Azure Blob storage to store and handle secure files well. A
multi-cloud method using both Amazon S3 and Azure Blob storage was chosen to have
a safe way to view files that work across multiple cloud sources. Also, Amazon S3 and
Azure Blob storage are known for being safe and flexible places to store private data,
which keeps personal files safe. That’s because they have their own security built right
in, so dual encryption is going to happen.

The code snippet 4 below is about AWS S3 connection via API service

Figure 4: connect to aws s3 bucket

4

5 Proposed Model Flow and Implementation

5.1 Steps Involved in Proposed Model

1. The system recognizes PDF, multimedia, and text files before encryption. Content
analysis or file extensions may do this.

2. File type-specific encryption. Camellia is using PDF encryption. Multimedia using
TripleDES encryption. Encrypt text using ChaCha20.

3. Encrypted data across clouds. Azure Blob Service and AWS store data. The public
Amazon S3 bucket allows encrypted PDFs and text. Azure Blob containers allow
encryption of media.

4. Safe Key Management: Encryption and decoding need keys. Secure and use keys.
Patients’ IDs are used for multiple file identification, whereas the central repository
uses symmetric keys for uploads.

5. File Security: Limit file access. A module decrypts files by type when they are
retrieved.

6. Healthcare App Integration: Its loose connection simplifies healthcare app integra-
tion and cloud data storage.

7. Track access, security, and changes for compliance and forensic.

5.2 Cipher Process

When the encryption procedure is first started, the initialization vector—a random or
pseudo-random value—is utilized to secure the data. For the encryption procedure, it
is an extra input. The key is utilized by the encryption algorithm to both encrypt and
decrypt plaintext. It appears that the key in your code is 128 bits (16 bytes). Extended
keys offer enhanced security but incur greater computational costs.This study examines
the TwoFish Algorithm with a key length of sixteen bytes. ChaCha20 and Camellia both
contain 16 bytes. Below is a small code snippet of TripleDES encryption

public class MultimediaTripleDESEncryptionService {

private byte[] key;

private byte[] iv;

private static final String ALGORITHM = "DESede";

private static final String TRANSFORMATION = "DESede/CBC/

PKCS5Padding";

public MultimediaTripleDESEncryptionService(byte[] key , byte[] iv)

{

this.key = key;

this.iv = iv;

}

public byte[] encrypt(byte[] plaintext) throws Exception {

byte[] encryptedBytes = performCipherOperation(Cipher.

ENCRYPT_MODE , plaintext);

return Base64.getEncoder ().encode(encryptedBytes);

}

5

public byte[] decrypt(byte[] encryptedText) throws Exception {

byte[] decryptedBytes = performCipherOperation(Cipher.

DECRYPT_MODE , Base64.getDecoder ().decode(encryptedText));

return decryptedBytes;

}

private byte[] performCipherOperation(int cipherMode , byte[] data)

throws Exception {

SecretKey secretKey = new SecretKeySpec(key , ALGORITHM);

IvParameterSpec ivParameterSpec = new IvParameterSpec(iv);

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

cipher.init(cipherMode , secretKey , ivParameterSpec);

return cipher.doFinal(data);

}

}

Listing 1: Multimedia TripleDESEncryptionService.java

6 Obtained Results

ChaCha20 and Camellia exhibit rates that are comparable, especially when it comes
to lesser file sizes. Figure 5 These algorithms may perform admirably in applications
that have strict performance requirements. TwoFish consistently demonstrates superior
performance compared to alternative algorithms, owing to its streamlined design and im-
plementation, which results in minimal encryption times. Although Triple DES provides
satisfactory performance, it demonstrates extended encryption times in comparison to
the alternative algorithms. Whether or not it is a viable option is contingent upon the
particular security demands of the application.

Performance Invariance Across File Sizes Figure 6, Camellia’s consistent performance
as PDF file sizes increase demonstrates its adaptability to various data quantities. Fig.
6 illustrates that the encryption durations of Camellia remain within a reasonable range,
rendering it suitable for implementation in applications that handle PDF files of diverse
sizes.

Triple DES always encrypts files quickly and securely for large files Figure 7. For 10MB
files, it takes 2.5 milliseconds, and for 3GB files, it takes 5781 milliseconds. Because of
how well it works, even with larger video files, it is a reliable choice for applications
that deal with a wide range of data amounts. It takes about the same amount of time
to protect different types of video files with Triple DES, which is one of the strongest
encryption methods. It gives programs that work with multimedia files of different sizes
the freedom and trust they need. The Camellia and Serpent methods may have trouble
with larger datasets, even though they work well for encrypting smaller video files.

.

6

Figure 5: average computation speed of text files with 3 algorithms

Figure 6: average computation speed of pdf files with 3 algorithms

7 Evaluating the result

Comparative tests of this strategy in Table 1 with encryption using a single cloud,
hybrid cloud, or multi-cloud vendor will be done. In the second test, text, pdf, and mul-
timedia files were treated the same. However, when the file size exceeded 1000 kilobytes,
the encryption process performed poorly, resulting in a lower-quality decrypted file. The
file size increased twice as well.

The encryption rates of the last three algorithms demonstrated are computed using the
corresponding dataset to produce the ultimate outcomes. The parameters enumerated
below were considered during the evaluation of encryption techniques for this study.
The computation is performed by utilizing the file size and the key bytes employed by
each method. The comparison between small block sizes (bytes) for encryption and the
calculation time of the encryption algorithm for large files is also conducted.

7

Figure 7: average computation speed of image files with 3 algorithms

Schemes Algorithm
Speed

Data
Overhead

Data Integrity Key Security

Paper1 × ✓ × ✓
Paper2 ✓ × ✓ ×
Paper3 × × × ✓
Proposed Model ✓ ✓ ✓ ✓

Table 1: Comparison of papers with compare to performance indicator

8 Final Result

Cryptography and multi-cloud analysis demonstrate the uniform distribution of the study’s
key security, data latency, and encryption speed histograms in Table 2. The entropy value
of the hybrid model is 7.99951, which is near the optimal value, i.e., 80% performance
is increased. The encryption effect of the proposed cryptographic framework is effective,
and the secret keyspace is sizable. Further investigation establishes that the proposed
framework has the potential to bolster the security layer of healthcare applications in
numerous ways. The execution duration of the proposed scheme is evaluated by ex-
ecuting several files of different sizes. In contrast to conventional security models, our
methodology exhibits significantly reduced computation time.

Time (Milli seconds) ChaCha20 Camellia Triple DES
Text dataset[1000Kb] 109.7 288.3 292.3
Pdf dataset[2200Kb] 49.7 48.7 78.4
Images dataset [1Gb] N/A 6795.7 4241

Table 2: Hybrid Model with Results of Medical Dataset

8

References

de Oliveira, C., Turnquist, G. and Antonov, A. (2018). Developing Java Applications
with Spring and Spring Boot, Packt Publishing.
URL: https://books.google.ie/books?id=EuLIvAEACAAJ

Saeed, I., Baras, S. and Hajjdiab, H. (2019). Security and privacy of aws s3 and azure
blob storage services, 2019 IEEE 4th International Conference on Computer and Com-
munication Systems (ICCCS), pp. 388–394.

9

	Introduction
	Requirements
	Installation
	Connect to Multi-cloud Environment
	Proposed Model Flow and Implementation
	Steps Involved in Proposed Model
	Cipher Process

	Obtained Results
	Evaluating the result
	Final Result

