

Configuration Manual

MSc Research Project Cloud Computing

Meerath Nida Aman Student ID: x21228841

School of Computing National College of Ireland

Supervisor:

Rejwanul Haque

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Meerath Nida Aman
Student ID:	X21228841
Programme:	MSc in Cloud Computing Year: 2023
Module:	MSc Research Project
Lecturer: Submission	14/12/2023
Due Date.	

Project Title: Integrating BERT-Based Feature Extraction with Traditional Algorithms for Low-Latency DNS Mappings in Osmotic Computing.

Word Count: 167..... **Page Count:** 7.....

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Meerath Nida Aman

Date: 14/12/2023.....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Meerath Nida Aman Student ID: x21228841

1 Introduction

The setup process of the research work, utilizing BERT(Bidirectional Encoder Representations from Transformers)-based semantic modeling and traditional clustering algorithms like KMeans, DBSCAN and Agglomerative Clustering to enhance MicroElement identification within DNS datasets for enhanced discovery and reduced latency in Osmotic Computing is discussed in this Configuration Manual.

2 Prerequisites

1. Amazon Sagemaker

3 Prerequisite Installation

1. Go to the link <u>https://cloud.ncirl.ie/</u> with appropriate access.

- 2. Click on Amazon Web Services
- 3. Select Amazon Sagemaker Studio

aws		Meerath Nida Aman M	IFA devices Sign out	
			Q Search	
	Amazon SageMaker Studio			
AWS Account (1)	Amazon SageMaker Studio			

4. Create a Folder Called BERT and add the dataset with the code.

5. The folder FQDN.csv contains the Dataset containing 2000 DNS addresses and their features.

🖿 / BERT Clusterin	ning /		Delimiter:	,					
Name		Last Modified		FQDN	IP	Location	Hops	Latency	ResponseTime
E FQDN.csv		10 hours ago		gazatteandheraid ea uk	28 109 22 85		0	20.51	40.78
• 🔲 nlp-based-dns-	cluste	10 hours ago		gazetteandrieraid.co.uk	30.100.22.03	LUS Aligeres	8	29.51	49.78
			2	missoccer.com	151.203.156.167	Sydney		78.86	15.55
			3	reddit.com	4.21.169.144	Los Angeles	9	88.19	30.66
			4	redbullracing.com	56.240.90.237	Sydney	5	33.66	30.57
			5	stackexchange.com	200.76.224.26	Dublin		48.58	21.03
			6	fifa.com	37.133.159.54	Hyderabad		70.28	35.08
			7	sufc.co.uk	139.115.241.174	Berlin		29.38	16.79
			8	economist.com	136.121.238.48	Los Angeles	6	83.22	46.21
			9	vulture.com	7.0.146.14	Dublin		22.13	39.1
			10	refinery29.com	104.117.134.233	Dublin	10	93.68	15.69
			11	musicweek.com	87.211.17.227	Sydney		90.95	18.74
			12	stackoverflow.com	67.195.204.205	Sydney		72.7	42.37
			13	pinterest.com	206.85.21.204	Berlin		82.93	40.93
			14	chesterfield-fc.co.uk	24.20.52.106	Sydney		56.51	9.98
			15	slack.com	210.69.20.195	Hyderabad		45.89	39.06
			16	boltonwanderers.co.uk	112.14.250.252	Dublin		63.53	9.48
			17	cafc.co.uk	106.155.205.122	Dublin		98.41	47.61
			18	techcrunch.com	172.107.75.166	Sydney		56.36	10.61
			19	nationalgeographic.com	240.202.98.99	Sydney		49.43	19.92
			20	bfc.co.uk	88.154.105.103	Dublin		93.42	46.37
			21	watfordfc.com	139.156.21.75	Los Angeles			17.29
			22	espn.com/racing	64.221.212.211	Hyderabad	10	97.56	9.56

4 Running the proposed Code

1. Install all the prerequired packages by running the below part of the code.

!pip install tensorflow pandas scikit-learn nltk transformers	
Import tensorriow as tr	
Import pandas as po	
from sklearn.model_selection import train_test_split	
import numpy as np	
import re	
import unicodedata	
import nitk	
from nltk.corpus import stopwords	
from tensorflow import keras	
from tensorflow.keras.layers import Dense,Dropout, Input, Reshape	
from tqdm import tqdm	
import pickle	
from sklearn.metrics import confusion_matrix,f1_score,classification_report	
import matplotlib.pyplot as plt	
import itertools	
from sklearn.utils import shuffle	
from tensorflow.keras import regularizers	
from transformers import BertTokenizer, TFBertModel, BertConfig,TFDistilBertModel,DistilBertTokenizer,DistilBertCo	onfig
import numpy as np	
import pandas as pd	
from sklearn import preprocessing	
import warnings	
warnings.filterwarnings("ignore")	
Requirement already satisfied: tensorflow in /opt/conda/lib/python3.7/site-packages (2.11.0)	
Requirement already satisfied: pandas in /opt/conda/lib/python3.7/site-packages (1.3.5)	
Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.7/site-packages (0.22.1)	
Requirement already satisfied: nltk in /opt/conda/lib/python3.7/site-packages (3.8.1)	
Requirement already satisfied: transformers in /opt/conda/lib/python3.7/site-packages (4.30.2)	
Requirement already satisfied: absl-py>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (2.0.0)	
Requirement already satisfied: astunparse>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (1.6.	3)
Requirement already satisfied: flatbuffers>=2.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (23.5.	26)
Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (0.	4.0)
Requirement already satisfied: google-pasta>=0.1.1 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (0.	2.0)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (1.	60.0)
Requirement already satisfied: h5py>=2.9.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (2.10.0)	
Requirement already satisfied: keras<2.12,>=2.11.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (2.	11.0)
Requirement already satisfied: libclang>=13.0.0 in /opt/conda/lib/python3.7/site-packages (from tensorflow) (16.0.	6)

2. Preprocess the data in dataset and extract features by running the below part of the code to implement BERT.

3. Implement KMeans Clustering by running below code

4. Implement DBScan Clustering by running below code

```
# DBSCAN clustering
plt.figure(figsize=(20, 10))
plt.grid(True)
dbscan = DBSCAN(eps=0.03, min_samples=5)
dbscan_labels = dbscan.fit_predict(X)
plot_clusters(X, dbscan_labels, "DBSCAN Clustering")
# DBSCAN doesn't require specifying the number of clusters, so there's no need for evaluation
```

5. Implement Agglomerative Clustering by running below code

```
plt.figure(figsize=(20, 10))
# Agglomerative clustering
plt.figure(figsize=(20, 10))
plt.grid(True)
agglomerative = AgglomerativeClustering(n_clusters=3)
agglomerative_labels = agglomerative.fit_predict(X)
plot_clusters(X, agglomerative_labels, "Agglomerative Clustering")
evaluate_clusters(X, agglomerative_labels)
```

Video Presentation Link:

<u>https://studentncirl-</u> my.sharepoint.com/:v:/g/personal/x21228841_student_ncirl_ie/Ea7J3FiycLtGqCgD6Vg-FHYBfG2JZu9E8SRNV-iVMC3gSg?e=ybXLEv

References

1. Zhang, K., Tan, L., & Wang, H. (2010). Feature selection in clustering high-dimensional data: A new solution. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 10).