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Serverless Computing through Network-Aware

Adaptive Data Compression

Gurnam Sunil Arora

22142525

Abstract
Serverless computing has emerged as a popular cloud computing paradigm for

offering scalability, cost-effectiveness and abstracting away the complexities of
infrastructure management. However, its wide-spread adoption for mainstream
and mission-critical applications is limited by critical challenges like
inter-function communication latency. This research proposes adaptive data
compression which dynamically compresses data based on payload
characteristics and runtime metrics as a potential solution to improve
inter-function communication latency. The efficacy of the proposed solution was
thoroughly validated through extensive simulations and a real-world
deployment. Findings showed substantial reductions in key workflow execution
metrics within simulations and significant boosts in responsiveness and resilience
were observed under peak load in the real-world scenario, proving its practical
viability. This research thus sets the stage for building holistic strategies to
further unlock the potential of serverless computing. The positive results open
exciting new possibilities for enhancing performance across serverless
architectures via adaptive data transformations.

Keywords: Serverless Computing, Inter-Function Communication latency,
Data Compression.

1. Introduction

Serverless computing is an emerging cloud computing paradigm that is geared towards
deployment of massive event driven systems in the cloud. Serverless platforms like Google
Cloud Functions, AWS Lambda are notable examples that provide automatic scaling,
pay-per-use billing model and abstract away complexities of infrastructure management to
provide ease of development. Consequently, these attributes of serverless computing have led
this cloud computing paradigm to gain significant prevalence in both academic and industry
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settings. However, the current state of serverless computing is not without its challenges.
Current issues concerning coldstart latencies, state management, isolation, fault tolerance
substantially limit the feasibility and hence wide-spread adoption of serverless computing for
mainstream applications. While challenges like cold-start latency, scheduling have been
studied fairly adequately, the challenges related to network and inter-function communication
still remain open(LI et al. 2023). Shafiei et al. (2022) emphasise on the critical nature of
"Network, sharing, and Intra communications" challenges in serverless computing and also
mention these challenges as a cause of various issues. Hellerstein et al. (2018) argue that
efficient and fast communication between serverless functions is crucial for unlocking the
true potential, scale and adoption of serverless computing. They argue that these limitations
obstruct the development of efficient distributed systems and parallel compute applications
on serverless platforms, thereby impeding innovation in data processing and distributed
computing. Despite advancements in cloud storage, brokers, and direct networking for
inter-function communication, these methods often fall short in ensuring low latency across
various workloads and application scenarios. To address these limitations, the proposed
research explores a novel approach: adaptive data compression tailored for serverless
computing. This method aims to reduce communication overheads in diverse use-cases by
dynamically compressing data and payloads according to payload attributes, network
conditions, and other relevant metrics. The central research question of this study is:

"Can an innovative adaptive data compression technique, which dynamically adjusts
compression based on payload attributes and runtime metrics, significantly enhance the
performance and efficiency of communication between distributed serverless
functions?"

The goal of this research is to demonstrate that adaptive data compression can notably
improve communication within serverless applications. By doing so, it aims to bolster the
widespread adoption of serverless computing for both mainstream and mission-critical
applications, showcasing its effectiveness in optimising inter-function communication in a
serverless environment.

2. Related Work
Serverless architectures implement communication between functions using several methods.
These methods include Shared Memory, where functions utilise a shared memory region on
the host machine; Cloud Storage, using services like AWS S3 or object storage; Brokers,
which are services/functions that act as an intermediary and facilitate communication
between serverless functions, and Direct Networking, where functions communicate directly
through intelligent techniques like TCP/UDP hole punching. All of these paradigms have
their own benefits and tradeoffs and are examined in this section and are summarised in
Table-1.
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Shared Memory: Shared Memory is a common and long-established approach in  computing
paradigms such as multithreaded and parallel  computing. It has effectively demonstrated to 
achieve highly efficient communication within these paradigms.  The SPRIGHT framework
(Qi, S. et al., 2022) implements inter-function communication between co-located  functions
(i.e. functions located on the same host) via Shared Memory, where functions located on the
same host share a memory region to exchange data with each other. However, in such a
situation where functions are not co located, the benefits of The SPRIGHT framework are
lost due to the fact that in such a situation there cannot be a shared memory region. This
limitation is bypassed by  the SAND platform presented by  Akkus, I. E. et al., (2018) through
the use of a hierarchical memory bus. This hierarchical Memory bus consists of a local and
global message bus for co-located and non co-located functions respectively. Nevertheless,
the global message bus' pub-sub nature incurs multiple overheads like serialisation along with
message broker look up. Another major disadvantage is that SAND decreases scheduling
flexibility because the middleware makes an effort to place functions on the same host for
better communication. However, the shared memory approach provides very poor scalability
because only a limited number of functions can be crammed onto a single host. Both
frameworks, SAND and SPRIGHT, propose significant optimizations and augmentation for a
shared memory based communication but don't eliminate the inherent architectural limit with
shared memory demanding research on alternate methods for faster communication among
serverless functions.

Cloud Storage: One of the more popular methods of facilitating communication between
serverless functions is Cloud Storage. This is due to the reason that serverless platforms like
AWS restrict direct communication between serverless functions. A few research efforts have
implemented optimisations to the utilisation of cloud storage. For instance, in the works of
Fouladi, S. et al., (2019), a framework called ‘gg’ is proposed to parallelize distributed
applications by leveraging serverless functions on AWS. ‘gg’ utilises services like S3 (AWS)
as a medium to transfer immutable blobs, facilitating communication between stateless
functions. A notable feature of ‘gg’ is its memoization technique (remembers output for a
particular input), which stores the outcomes of functions based on content hashes. This
approach helps ‘gg’ avoid repeating executions for identical inputs and save time. This
approach however loses its benefits when new, non-memoized inputs are introduced. Starling
(Perron, M et al,. 2020) is a query execution framework that focuses on distributed SQL
query execution on serverless functions. This proposed framework also utilises cloud storage
for interim stages during query execution. The optimization Starling makes is that it
efficiently organises and partitions data in S3 and optimises complex data shuffle operations
ensuring functions only read the necessary data partition. However, Starling’s optimizations
are specific to analytical and query workloads and have limited applicability for generic
workloads compared to ‘gg’.
While both these papers put forward very intelligent optimizations for cloud storage, they
come with distinct trade-offs. These optimizations don't fully address the inherent latency
issues and limitations of using cloud storage as a communication medium. Services like S3
(AWS) or Cloud Storage (GCP) are primarily designed for scalability, durability and
cost-effectiveness. While these cloud storage services have been repurposed as a
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communication medium in serverless functions, they are not ideally suitable for this role,
often causing inherent latency and other limitations to serverless architectures.

Brokers: The use of Brokers or intermediaries for inter-function communication is an
emerging method in serverless computing. InfiniCache, introduced in the paper "InfiniCache:
Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache" by
Wang, A. et al. (2020) is a prominent example of such an implementation. InfiniCache is an
in-memory object caching system that uses serverless functions and employs a broker based
architecture for facilitating communication between these functions. The system consists of
three main components: Client libraries, Proxy servers and Lambda functions which act as
primary cache nodes.
Since AWS does not allow direct communication between serverless function, proxies serve
as a broker to facilitate this communication. The lambda functions serve as small data nodes
to store cached data. When clients request data, the proxies use the cache metadata to
determine which lambda function has this requested data. They retrieve this data from lambda
functions and return it to the client. This broker based architecture has several advantages.
Primarily, it overcomes the limitations imposed by cloud platforms of inbound connection to
serverless functions. Additionally, the proxies enhance network efficiency by parallelizing
streaming of cached data. However, there are some drawbacks, as these proxies can become
a single point of failure and become a bottle-neck when the system is scaled.

Direct Networking: Direct networking is the most effective and preferred method for
achieving data exchange between serverless functions. It allows for functions to communicate
with each other directly on different hosts or even cloud regions using network protocols and
channels. It is the most preferred way due to its support for high scalability in distributed
serverless architecture. The first significant development in this area is detailed in "Punching
Holes in the Cloud: Direct Communication between Serverless Functions Using NAT
Traversal" by Moyer, D. W. (2021). This paper introduces the implementation of direct
communication between serverless functions, and overcoming serverless platform restrictions
using NAT traversal techniques. This approach shows impressive ultra low-latency
communication with high throughput and is supported by a communication library based on
TCP sockets. However, implementing this Socket-Level API can be exceedingly complicated
for serverless applications. Conversely, The FMI framework (Copik, M. et al., 2023)
implements an MPI (Message Passing Interface) inspired interface for communication
between serverless functions. This interface provides a more developer-friendly approach to
implement inter-function communication by message passing. The FMI framework offers a
more flexible, efficient and high-throughput communication within serverless environments
and supports various channels like TCP, object storage and in-memory data stores, alongside
MPI collective communication operations. However, this approach struggles in a dynamic
serverless environment since it assumes a fixed communicator group. Given that serverless
functions are transient and scalable, assuming a fixed communicator group limits the
scalability potential of serverless architectures. The Boxer framework (Wawrzoniak, M. et
al., 2021) utilises TCP hole-punching for inter-function communication. Boxer employs a
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separate TCP hole-punching service within each serverless function and uses a coordinator
service for function discovery. This framework implements a clever optimization which is
connection multiplexing (reusing the same TCP connections instead of creating new ones)
and further enhances scalability and efficiency. However, implementing hole-punching logic
within serverless functions leads to larger function size which affects deployment and
performance. Furthermore, the coordination service becomes a bottleneck when the system is
scaled and hence limits the scalability of the serverless architecture. Finally, Particle
(Thomas, S. et al., 2020) and Floki (Nestorov, A. M. et al., 2022) are frameworks that are
designed to enhance network performance in container-based serverless environments like
Kubernetes for burst-parallel workloads. Particle minimises the overhead for namespace
creation and allows rapid container setup. Alternatively, Floki uses pipes and sockets for
communication between co-located and non co-located containers. Essentially, both these
frameworks put forward optimizations that improvise the network aspect of container based
serverless environments, but have their limitations. Floki is tailored for data-intensive
workloads and unsuitable for general serverless scenarios. Additionally, Floki’s
implementation of pipes and sockets restricts multi-tenancy and reduces fault-tolerance.
Particles' approach of consolidating namespaces and network interfaces has an effect on
function isolation that degrades security.

Framework Paradigm Benefits Limitations

SPRIGHT Shared
Memory

Highly efficient for co-located
functions

Doesn't work for distributed functions, poor
scalability

SAND Shared
Memory

Works for distributed functions Overheads from serialisation and lookup, reduces
scheduling flexibility, limited scalability

gg Cloud Storage Parallelization, memoization to
avoid re-computation

Loses benefits with new non-memoized inputs

Starling Cloud Storage Optimised data partitioning and
shuffle

Specific to analytical workloads

InfiniCache Brokers/Proxi
es

Overcomes platform limits on
connections, parallel streaming

Proxies become bottleneck, single point of failure

NAT
Traversal

Direct
Networking

Ultra low latency, high
throughput

Complex socket-level API

FMI Direct
Networking

Flexible, efficient,
developer-friendly

Assumes fixed group, limits scalability

Boxer Direct
Networking

Connection multiplexing for
efficiency

Bigger function size, coordination service
becomes a bottleneck

Particle Direct
Networking

Rapid container setup Affects isolation and security

Floki Direct
Networking

Data-intensive workload
optimization

Restricts multi-tenancy, reduces fault tolerance

Table 1: Literature Review Summary
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3. Research Methodology
3.1 Proposed Solution: The current body of work detailed in the Related Work section made
some strides but has not been able to fully eliminate latency issues within serverless
computing. This proposed solution aims to accomplish this by incorporating intelligent data
compression at its core, tailored to optimise serverless inter-function communication. It is
designed to intelligently detect the payload's type, size, and other characteristics to select the
most optimal compression algorithm. Additionally, this approach takes into account compute
availability for algorithm selection, ensuring efficient resource utilisation. Furthermore, the
system is equipped to estimate network congestion by analysing function execution metrics,
enabling adaptive compression. This ensures that compression is employed only when
necessary, enhancing overall efficiency and reducing unnecessary computational overhead.

The methodology for this research endeavour employed a dual approach: Simulation and a
Real-World Data-Driven Application. This methodology was specifically chosen to
comprehensively and thoroughly validate the efficacy of the proposed solution. The
simulation setup provided for a controlled environment for testing the solution in a wide
range of scenarios, while the real world application provided practical validation in actual
operating settings.

3.2 Approach 1: Simulation

Objective: The objective of running simulations was to test the efficacy of the solution of
using Adaptive Data Compression in a wide variety of scenarios and test-cases without the
complexity and variability of real-world settings. The simulation allowed for creation of
multiple controlled environments with different complexities and sizes so that the solution
could be thoroughly tested in a variety of scenarios including edge or extreme conditions,
which may not be feasible to produce in a real serverless environment. This approach was
crucial in initial evaluation of the solution and provided a proof of concept before it could be
replicated and deployed in a real-world setting.

Simulation software: WorkflowSim (Chen and Deelman, 2012) was leveraged to replicate a
serverless environment for simulations. WorkflowSim which is an extension of Cloudsim
toolkit, is specifically designed to simulate and study workflow algorithms in cloud and grid
computing, was chosen and repurposed here to simulate a serverless environment because of
its relevant capabilities and robust features for modelling, such as:

● Data Transfer Modelling: The most crucial aspect for simulations within this research
endeavour is to model data transfer within serverless functions. WorkflowSim allows
for accurate modelling of data transfer between tasks (analogous to serverless
functions), which is crucial for observing the impact of the proposed solution.

● Diverse Workflows: WorkflowSim supports a variety of workflow patterns, which
enables testing of the solution in a variety of simulations.

● Resource Management: Since it is an extension of CloudSim, WorkflowSim is
capable of simulating different computing resources and their management.

● Task Scheduling and Execution: workflowSim can emulate the behaviour of task
scheduling and execution which is a core aspect of serverless computing.

6



Mimicking a serverless environment within WorkflowSim: To effectively replicate a
serverless environment within WorkflowSim simulations, several key aspects of the
serverless architecture were considered.

● Tasks as Analogous to serverless functions: WorkflowSim simulates workflows (Jain
A. and Kumari R., 2017) which comprise several dependent tasks. These tasks were
used to represent serverless functions within the simulation. This analogy is crucial as
it allows us to simulate interactions between serverless functions within a cloud
environment. Like serverless functions, each task in the workflow can be defined
using specific inputs, outputs, and computing requirements, mirroring the
functionality of serverless functions in the serverless architecture.

● Function Isolation and VM Mapping: Serverless functions typically run in isolation
within a cloud environment. This isolation was simulated by assigning each task to a
distinct VM (Virtual Machine) within the simulations. This assignment of tasks to
distinct VM’s not only allowed for isolation but also enabled the modelling of data
transfer times and hence assessment of inter function communication latency.

● Ephemeral Nature of Functions: In serverless computing, serverless functions are
ephemeral, i.e operating only when triggered and not retaining operation status
between executions. Using WorkflowSim tasks to represent serverless functions
incorporates this characteristic within simulations as WorkflowSim tasks are also
transient in nature.

By choosing WorkflowSim for simulations and leveraging workflow tasks to represent
serverless functions, we were able to closely emulate the operational dynamics of a serverless
environment. This in turn allowed for a thorough investigation into the performance of
Adaptive Data compression within a serverless context.

Experiments: Two scientific workflows were utilised to create simulation scenarios, namely:
Montage and Inspiral. Montage (De Prado, R. P. et al., 2014) is a data intensive application
for generating sky mosaics and Inspiral is an application that analyses gravitational waves
from merging black holes and neutron stars. The number of tasks for both these workflows
were varied to create different test scenarios. For Montage workflow, Montage_25,
Montage_50 and Montage_100 were utilised (the number represents the number of tasks
within the workflow). Similarly, Inspiral, Inspiral_30, Inspiral_50, Inspiral_100 were used.

Two primary test cases were defined for all these scenarios. The first with ‘Compression Off’
runs the workflow simulations, without adaptive data compression. The second case with
‘Compression On’ executes the same workflows with adaptive data compression enabled.
The goal of defining comparative test cases was to isolate the impact of the proposed solution
i.e Adaptive Data Compression.

Metrics such as Total execution time, Average Task execution time, Average Task Start-time
and Average Task Finish-time were collected to study the performance of the proposed
solution. These metrics were chosen as they enable quantification of efficacy of the solution
with respect to various aspects of workflow execution, especially when comparatively
analysing the baseline ‘Compression off’ case with ‘Compression On’ case.

3.3 Approach 2: Real-World Validation
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Motivation: This approach with testing the Adaptive Data Compression by integrating it
within a real-world data-driven application was vital for assessing the efficacy of the solution
in actual serverless settings. This phase aimed to validate and extend the findings from the
simulation experiments and provided insights into how the Adaptive Data Compression
Library performed under real-world operation conditions. This allowed for testing this
solution in a dynamic and uncontrolled environment where factors such as network
variability, resource availability, coldstart latency and actual data characteristics could
significantly impact performance.

Application use-case selection: The choice of creating a Data-driven application as a
use-case for real-world testing was made to closely mirror a common serverless scenario.
Since Data- driven applications are quite prevalent in cloud computing and often require
efficient data-transfer between components, a data-driven application becomes an ideal
candidate for demonstrating the effectiveness of Adaptive Data Compression as a solution to
reduce inter-function communication latency.

Experiments: To validate the efficacy of Adaptive Data Compression in a real world setting,
it was integrated with a Data-Driven application deployed using serverless functions on
Google Cloud Platform (GCP) and a rigorous load test was conducted using Locust. This
methodology allowed us to simulate user requests and measure response time (Total
execution time) for both primary test-cases (i.e With Adaptive Data compression enabled and
disabled). Performance metrics like 95th percentile response time, and failure rates were
gathered by mimicking peak load conditions.

● 95th Percentile Response Time: This measures the response time below which 95% of
the requests are fulfilled.

● 50th Percentile Response Time: Often referred to as the median response time, this
metric represents the middle value of the response time distribution.

● Failure rate: Refers to the proportion of requests to the application that fail compared
to the total number of requests made during a test period

These metrics effectively quantify the efficacy of Adaptive Data compression in a real-world
setting beyond theoretical advantages, and allow a comprehensive insight into the value of
this solution as an optimization technique

4. Design Specification

Overview of the Adaptive Data Compression (ADC) Library: This library has been
meticulously engineered to enhance data transfer speeds and hence improve inter- function
communication latency in serverless environments. It estimates the amount of network
congestion by monitoring the average response time of serverless functions over a recent time
series data. If the average response time exceeds a certain predefined threshold, the library
enables data compression. The choice of which compression algorithm is to be utilised is
made intelligently by looking at factors like payload type, payload size and availability of
compute resources within the serverless function. This comprehensive approach allows this
library to significantly improve inter-function communication by optimising the data-transfer
process.
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Design choices: Design choices around threshold determination and compression algorithm
selection have been detailed below. The pseudocode of the Adaptive Data Compression
Algorithm and the System Architecture has been presented in Figure 1.

Threshold Determination: The library employs a monitoring mechanism to estimate the
prevailing conditions of the network by monitoring function response times. Using the
Google Cloud Monitoring API, the library fetches average response time for recent time
series metrics data and compares this average to a predefined threshold to enable
compression. This predefined threshold can be tweaked according to the operational needs by
the users/developers, allowing for greater flexibility and catering to specific application
requirements

Compression Algorithm Selection Logic: The ADC Library's compression algorithm is
intelligently selected based on data size, type, and available resources (Jeong, G. et al., 2023).
For data under 1MB, LZ4 is used for its fast processing, while Snappy is chosen for data
sizes between 1MB and 10MB, offering a balance of speed and efficiency. For larger datasets
over 10MB, Zstd is employed for optimal compression. The library uses Brotli for textual
data to maximise efficiency and Zstd or zlib for binary/non-textual or general/mixed data
types, ensuring versatility and broad compatibility. Depending on resource availability, LZ4
or Snappy is used in resource-constrained environments for their low overhead, while Zstd or
Brotli is preferred in scenarios with adequate resources for higher compression effectiveness.

Figure 1: Pseudocode for Adaptive Data Compression And System Architecture
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System Architecture:

● Integration with Serverless Functions: The architecture of the ADC library is
designed for seamless integration with serverless functions within cloud
infrastructures, ensuring minimal disruption.

● Data Flow Optimization: The library is structured to intercept and compress data as
it moves between serverless functions, thereby reducing data transfer times and
overall latency.

5. Implementation
The implementation phase of this research endeavour was pivotal in materialising the
Adaptive Data Compression algorithm to a practical solution and evaluate its effectiveness.
The implementation phase also employed a twofold approach. The first approach entailed
conducting preliminary experimentation to gather crucial data regarding important metrics
(compression factor, compression time and decompression time) which was followed by a
comprehensive simulation setup to evaluate the algorithm's effectiveness in a controlled and
varied environments. The second part of this implementation entailed the development of the
Real-World Data-Driven application within which the Adaptive Data Compression Library
was integrated. This phase was crucial to test the solution in a real serverless environment.
Each step within this phase was meticulously executed to ensure that the Adaptive Data
Compression library met its intended design, and also adapted efficiently to dynamic needs of
serverless computing, thereby providing a robust solution for mitigating latency in
inter-function communication within serverless computing.

5.1 Preliminary Experimentation:

Objective: The objective of the preliminary experimentation was to gather critical metrics
that enable the ‘Compression On’ (i.e with Adaptive Data Compression enabled) scenario in
the simulations. This specifically involved determining the average compression factor,
compression time, and decompression time for a wide range of payload sizes and payload
types.

Methodology :
● Synthetic payload creation: Synthetic Payloads of various types (Binary, JSON, CSV,

HTML, XML & Text) and various sizes (from 500 bytes to 25 MB) were created
using the Faker Library in Python. These payloads were meticulously created to
resemble real payloads encountered in serverless computing, ensuring relevance of
the simulation experiments to real world scenarios.

● Setting up Cloud Storage : Google cloud Storage was utilised to store these payloads.
● Deployment of Cloud Function: A serverless function was created using Google

Cloud Functions (which is a FaaS offering from Google). This cloud function (1 CPU,
1GB RAM) was implemented in Python 3.9 and developed to automate the process of
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fetching each payload from the cloud storage, applying compression/decompression
and collecting critical metrics (compression factor, compression time and
decompression time) for each payload.

● Compression and Decompression Process: For each file, the cloud function executed
compression and decompression using the Adaptive Data Compression algorithm.
The algorithm employed various compression libraries (LZ4 for smaller files, Brolti
for Text, and Zstd for other types) and intelligently selected the optimum library for
compression. The serverless function subsequently recorded the compression factor,
compression time and decompression time for each payload.

● Data Diversity and Coverage: The methodology for this experimentation particularly
focused on ensuring a broad payload type coverage, to simulate real world scenarios
where serverless functions may interact with various data types and sizes.

Utilisation of Collected Metrics in Simulation:

Data Analysis.: Post-experimentation, this metrics data was analysed (see Figure 2) to
determine the average compression factors, the average compression time and decompression
time for a particular payload size across various types (i.e Binary, JSON, CSV, HTML, XML,
Text).

Figure 2: Data Analysis from Preliminary Experiments deriving Critical Metrics

Application in Simulation: The derived metrics were then utilised to enable the ‘Compression
on’ test-case for the simulations. For example, adjustments were made to the Montage_25
workflow DAX (Directed Acyclic Graph XML) to scale down the ‘size’ attribute according
to the average compression factor, similarly the ‘runtime’ attribute was adjusted to account
for average compression and decompression time for that particular payload size.

Enhancing realism and accuracy in Simulations: The determination of these critical metrics
(ie. average compression factor, compression time and decompression time) using a real
cloud function enhances the realism of the simulations. Imputing these metrics in the
workflow DAX ensured the accurate modelling of compression/decompression in the
simulation environment.
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5.2 Simulation Setup:

Development Environment: The simulations were conducted using the WorkflowSim
simulator. This simulator was chosen for its capabilities to accurately simulate serverless
environments, especially because of this capability to accurately model data transfer between
tasks (serverless functions). The development was carried out in Java and leveraged
WorkflowSim’s, extensive support for cloud and grid computing simulations.

Implementation of the Planning Algorithm: A new planning algorithm was developed and
implemented to enable scheduling of tasks (functions) to distinct Vm’s. This was done to
observe key serverless architecture characteristics like function isolation and allowed for
modelling data transfer between tasks(functions). The pseudocode for this algorithm is given
in Figure 3.

Figure 3: Pseudocode For the ‘Distinct’ Planning Algorithm

Configuration of simulation scenarios: Two primary test-cases were configured across a
variety of workflows : ‘Compression Off’ and ‘Compression On’.

● Compression Off Scenario: This served as a baseline test-case for all workflows, and
represented a system where-in the system operated without the use of adaptive data
compression. This baseline test-case was implemented for all the workflows:
Montage_25, Montage_50, Montage_100, Inspiral_30, Insiral_50, and Inspiral_100.
The numbers here denote the count of tasks within each workflow (for example,
Montage_25 has 25 total tasks, similarly Inpiral_50 has 50 total tasks and so on.). The
number of Virtual Machine’s (VM’s) were set equal to the number of tasks within
each workflow and the bandwidth within the data-centre was set to 15MBPS to
standardise network conditions across all tests.

● Compression On Scenario: This test- case represents a system where-in the adaptive
data compression is enabled. The same workflows were used as in the ‘Compression
Off’ scenario but with modifications of ‘size’ and ‘runtime’ attribute in the workflow
DAX to reflect the effects of data compression. For all tasks in the workflow, the
payload size was scaled down to size after compression using the average
compression factor obtained from the preliminary experiment. Additionally the
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runtime attribute was adjusted to account for compression and decompression time,
which were also obtained from the preliminary experiment.

Essentially, Both the test-cases were executed under the exact same simulation configuration
except for the deliberate change in size and runtime attributes. The critical metrics that
determine new values for ‘size’ and ‘runtime’ were derived from the preliminary experiment
which was conducted using a cloud function that employed the Adaptive Data Compression
library to compress/decompress data and record relevant metrics.

Metrics Collection and Evaluation: The simulation output was used to collect a range of
metrics, which enabled the performance assessment of the simulation. A thorough
performance study of the solution has been presented in the Evaluation Section using these
metrics:

● Total Execution Time: Measures the total time taken for workflow execution in both
test-cases (‘Compression On’ and ‘Compression Off’)

● Average Task Execution Time: Measures the average execution time for all tasks
within the workflow

● Average Task Start-Time: Measures the average time at which tasks in workflowSim
begin execution.

● Average Task Finish-Time: Measures the average time at which tasks finish execution
in workflowsim

Each of these metrics provide valuable insight about the effects of the proposed solution into
various aspects of workflow execution and performance. Comparative analysis of these
metrics for both primary test-cases (i.e ‘Compression On’ and ‘Off’) provide a clear
understanding of the impact that the proposed solution has on overall performance workflows
within the simulation.

5.3 Real-World Application

Adaptive Data Compression Library Development: The adaptive data compression library
was developed in Python 3.9 and was focused on creating a robust and efficient tool for data
compression. The library was designed to intelligently select the optimum compression
algorithm (from zlib, brotli, LZ4, Zstd, snappy) to compress data. This library utilised the
Google Cloud Monitoring API (formerly known as Stackdriver) to monitor the response time
of serverless functions and estimate the amount of network congestion. If the response time
exceeds a predefined threshold, the library dynamically enables data compression and hence
mitigates the increased latency caused due to network congestion. Special precautions were
taken to maintain a low algorithmic complexity of this library to keep the overheads low.

Integration with cloud functions and Application: The Adaptive Data compression library
was integrated with serverless function runtime by packaging it with the function source-code
as a separate python file. This integration was designed to be minimally invasive and modular
to ensure that the solution could be adopted with minimal change to the codebase. This
design allowed for scalable integration of the library with the serverless functions.
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Deployment and Enhancements: The library was evaluated and incrementally enhanced
following the deployment. Several changes were made to the monitoring and compression
algorithm selection logic to improve the performance of the adaptive data compression
library within serverless environments.

Challenges and Solutions: A major challenge was to balance the trade-off between
compression efficiency and computational overhead. This challenge was addressed by
carefully optimising the algorithm to introduce minimum overhead and performance fine
tuning. This involved fine tuning the compression algorithm selection logic and also reducing
the response time monitoring overhead, which was done by reducing API calls to Google
Cloud monitoring API and pulling aggregate response time data over larger time-series
intervals, instead of frequently gathering time-series data for smaller intervals. This approach
reduced the computational burden of locally aggregating the time-series data and network
traffic, leading to faster and more efficient execution of algorithm logic.

6. Evaluation
This section delves into the empirical analysis conducted using two distinct types of
workflows: Montage and Inspiral. Both these workflows represent real-world data intensive
scientific applications and serve as a cornerstone for these experiments.

6.1 Experiment 1 : Montage Workflows
Description: Montage workflows are data-intensive applications that are used for creating
sky mosaics. In the context of this research, the Montage workflows represent a complex
serverless application with complex tasks involving a significant amount of data transfer,
making them ideal to assess the efficacy of the proposed solution.

Objective: This experimentation scenario considers three variants of the Montage workflow
(Montage_25, Montage_50 and Montage_100) and records Total Execution Time, Average
Task Execution Time, Average Task Start-Time and Average Task Finish-Time for both
primary test cases i.e ‘Compression Off’ and ‘Compression On’.

Simulation Configuration:
Number of VMs: Equal to the number of task in each workflow variant.
Datacenter: Standard Datacenter Setup with 1 Datacenter
Hosts: Configured to accommodate the number of VM’s for each workflow variant.
Bandwidth: Datacenter Bandwidth is standardised to 15MBPS across all test to maintain
uniform network conditions
Payload Size : 10Mb
Compression On Specific Configuration :

Compression Factor : 4.401x
Compression Time : 0.061 Seconds
Decompression Time : 0.018 Seconds
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Results:
● Total Execution Time: Reduced from 356.72 seconds (without compression) to 118.49

seconds (with compression) for Montage_25. Approximately 3x reduction for all
variants

● Average Task Execution Time:Minimum improvement was observed to be 61%
indicating substantial enhancement in task execution efficiency.

● Average Task Start and Finish Times: Similarly, 2.5-3 times reduction was observed
indicating accelerated start and completion of tasks.

Figure 4 : Total Execution Time, Average Task Execution Time, Average Task Start and Finish
Times for Montage Workflows (Seconds)

Inference : Considerable enhancements are observed across all four metrics measured in the
'Compression On' scenario, demonstrating a marked increase in data-transfer efficiency and,
consequently, quicker task completion times when data compression is enabled. However, the
performance benefits do not scale proportionally with the addition of tasks. This phenomenon
can be attributed to the increase in the number of concurrent (parallel) tasks, as opposed to an
increase in sequential (dependent) tasks within the workflow. As the workflow expands
horizontally with more parallel tasks, the potential for ADC to reduce the execution time for
each task diminishes, resulting in a less pronounced overall improvement in performance.

6.2 Experiment 2: Inspiral Workflows

Description: Inspiral workflow is used in analysis of gravitational waves from black holes
and neutron stars, these workflows are computationally intensive and also involve complex
data analysis. In the context of this research, this workflow represents a distinct serverless

15



scenario where there are more parallel tasks than dependent or sequential tasks. This means
that the workflow has more breadth than depth (Inspiral has depth of 5 compared to 9 of
Montage). This structural characteristic allows to study the effectiveness of the proposed
solution under a different workflow configuration compared to Montage

Objective: Similar to Experiment 1, this experiment also assess three variants of Inspiral
workflow (Inspiral_30, Inspiral_50 and Inspiral_100) and collects the same metrics for the
same two primary test-cases i.e ‘Compression Off ‘ and ‘Compression On’

Simulation Configuration:
Number of VMs: Equal to the number of tasks in each workflow variant.
Datacenter: Standard Datacenter Setup with 1 Datacenter
Hosts: Configured to accommodate the number of VM’s for each workflow variant.
Bandwidth: Datacenter Bandwidth is standardised to 15MBPS across all test to maintain
uniform network conditions
Payload Size : 10Mb
Compression On Specific Configuration :
Compression Factor : 4.401x ; Compression Time : 0.061 Seconds ; Decompression Time :
0.018 Seconds

Figure 5 : Total Execution Time, Average Task Execution Time, Average Task Start and Finish
Times for Inspiral Workflows

Results:

● Total Execution Time: There was a significant average reduction of 16% for all
variants, although not as substantial as Montage workflows
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● Average Task Execution Time: signifcant reduction of about 12% across all variants
indicating improved task efficiency. but the effect of data compression is somewhat
moderated

● Average Task Start and Finish Times: Approximately 15 - 18% improvement across
variants showing modest acceleration in overall task completion

Inference: The results show good improvements in task execution times which resulted
from improved data transfer efficiency, however the performance gains were modest
compared to the Montage workflows. This can be attributed to the structural characteristics of
the Inspiral workflow. Contrasting to the Montage workflow, Inspiral workflow has more
breadth and less depth i.e there are more parallel tasks than dependent or sequential tasks,
compared to the Montage workflow. This results in a lower gain in performance as data
compression has less opportunity to reduce transfer times. This underscores the importance of
the workflow structure in determining the effectiveness of data compression and highlights
that the true strength of data compression lies in sequential workflows.

6.3 Experiment 3: Real-World Application Performance Evaluation

Description: This experiment was conducted on the real-world data driven application to
assess the impact of Adaptive Data Compression in actual operational settings. Locust, a
versatile load testing tool was employed to measure the applications execution time and
responsiveness under two scenarios- ADC enabled ('Compression On') and ADC disabled
('Compression Off').

Objective: The main objective of this experiment was to monitor applications performance in
terms of overall response time (execution time) and failure rates during a 10 minute window
for both scenarios to isolate the impact of adaptive data compression.

Figure 6: 95th & 50th Percentile Response Time vs Time and Failure rate for Compression Off
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Figure 7: 95th & 50th Percentile Response Time vs Time and Failure rate for Compression On

Results:

● 95th Percentile Response Time: With compression enabled the response time was
reduced from 17000 ms in ‘Compression Off’ scenario to 9000 ms in ‘Compression
on ‘Scenario

● 50th Percentile Response time: This metric representing the median response time
dropped from 13000 ms in the ‘Compression Off’ scenario to 5600ms in
‘Compression On’ scenario.

● Failure Rate:The failure rate dropped from 20% in ‘Compression Off’ scenario to
0% in ‘Compression On’

Inference: The experiment’s findings underscore the effectiveness of Adaptive Data
Compression in enhancing both the responsiveness and reliability of real-world applications
under load conditions. These results affirm the practical applicability of Adaptive Data
Compression, reinforcing its value as a critical optimization technique for real-world
applications in serverless environments.

6.4 Discussion

This research endeavour encompassed various experiments focusing on adaptive data
compression for reducing inter-function communication latency in serverless computing. The
results highlighted both strengths and weaknesses of the proposed solution. While the
proposed solution provides significant data transfer latency in sequential workflows, it was
not as effective in parallel task workflows. This limitation means that the solution is more
specialised and focused in its scope, very effective in specific scenarios but less in others,
particularly those that do not follow a sequential workflow pattern. As noted in the literature
review, serverless computing faces inherent latency issues, and while this proposed solution
partly addresses these concerns, it also underscores the need for a broader strategy to tackle
the inherent latency issues in serverless computing. However, This research contributes to the
existing body of knowledge by demonstrating the potential of adaptive data compression in
serverless computing, albeit with room for further optimization.
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7. Conclusion and Future Work
This research endeavour aimed to explore the effectiveness of Adaptive Data Compression in
enhancing efficiency and reducing latency in inter-function communication. The main
findings suggest that approach significantly improves latency within inter-function
communication by enhancing data transfer efficiency. However, the findings also suggest that
the impact of this optimization depends on the workflow structure. The research successfully
addressed the research question by demonstrating the potential of adaptive data compression,
but also revealed its limitation in parallel workflow scenarios.
For future work, development of more context-aware and dynamic compression strategies
can be explored. Additionally, examining the application of this solution within different
cloud computing paradigms like cloud and distributed computing can be a valuable avenue of
exploration. Furthermore, applying the optimization of adaptive data compression to other
communication mechanisms like pub-sub messaging systems, or cloud storage could reveal
the versatility of this technique. Exploring all these research avenues could provide an
in-depth understanding of the solutions efficacy and potential across various cloud scenarios
and communication models which can lead to development of a broader and more versatile
optimization strategy for cloud computing environments. This research lays the groundwork
for future innovations in communication strategies and optimizations within the cloud
computing context.
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