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Abstract 

The expansion of computer networks has exacerbated worries about network security 

and resulted in a number of infiltration attempts. The confidentiality, integrity, and 

availability of data and systems are compromised by these attempts. The necessity to 

handle the growing risks of cyberattacks is highlighted by statistics showing an increase 

in the frequency of malware assaults and denial of service situations. The increase in 

network traffic, the complexity of Network Intrusion Detection Systems (NIDS), and the 

variety of protocols and data transferred via contemporary networks are the three main 

issues that worsen network security. The existing traditional approaches are unable to 

detect new types of attacks, thereby necessitating the need for more robust solutions. The 

goal of this research is to increase the effectiveness of machine learning and deep learning 

models, which include some of the most applied classification approaches, namely 

decision trees (DT), logistic regression (LR), naïve bayes (NB), convolutional neural 

networks (CNN) and recurrent neural networks (RNN). Additionally, I examined the 

models' performance in binary classification as well as the effects of feature significance 

selection and hyperparameter adjustment on the CICIDS 2017 and UNSW NB15 

benchmark datasets. Based on the findings of the experiments, the optimized decision tree 

is the best model for a network intrusion detection system with accuracy, F1-score, and 

AUC score of 99.27%, 99.26%, and 99.27% respectively on the CICIDS 2017 dataset. On 

the UNSW NB15 dataset, the scores were 99.28% across all metrics. It outperforms other 

machine learning and deep learning classification techniques and underlines the 

superiority to traditional IDS. 

 

Key terms: intrusion detection, machine learning, attack traffic, anomaly, network 

 
 

1 Introduction 
 

Computer security is becoming vital due to the widespread use of information technology in 

many areas of daily life. With society depending more and more on computerised systems, 

critical dangers like dynamic assaults and zero-day vulnerabilities have grown to be significant 

problems. Despite significant research efforts in the security arena, these dangers persist and 

provide challenges for the security environment. Specifically, the growth of computer networks 

has exacerbated worries about internet security within the context of today's networking 

environment and cutting-edge computing powers (Debar, Dacier and Wespi, 1999). When 

Internet Protocols (IPs) were initially formed, security was not given priority, therefore 

network operators have had to cope with a variety of intrusion attempts from both criminal 

individuals and large-scale botnets (Ahmad et al., 2021). These penetration attempts pose a 
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major risk to the confidentiality, integrity, and availability of data and systems (Papalexakis, 

Beutel and Steenkiste, 2012). Some numbers from Symantec's Internet Security Threat Report 

illustrate the scope of the problem. In 2010, there were over 3 billion malware attacks, 

indicating how common malicious software is that targets many platforms and devices. 

Furthermore, denial of service (DoS) attacks have become far more common by 2013. The 

Symantec Internet Security Threat Report (2014) states that these concerning statistics 

highlight the critical need to address and reduce the increasing risks associated with 

cyberattacks. Additionally, the rapid growth in popularity of the Internet of Things (IoT), the 

increasing levels of connectivity, and the extensive usage of cloud-based services may all be 

major contributors to this rapid increase. 

This research highlights three critical flaws that significantly exacerbate the present network 

security issue. The initial restriction is the result of the unexpectedly high volume of network 

data traffic, which is expected to keep growing in the same direction. To manage and handle 

these exponential amounts properly, techniques for ever-faster, more efficient, and more 

effective data analysis must be used (Ahmim, Derdour and Ferrag, 2018). The second critical 

issue focuses on the requirement for more complicated and intensive monitoring in order to 

enhance the overall efficacy and accuracy of Network Intrusion Detection Systems (NIDS). To 

do this, NIDS analysis has to go beyond high-level and generalised observations, requiring a 

more comprehensive and contextually aware approach. For example, it becomes imperative to 

be able to correlate changes in behaviour with specific elements inside a network, such as 

distinct users, different versions of the operating system, or certain protocols (Mehmood et al., 

2017). The issue of network security is also rooted in the wide variety of protocols and data 

that are sent via contemporary networks. This multiplicity presents a difficult challenge with 

varying degrees of complexity and difficulty when attempting to discern between normal and 

abnormal conduct. It is more difficult to build an accurate baseline due to the complexity of 

protocols and the diversity of data, which increases the danger of exploitation or zero-day 

attacks 

 

1.1 Motivation 

One of the main issues with network security is the creation of a robust and efficient Network 

Intrusion Detection System (NIDS). Even though NIDS technology has come a long way, most 

solutions still rely on less effective signature-based methods rather than anomaly detection 

methods (Shone et al., 2018). This preference for signature-based techniques is caused by a 

number of issues, such as the high false error rate and associated costs, the challenge of 

obtaining reliable training data, and the dynamic nature of system activity (Zhao et al., 2016). 

Conversely, relying solely on signature-based techniques will lead to inaccurate and inefficient 

intrusion detection. Given the ongoing advancements in contemporary networks, the current 

situation highlights the need to construct an anomaly detection system that is widely accepted 

and capable of overcoming these limitations (Dong and Wang, 2016). One of the main reasons 

why signature-based techniques fail is because they rely too much on pre-established patterns 

of recognised assaults. This approach may easily overlook novel and zero-day assaults that 

don't match the current signatures. Furthermore, signature databases must be updated often to 

be up to date with new threats, increasing maintenance costs and needs (Sazzadul Hoque, 
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2012). Contrarily, anomaly detection techniques focus on identifying deviations from normal 

network behaviour. Establishing a baseline of usual network activity might help identify any 

anomalous conduct as a possible intrusion. But there are obstacles unique to implementing 

effective anomaly detection. The first is that reliable training data that accurately represents 

typical network activity may be hard to come by. The behavioural dynamics of system 

components can vary, and networks are dynamic in nature (Hou et al., 2016). Another concern 

is the durability of the training data. Historical network data may become out of date and falsely 

depict the network's current state. To ensure reliable detection, models for anomaly detection 

must be updated and retrained on a regular basis. 

 

1.2 Research Question 

One of the key issues with establishing network intrusion detection systems is reducing the 

amount of false positives while still identifying a large proportion of legitimate network traffic. 

Because different machine learning algorithms examine data in different ways, selecting the 

best answer may be difficult. The suggested research project will answer the question of 

"Which machine learning technique is more effective for intrusion detection?". 

 

1.3 Research Objectives 

The research objectives of this study include a thorough examination of machine learning 

approaches within the context of Network Intrusion Detection Systems (NIDS). The goal of 

this research is to look at how machine learning and deep learning may enhance model 

development and data representation. This is accomplished by designing and implementing a 

detection system using deep learning and machine learning algorithms, as well as evaluating 

the effectiveness of various machine learning techniques such as Decision Tree (DT), Logistic 

Regression (LR), Naive Bayes (NB), Convolutional Neural Network (CNN), and Recurrent 

Neural Network (RNN) in binary classification tasks using the CICIDS2017 and UNSW NB15 

datasets as the benchmark. In addition, the research compares deep learning and machine 

learning algorithms utilising accuracy, F1-score, and area under curve (AUC). The impact of 

feature selection, hyperparameter tweaking on the chosen machine, and deep learning model 

parameters on classification accuracy are also thoroughly examined. The aforementioned study 

aims to offer valuable insights into binary classification cases, model parameter optimization, 

and a more profound understanding of the effectiveness of machine learning techniques for 

network intrusion detection systems. 

 

1.4 Summary 

Network security challenges persist despite research efforts. Intrusion attempts to compromise 

data and system integrity. Rising malware and denial of service attacks highlight the need for 

cybersecurity measures. Key challenges include increased network traffic, NIDS complexity, 

and diverse data transmission. This research aims to enhance Network Intrusion Detection 

using optimized machine learning and deep learning models. The models are LR, DT, NB, 
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CNN, and RNN and were evaluated using the accuracy, F1-score, and AUC on the CICIDS 

2017 and UNSW NB15 datasets. 

Subsequent sections of this research are structured as follows: In Chapter 2, an examination of 

intrusion detection systems is presented, encompassing an overview of their fundamental 

concepts, the various types of intrusion detection systems, the technical methodologies 

employed in network intrusion detection systems, and a critical review of pertinent literature. 

Chapter 3 delineates the research methodology applied in this study, elucidating the chosen 

research approach, data collection techniques, the employed models, and the system design. 

Chapter 4 provides an intricate account of the implementation. Chapter 5 engages in a 

comprehensive discourse concerning the research results and the encountered limitations. 

Finally, Chapter 6 concludes the research and suggests recommendations for further 

exploration within this domain. 

 

 

2 Literature Review 
 

 

A computer vision technique, machine learning, comprises the automatic training of machines 

to categorise and recognise various sorts of data, such as photos, movies, objects, sceneries, 

and more. Machine learning is built on particular algorithms that analyse, learn from, and make 

judgements from raw data. When it comes to analysing raw data, most machine learning 

approaches have limitations (Liu and Lang, 2019). These approaches need a thorough 

understanding and competence in feature selection, as well as rigorous engineering. A newer 

set of techniques, on the other hand, allows a system to be given a dataset and automatically 

derive the required representations for decision-making, such as detection or classification. 

SVM (Al-Qatf et al., 2018; Marir et al., 2018; Wu et al., 2020), genetic algorithm (Tao, Sun 

and Sun, 2018; Zhang, Li and Wang, 2019; Elhefnawy, Abounaser and Badr, 2020) and 

random forest (Jiong Zhang, Zulkernine and Haque, 2008; Farnaaz and Jabbar, 2016; Waskle, 

Parashar and Singh, 2020) are some of the popular machine learning models used in intrusion 

detection systems. A more sophisticated method that enables computers to independently 

extract, evaluate, and understand important information from unprocessed data is called deep 

learning, a subset of machine learning. The outcomes of deep learning outperform those of 

traditional machine learning techniques. A multi-layered, nonlinear model is used by deep 

neural networks to help the system understand complex correlations between input and output 

data. The capacity of deep learning to automatically extract characteristics from unprocessed 

data, interpret it, and make judgements based on this knowledge gives it an advantage over 

classical machine learning (Chauhan and Singh, 2018). Recent studies have applied numerous 

deep learning algorithms such as, KNN (Liao and Vemuri, 2002; Li et al., 2014; Wazirali, 

2020), and LSTM (Althubiti, Jones and Roy, 2018; Hossain et al., 2020; Ts and 

Shrinivasacharya, 2021) with the goal of curbing network attacks. 

2.1 Intrusion Detection System 

Intrusion can be characterized as any unauthorized actions resulting in harm to an information 

system. This encompasses any form of attack that potentially jeopardizes the confidentiality, 
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integrity, or availability of information, thereby classifying it as an intrusion. For instance, 

actions that render computer services unresponsive to legitimate users are deemed as intrusions 

(Liao et al., 2013; Khraisat et al., 2019). An intrusion detection system (IDS) is a security tool 

that continually analyses host and network traffic for any odd activity that might signal a breach 

of security policy or imperil the system's availability, confidentiality, and integrity. When it 

detects malicious activity, an intrusion detection system alerts network or host administrators 

(Denning, 1987; Vasilomanolakis et al., 2015). IDS are classed based on how they are 

implemented or the detection techniques they use.  

 

2.2 Deployment-based IDS 

Based on their deployment strategy, IDS may be divided into two categories: network-

based IDS (NIDS) and host-based IDS (HIDS). At the individual information host level, HIDS 

monitors all activities, looks for security policy violations, and flags any questionable behavior 

(Mukkamala, Janoski and Sung, 2002; Verwoerd and Hunt, 2002). One significant drawback 

of HIDS, however, is that it can be deployed across several hosts that need intrusion protection. 

This adds to the processing expenses of each node and lowers the overall performance of the 

IDS (Zhang, Lee and Huang, 2003). Conversely, Network Intrusion Detection Systems (NIDS) 

are employed at the network level to safeguard all linked devices and the network against 

potential attacks. NIDS continuously scans and records network traffic to look for 

vulnerabilities or security breaches. 

 

2.3 Detection Method 

Two types of intrusion detection systems (IDS) are available for network intrusion 

detection: anomaly detection-based intrusion detection (AIDS) and signature-based intrusion 

detection (SIDS). SIDS, often referred to as knowledge-based or misuse intrusion detection, 

builds attack pattern signatures (Ahmim, Derdour and Ferrag, 2018; Axelsson, no date). After 

then, these fingerprints are kept in a database. To identify assaults, they are then matched to 

data patterns. SIDS has the advantage of being able to recognise known attacks since specific 

signatures exist (Kabiri and Ghorbani, 2005). But because they don't have established signature 

patterns, it is unable to identify new or creative assaults (Uddin et al., 2013). It might also take 

a lot of time to maintain a sizable signature database and compare it to data packets.  

AIDS or behavior-related IDS, on the other hand, is predicated on establishing a precise 

profile for usual activities. Novel risks can be identified by classifying any deviations from this 

profile as anomalies or aberrant behaviour (Neri, 2000; Ma, 2020). One significant feature of 

AIDS is the ability to alter the typical activity profile for various networks and applications 

(Zhang, Shen and Sang, 2007; Guo et al., 2016). Despite this, managing a high False Alarm 

Rate (FAR) is the main issue AIDS confronts since it can be challenging to accurately 

determine the border between normal and abnormal profiles for intrusion detection (Chandola, 

Banerjee and Kumar, 2009). The planned research effort will primarily focus on AIDS. 

One popular tactic for locating and thwarting cyberattacks is the use of signature-based 

detection algorithms. These approaches rely on preset signatures to identify known assaults 

(Lee and Stolfo, 2000; Manganaris et al., 2000; Bloedorn et al., 2001). But they have 
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limitations in terms of recognising new attack types in the absence of a corresponding 

signature. Keeping up with the constantly evolving threat landscape is challenging because 

each time a new assault is discovered, the signature database has to be manually updated. 

Because of this, intrusion detection techniques based on data mining are spreading more and 

more. Misuse detection and anomaly detection are the two main functions of data mining-based 

intrusion detection systems (Depren et al., 2005; Varal and Wagh, 2018). Attacks are identified 

by classifying events in a dataset as either "normal" or "attack," and then using this labelled 

data to train a learning system. As long as the input data is properly labelled, these methods 

may automatically adjust and retrain intrusion detection models on a variety of input data, 

including new sorts of attacks. The categorization of network intrusions utilising several 

popular data mining techniques, uncommon class prediction models, association rules, and 

cost-sensitive modelling have been the main topics of intrusion detection research. Misuse 

detection models, which are generated autonomously as opposed to signature-based systems, 

can be more sophisticated and precise than manually created signatures. To get over this 

restriction, researchers are looking on techniques that combine anomaly and misuse detection. 

By incorporating the benefits of both approaches, these hybrid models aim to improve the 

detection of known as well as unknown assaults (Aljamal et al., 2019). Finding deviations from 

typical patterns using statistical analysis or machine learning techniques is the aim of anomaly 

detection. This approach has the potential to detect novel and yet undiscovered threats by 

identifying distinct patterns or behaviours. However, high false-positive rates and the challenge 

of distinguishing between normal and abnormal behaviour can also impede anomaly 

identification. 

 

2.4 Related Work 

(Belouch, El Hadaj and Idhammad, 2018) used Apache Spark to assess a number of 

classification methods (SVM, Decision Tree, Naive Bayes, and Random Forest) on the massive 

UNSW-NB15 dataset, which includes all 42 attributes. About 257,000 records were included 

in their analysis, a considerable increase above the quantity of records used in this 

investigation. 30% and 70% of the training and testing datasets, respectively, were divided. 

With an amazing accuracy rate of 97%, the definitive findings demonstrated that Random 

Forest was the best algorithm. The accuracy of the NB and DT models was 74.19% and 

95.82%, respectively. 

Utilising a random forest classifier, however, (Tama and Rhee, 2017) conducted a comparative 

evaluation of IDSs with an emphasis on two critical performance metrics: accuracy and false 

alarm rate. NSL-KDD, UNSW-NB15, and GPRS are three distinct IDS datasets that were 

examined with a 10-fold cross-validation method. The study also looked at the effectiveness 

of the Decision Tree, NB-Tree, and Multilayer Perceptron (MLP) classifiers. Lastly, their 

results proved the effectiveness of the proposed model, which employed cross-validation and 

the Random Forest classifier with well-calibrated parameter values. 

Using machine learning approaches, the system developed by (Koroniotis et al., 2018) was 

centred on the forensics of IoT botnet operations. After identifying 10 key characteristics from 

the UNSW-NB15 dataset using the information gain approach, they classified the dataset using 

four machine learning techniques: association rule mining (ARM), näive Bayes (NB), artificial 
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neural network (ANN), and decision tree. According to the simulation findings, the decision 

tree approach (C4.5) performed best at differentiating between botnet traffic and regular 

network traffic, with an accuracy of 93.23% compared to 72.73% for NB. At 63.97% accuracy, 

the deep learning ANN model had the lowest performance. 

(Azizjon, Jumabek and Kim, 2020) presented a deep learning strategy for constructing effective 

and adaptable IDS utilizing a one-dimensional Convolutional Neural Network architecture 

with 32 convolution filters in this study. They used max pooling for downsampling and 

regularization, with pooling size 2 and stride size 1. The network culminates with two 

completely linked classification layers. The results of their experiment showed that the 1D-

CNN with three layers beat the other variations with one layer, two layers, the LSTM layer, 

random, and SVM models, with accuracy and F1-scores of 91.2% and 91.59%, respectively. 

 

2.5 Ethics 

The problems brought up by a network intrusion detection project containing attack traffic must 

be resolved in order to guarantee ethical research practises. Two important considerations are 

the data's source and any potential harm from using the data to perform an actual assault. Attack 

traffic utilisation may inadvertently reveal system weaknesses and vulnerabilities if it is not 

properly controlled, which might lead to breaches and compromises. This calls into question 

what constitutes proper disclosure as well as the consequences of making such material public. 

There may be privacy problems for individuals or organisations whose data is included in the 

dataset without their consent. Upholding ethical integrity requires striking a compromise 

between doing pertinent research and defending people's right to privacy about their personal 

information. To protect the dataset from any misuse or unauthorised access, I will take the 

required steps to anonymize and preserve it. When creating detection models based on these 

datasets, the potential impact on real-world networks should be considered, since doing so may 

result in inadvertent false positives or interfere with genuine network activity. 

 

2.6 Summary 

In summary, past research has repeatedly demonstrated that machine learning approaches 

outperform traditional methods such as rule-based systems, signature-based detection, or 

anomaly detection alone in efficiently tackling network intrusion detection. Furthermore, 

several research either did not use strong and varied datasets or concentrated on a narrow range 

of intrusion occurrences, thereby losing out on the whole spectrum of network threats. Notably, 

efficient network intrusion detection demands a thorough grasp of the shifting strategies used 

by hostile actors to fool and breach network security. 

 
 
 

3 Research Methodology 
 

This study uses the CRISP-DM (Cross-Industry Standard Process for Data Mining) 

methodology, which is widely recognised for achieving the objectives of data mining and 
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machine learning research. It provides an organised framework that ensures the effectiveness 

and efficiency of data-driven initiatives. The CRISP-DM process consists of six crucial stages: 

Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation, and 

Deployment. 

 

 

Figure 1. CRISP-DM Methodology (Huber et al., 2019) 

 

3.1 Business Understanding 

From a business standpoint, the value of a network intrusion detection system (NIDS) that 

employs machine learning in safeguarding a company's network infrastructure and sensitive 

data from online threats and assaults is best appreciated. As businesses rely more on digital 

operations and networked technology, the risk of potential attacks and security breaches grows. 

A machine learning-powered NIDS detects and mitigates aberrant behaviour, improving 

overall cybersecurity posture. By utilising complex algorithms and pattern recognition 

techniques, the system may learn from earlier data and respond to new threats, boosting its 

accuracy and efficacy over time. 

 

3.2 Data Understanding 

The CICIDS 2017 and UNSW-NB15 datasets together provide a large and diversified 

collection of network traffic data for cybersecurity research and analysis. The UNSW-NB15 

dataset combines real-world network activities with synthetic attacks, captured using the 

tcpdump tool and totaling 100 GB. The attack types are Fuzzers, Analysis, Backdoors, DoS, 

Exploits, Generic, Reconnaissance, Shellcode, and Worms., resulting in 49 features with class 

labels and were obtained from UNSW Canberra’s Cyber Lab. The CICIDS2017 dataset 

comprises recent common attacks and benign data, closely resembling real-world network 

traffic. The dataset attack types include Brute Force FTP, Brute Force SSH, DoS, Heartbleed, 
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Web Attack, Infiltration, Botnet, and DDoS, and takes up 51.1 GB of space. The dataset was 

collected from the Canadian Institute for Cybersecurity. 

 

3.3 Data Processing 

The first phase of the analyses was the data preprocessing and data cleaning. In this phase, 

the column names were cleaned to remove white spaces and special characters using the 

clean_dataframe_column_names function.  

 

Next, the pandas object data types for the datasets were enforced for the source and 

destination IP address columns. 

 

Next, the dependent variable column was created for the CICIDS2017 dataset as a binary 

class distribution. The column helped to label the traffic types into attack traffic labeled as 1 

and normal traffic labeled as 0. The column labeled “label” was dropped from the column list. 

For the UNSW NB15 dataset, the columns labeled “label” and “attackcat” were renamed 

“traffictype” and “trafficcategory” respectively. Then, a check was done for missing values on 

both datasets. This entailed using the numpy library to check for infinite values in the dataset 

and convert them to NaN (Not  a Number) value. All NaN or missing values were dropped 

from the dataset. For the UNSW NB15 dataset, the columns "ctflwhttpmthd" ,"isftplogin", 

"trafficcategory" had 1,348,145, 1,429,879 and 2,218,764 missing records respectively, hence, 

these columns were dropped from the dataset.  

 

3.3.1 Exploratory data analysis 

In exploring the features in the datasets, Seaborn and Matplotlib were used to create pie 

charts to visualize the class distribution in the dataset. The CICDS 2107 dataset contains 

2,830,743 records and 79 columns. 2,273,087 was the number of normal traffic records and the 

attack traffic was 557,656 records. The UNSW NB15 dataset has 2,540,047 records and 49 

columns. The number of normal traffic and attack traffic records were 2,220,001 and 500,389 

respectively.  Figures X and Y below show the class distribution of the dependent variable for 

CICIDS 2017 and UNSW NB15 datasets. 
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Figure 2. CICIDS 2017 Dataset Class Distribution 

 

 

 

Figure 3. UNSW NB15 Dataset Class Distribution 

 

 

For the numerical data types in the datasets, the described method in pandas dataframe was 

used to view the descriptive statistics summary for the target columns. For the object data type 

columns, pandas series value_counts method was used to count the frequency of each category 

in the targeted column. 

 

3.3.2 Multicollinearity analysis 

It refers to the presence of high correlation or interdependence between two or more 

independent variables (predictors) in a regression model. Multicollinearity can complicate the 

interpretation of regression results and can lead to unstable coefficient estimates. To address 

this issue, the perform_multicollinearity_analysis was created to calculate the correlation 

between the independent variables and retrieve column names from the dataset whose 
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correlation estimate is greater than or equal to 0.7 which demonstrates high correlation between 

the target variables. The retrieved columns were then removed from the datasets. Figures X 

and Y below show the correlation heatmap after the multicollinearity analysis. They both 

demonstrate that no 2 variables have a correlation estimate above 0.7. Hence, multicollinearity 

between the variables have been eliminated. 

 

 

Figure 4. CICIDS 2017 Dataset Correlation Heatmap 
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Figure 5. UNSW NB15 Correlation Heatmap 

 

3.4 Modeling 

I looked into five machine learning models: decision trees (DT), naïve bayes (NB), logistic 

regression (LR), convolutional neural networks (CNN), and recurrent neural networks (RNN) 

in order to develop effective and efficient IDS. Several machine learning techniques are used 

at this stage, such as recurrent neural networks, logistic regression, naive bayes, decision trees, 

and convolutional neural networks. The preprocessed dataset is used to train the models. This 

dataset includes labelled samples where the labels indicate whether the data relates to 

potentially invasive behaviour or normal behaviour. The features in the dataset reflect different 

network traffic properties. Throughout the process, the model's parameters are adjusted to 

maximise accuracy and performance. To make sure the models can correctly distinguish 

between legitimate and malicious network activity, they are tested using a distinct validation 

dataset after training. The models' resilience and effectiveness are then strengthened on fresh 

data through the use of the cross-validation and hyperparameter modification approaches. 

Below is a description of the models. 
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3.4.1 Logistic Regression 

A statistical approach known as logistic regression is critical in binary classification jobs 

for network traffic data. The model in this technique aims to estimate the parameters of a 

logistic function, which connects input information to the risk of network traffic being 

classified as an attack. The logistic regression model is trained by using labeled data to derive 

these parameters with the help of feature selection, which aims to minimize a cost function and 

improve accuracy, frequently employing the cross-entropy loss, which quantifies the difference 

between predicted probabilities and actual labels (Rani et al., 2023). Once properly trained, the 

model may classify fresh, unlabeled data by generating predicted probabilities based on input 

characteristics and estimated parameters. 

 

3.4.2 Naïve Bayes 

The Nave Bayes classifier operates under the strong premise of independence, which means 

that the likelihood of one characteristic does not impact the likelihood of another. The Nave 

Bayes classifier makes personalized assumptions for each of n attributes when dealing with a 

group of n attributes. Surprisingly, the Nave Bayes classifier frequently produces accurate 

results. The study offered in this paper digs into the conditions and causes behind the Nave 

Bayes classifier's performance. It implies that classification mistakes may be attributable to 

three factors: noise in training data, bias, and variance. To reduce training data noise, high-

quality training data must be chosen. Furthermore, the machine learning system should 

categorize the training data (Amor, Benferhat and Elouedi, 2004). 

 

3.4.3 Decision Tree 

Using Decision Trees (DT) for network intrusion detection requires little user involvement 

during the dataset training phase. DT uses the network traffic data to perform feature selection 

and variable analysis on an efficient basis throughout this training phase. Decision trees reduce 

the uncertainty usually involved with decision-making by providing clear values for issues, 

options, and the outcomes connected with each decision. Especially, decision trees perform 

better than other machine learning techniques because they thoroughly investigate every 

possible scenario and methodically analyze every alternative through to the end. This method 

is very helpful as it is easy to understand and makes it possible to evaluate different decision 

tree nodes in a clear manner (Amor, Benferhat and Elouedi, 2004). 

 

3.4.4 Convolutional Neural Network  

A Convolutional Neural Network (CNN) is a type of neural network that uses convolution 

operations to extract meaningful feature representations from input. A CNN's core design 

consists of two main layers: a convolutional layer and a pooling layer. These layers are 

optimized to suit the purpose of identifying and categorizing network intrusions, potentially 

enabling the classification of different intrusion types. Notably, the pooling layer is critical in 

minimizing the number of parameters linking the convolutional layers, lowering computing 
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burden, and increasing the effective receptive field of the subsequent convolutional layers 

(Chen et al., 2020). 

 

3.4.5 Recurrent neural networks 

Recurrent neural networks (RNNs) are made up of input units, output units, and hidden 

units, with the latter being crucial to their operation. Information travels unidirectionally from 

the input units to the hidden units in the RNN model, with information synthesis from the 

previous temporal hidden unit to the present temporal hidden unit. These hidden units may be 

thought of as the network's memory, storing information from beginning to finish. When the 

RNN is unfolded, it is clear that it contains deep learning concepts. RNNs provide an effective 

method for supervised classification learning (Yin et al., 2017). 
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Figure 6. Flow Diagram of System Design 

 

3.5 Evaluation 

Users may often access massive datasets containing normal and attack traffic types to 

evaluate network intrusion detection systems. The proportion of correctly classified network 
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data is used as an extra statistic for evaluating the classification algorithm's performance. It is 

the proportion of network data packets that are correctly classified. 

 

Accuracy: The accuracy of a machine learning model is expressed as a percentage of all 

correctly predicted outcomes. The accuracy of machine learning models is calculated by 

dividing the number of successfully categorised examples by the total number of instances in 

the dataset. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 

F1-score: An indicator of a model's overall accuracy is the F1-score. It is the harmonic 

mean of accuracy and recall, two more crucial performance indicators for the model. The 

degree to which optimistic predictions prove to be true positives is known as precision. Recall 

is the proportion of outstanding results that were accurately predicted to be good outcomes. 

F1-score may be written as 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗Precision∗Recall

Recall+Precision
  

 

Area Under Curve (AUC): The true positive rate (TPR) against false positive rate (FPR) 

shown at different categorization thresholds is known as the Receiver Operating Characteristic 

(ROC) curve, and the AUC is the area under the curve. The fraction of true positive instances 

that are accurately projected as positive is known as the TPR, whereas the fraction of true 

negative cases that are wrongly predicted as positive is known as the FPR. 

 

𝐴𝑈𝐶 = ∫ (TP / TP + FN) d(TN / TN + FP) 

 

Where:  

True Positive, or TP, is a measure of how many instances were accurately anticipated to be 

positive. 

The number of occurrences accurately anticipated as negative is indicated by the symbol 

TN (True Negative). 

The number of occurrences that are erroneously projected as positive is known as FP (False 

Positive). 

The number of occurrences that are erroneously predicted as negative is known as FN 

(False Negative). 

 

3.6 Deployment 

To guarantee its smooth integration into an active network environment, several important 

considerations need to be considered at this stage. It's time to apply the model in real-time 

operations after training and confirming it using historical data. In order to ensure that the 

model can manage incoming network traffic efficiently and react to changing network traffic 
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and potential threats in a timely manner, this technique requires scalability and latency 

optimisation. To maintain the model accurate over time and adjust to new assault patterns, 

constant updates and ongoing monitoring are needed. A network intrusion detection system 

that is successful in its deployment will be able to quickly identify and address security threats 

while protecting the confidentiality and integrity of the network. This phase, however, is 

outside the purview of this study. 

 

3.7 Summary 

To summarize, the methodology described in this chapter provides a solid framework for 

detecting network intrusions using machine learning techniques. I created a dependable method 

for discriminating between malicious and normal network activity by integrating several 

preprocessing processes and feature selection. My solution was flexible and successful, 

employing a variety of machine learning approaches such as logistic regression, naive bayes, 

decision trees, convolutional neural networks, and recurrent neural networks. The combination 

of critical feature selection and model optimisation has allowed for accurate differentiation of 

harmful and non-malicious network behavior. The study's findings validate my strategy to 

solve the issues provided by network intrusion while adhering to legal and ethical requirements. 

 
 

4 Implementation 
 

In this chapter, I discussed the design and implementation of the models for the experiments 

in this research. Two experiments were performed in this study, the first experiment was aimed 

at creating a baseline implementation for each of the models to be analyzed in this study. 

The first experiment initializes each model with a set of parameters that help to define a 

minimalist implementation of the models. 

The second experiment is designed to create optimal implementation for each of the models 

using feature importance as a way to select the most relevant features in the dataset, and 

hyperparameter tuning to select the optimal parameters for the models. 

 

4.1 Logistic Regression 

In Experiment 1, I utilized the "run_logistic_regression_analysis" function to implement 

Logistic Regression (LR) analysis. The function accepted six parameters: "train_x," "train_y," 

"test_x," "test_y," "dataset," and "experiment." These parameters defined the training and 

testing datasets and provided labels for dataset and experiment identification. I imported the 

LogisticRegression module from Scikit-Learn and instantiated it with key parameters to create 

the LR model. The model was trained with the training dataset and used for predictions. Model 

performance analysis was conducted using the "show_model_analysis_summary" function, 

comparing predictions with the actual "test_y" dataset. 

 

In Experiment 2, I aimed to optimize the LR model's performance through feature 

importance analysis and hyperparameter tuning. The 
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"perform_feature_selection_using_feature_importance" function was used for feature 

selection, employing the ExtraTreeClassifier module to build an ensemble model. This model 

identified the most relevant features in the target dataset, resulting in a list of approximately 

two-thirds of the most important independent variables. For hyperparameter tuning, the 

"run_hyper_parameters_tuned_logistic_regression_analysis" function was employed. It 

retained the same parameters as the base model but included selected columns from the feature 

selection process in the "train_x" parameter. The hyperparameters considered for training the 

LR model included: 

 

- "penalty" with values: "l1," "l2," and "elasticnet." 

- "C" with values set using "np.logspace(-4, 4, 20)." 

- "solver" with values: "lbfgs," "newton-cg," "liblinear," "sag," and "saga." 

- "max_iter" with values: 2500 and 5000. 

 

The hyperparameter-tuned model was created using GridSearchCV, utilizing the 

LogisticRegression module, a parameter grid, and a cross-validation variable. This model 

underwent training with the training dataset and was used for generating predictions. Model 

performance evaluation was conducted through the "show_model_analysis_summary" 

function, comparing predictions with the actual "test_y" dataset. 

 

4.2 Naïve Bayes 

In Experiment 1, the base model employed the Gaussian Naive Bayes (NB) analysis using 

the "run_naive_bayes_analysis" function. This function utilized default parameters: "train_x," 

"train_y," "test_x," "test_y," "dataset," and "experiment." These parameters defined the 

training and testing datasets and provided labels for dataset and experiment identification. The 

GaussianNB module from Scikit-Learn was imported and instantiated with one parameter to 

create the Naive Bayes model. The model was then trained with the training dataset and used 

to make predictions. Model performance analysis was conducted using the 

"show_model_analysis_summary" function, comparing predictions to the actual "test_y" 

dataset. 

 

Experiment 2 aimed to optimize the Naive Bayes model's performance through feature 

importance analysis and hyperparameter tuning. Feature selection was carried out using the 

"perform_feature_selection_using_feature_importance" function. An ensemble model was 

built using the ExtraTreeClassifier module to select the most relevant features from the target 

dataset, resulting in a list of approximately two-thirds of the most important independent 

variables. For hyperparameter tuning, the 

"run_hyper_parameters_tuned_naive_bayes_analysis" function was used, retaining the same 

parameters as the base model. The key hyperparameter considered for tuning was 

"var_smoothing," with values set using "np.logspace(0, -9, num=100)." The hyperparameter-

tuned model was created through GridSearchCV, using the GaussianNB module, a parameter 

grid, and a cross-validation variable. This model underwent training with the training dataset 

and was utilized to generate predictions. Model performance evaluation was conducted through 
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the "show_model_analysis_summary" function, comparing predictions with the actual "test_y" 

dataset. 

 

4.3 Decision Tree 

In Experiment 1, the base model involved implementing a Decision Tree (DT) analysis 

using the "run_decision_tree_analysis" function. This function accepted six parameters: 

"train_x," "train_y," "test_x," "test_y," "dataset," and "experiment." These parameters 

described the training and testing datasets and provided labels for dataset and experiment 

identification. The Decision Tree model was constructed using the DecisionTreeClassifier 

module from Scikit-Learn. It was initialized with three key parameters: "max_depth" set to 10, 

"criterion" set to "entropy," and "random_state" set to 42. After model construction, training 

was performed using the training dataset, and the resulting model was used for predictions. 

Model performance was assessed through the "show_model_analysis_summary" function, 

which compared predictions with the actual "test_y" dataset. 

 

For Experiment 2, feature importance and hyperparameter tuning were applied to optimize 

the Decision Tree model's performance. Feature importance analysis was conducted using the 

"perform_feature_selection_using_feature_importance" function. It utilized the 

ExtraTreeClassifier module to build an ensemble model and selected the most relevant features 

from the target dataset, yielding a list of approximately two-thirds of the most important 

independent variables. Hyperparameter tuning was carried out using the 

"run_hyper_parameters_tuned_decision_tree_analysis" function. It retained the same 

parameters as the base model but incorporated selected columns from the feature selection 

process in the "train_x" parameter. The hyperparameters considered for training the Decision 

Tree model included: 

 

- "max_depth" with values: 2, 3, 5, 10, and 20. 

- "min_samples_leaf" with values: 5, 10, 20, 50, and 100. 

- "criterion" with values: "gini" and "entropy." 

 

The hyperparameter-tuned model was created through GridSearchCV, utilizing the 

DecisionTreeClassifier module, a parameter grid, and a cross-validation variable. After 

training the model with the training dataset, predictions were generated and model performance 

was assessed using the "show_model_analysis_summary" function. 

 

4.4 Convolutional Neural Network 

In Experiment 1, the base model utilizes a Convolutional Neural Network (CNN) for 

analysis. The "run_convolution_neural_network_analysis" function accepts six parameters: 

"train_x," "train_y," "test_x," "test_y," "dataset," and "experiment." These parameters 

represent the training and testing datasets, as well as labels for dataset and experiment 

identification. The CNN model is constructed using TensorFlow Keras libraries. The 

"build_convolution_neural_network" function is instrumental, requiring a "dim" parameter, 
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signifying the number of features in the independent variable group. The model architecture 

comprises Sequential, Convolution1D, MaxPooling1D, Flatten, Dense, and Dropout modules. 

The Sequential module serves as the framework for layer stacking. The initial layers consist of 

Convolution1D modules, followed by MaxPooling1D and Flatten modules. Subsequently, 

Dense and Dropout modules are introduced. The final two layers represent the output layer, 

defining the neural network structure. The model is compiled with "binary_crossentropy" as 

the loss function, "adam" as the optimizer, and "accuracy" as the metrics. Model instantiation 

is achieved using the KerasClassifier wrapper, specifying the 

"build_convolution_neural_network" function, "epochs" set to 10, and "batch_size" set to 128. 

Training is conducted on the training dataset, followed by prediction generation. Model 

evaluation is performed through the "show_model_analysis_summary" function. 

 

In Experiment 2, I focused on feature importance and hyperparameter tuning to optimize 

the CNN model's performance. The "perform_feature_selection_using_feature_importance" 

function is used for feature selection, employing the ExtraTreeClassifier module to build an 

ensemble model. It fits the independent variables in the target dataset and utilizes the 

"feature_importance_" property to identify the most significant independent variables. For 

hyperparameter  tuning, the 

"run_hyper_parameters_tuned_convolution_neural_network_analysis" function is invoked, 

employing the same parameters as the base model. The "train_x" parameter contains the 

selected columns from the feature selection process. Hyperparameters include "batch_size" 

(choices: 512, 256, 128), "epochs" (choices: 30, 20, 10), "units" (choices: 32, 16, 8), and "dim," 

representing the number of independent variables. The hyperparameter-tuned model is created 

using GridSearchCV, instantiated with a KerasClassifier wrapper, the 

"build_hyper_parameters_convolution_neural_network" function, a parameter grid 

("param_grid"), and a cross-validation parameter ("cv"). The model is trained using the training 

dataset, and predictions are generated. Model performance is assessed through the 

"show_model_analysis_summary" function, comparing predictions to the "test_y" dataset, 

facilitating an evaluation summary of the implemented model. 

 

4.5 Recurrent Neural Network 

In Experiment 1, the base model employs a Recurrent Neural Network (RNN) for analysis. 

It takes six parameters: "train_x," "train_y," "test_x," "test_y," "dataset," and "experiment." 

These parameters correspond to the training and testing datasets, and labels for dataset and 

experiment identification. The RNN model is constructed using TensorFlow Keras libraries. A 

pivotal function, "build_recurrent_neural_network," is employed with a single parameter, 

"dim," representing the number of features in the independent variable group. The model 

architecture comprises layers like Sequential, LSTM, Dense, and Dropout. The Sequential 

module serves as the framework, with alternating LSTM and Dropout layers (6 in total) for 

feature learning, followed by two Dense layers for the output. The model is compiled with 

"binary_crossentropy" loss, "adam" optimizer, and "accuracy" metrics. A KerasClassifier 

wrapper is used for the model instantiation, specifying the "build_recurrent_neural_network" 

function, "epochs" set to 10, and "batch_size" set to 128. Model training is conducted on the 
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training dataset, followed by prediction generation. Evaluation is performed using the 

"show_model_analysis_summary" function. 

 

In Experiment 2, I focused on optimizing the RNN model through feature selection and 

hyperparameter tuning. Feature selection is conducted using the 

"perform_feature_selection_using_feature_importance" function, which employs the 

ExtraTreeClassifier ensemble model to select the most relevant features from the target dataset. 

This process yields a list of approximately two-thirds of the most significant independent 

variables. For hyperparameter tuning, I employed the 

"run_hyper_parameters_tuned_recurrent_neural_network_analysis" function. It uses the same 

parameters as the base model, with specific values for "batch_size" (choices: 512, 256, 128), 

"epochs" (choices: 30, 20, 10), "units" (choices: 32, 16, 8), and "dim," representing the number 

of independent variables. The hyperparameter-tuned model is established using 

GridSearchCV, instantiated with a KerasClassifier wrapper and a parameter grid containing 

the specified values. The "cv" variable represents cross-validation. After training the model 

with the training dataset, predictions are generated. Model performance is assessed using the 

"show_model_analysis_summary" function, which compares predictions to the "test_y" 

dataset, providing an evaluation summary of the model's performance. 

 

5 Evaluation 
 

The findings of the two tests on the CICIDS 2017 and UNSW-NB15 datasets give useful 

insights into the performance of alternative machine learning models for network intrusion 

detection while taking into account changes in dataset complexity and optimisation strategies. 

 

5.1 Experiment 1 

In the first experiment, which aimed to establish baseline implementations, Decision Trees 

(DT) emerged as the best-performing model in both datasets, with remarkable accuracy of 

99.42% and 99.40%, F1-scores of 99.41% and 99.39%, and AUC scores of 99.42% and 99.40% 

for CICIDS 2017 and UNSW-NB15, respectively. This discovery is intriguing since DT is 

recognised for its ability to handle complicated decision boundaries, which may be especially 

important in network intrusion detection. It is important to note, however, that Naive Bayes 

(NB) fell substantially behind, with accuracy rates of 69.72% and 81.83% for the two datasets, 

emphasising its limits in dealing with the different nature of incursion behaviours. Tables 1 and 

2 below shows the result of the experiment on the two datasets. 

 

Table 1. Models Performance Results on CICIDS 2017 Dataset 

Models Accuracy F1-score AUC 

LR 90.53% 90.78% 90.53% 

NB 69.72% 75.89% 69.72% 
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DT 99.42% 99.41% 99.42% 

CNN 95.98% 95.92% 95.98% 

RNN 95.03% 95.07% 95.03% 

 

 
 

Figure 7. Model Comparison Bar Chart on CICIDS 2017 Dataset 

 

Table 2. Models Performance Results on UNSW NB15 Dataset 

Models Accuracy F1-score AUC 

LR 0.9220 0.9236 0.9220 

NB 0.8183  0.8354 0.8183 

DT 0.9940                0.9939 0.9940 

CNN 0.9577 0.9579                  0.9577                 

RNN 0.9565                  0.9566 0.9565                 
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Figure 8. Model Comparison Bar Chart on CICIDS 2017 Dataset 

 

5.2 Experiment 2 

The second experiment, which focused on optimisation via feature importance and 

hyperparameter tuning, demonstrated a significant improvement across all models. Logistic 

Regression (LR) and Decision Trees (DT) excelled in this environment, with accuracy rates of 

99.07% and 99.13% for CICIDS 2017 and UNSW-NB15, respectively. With accuracy rates of 

99.20% and 99.18%, Convolutional Neural Network (CNN) displayed persistent brilliance, 

indicating its ability to excel in complicated intrusion detection scenarios. Despite somewhat 

poorer performance than some other models, Recurrent Neural Network (RNN) maintained 

excellent accuracy and F1-scores, with rates of 99.22% and 99.18%, showing its use in network 

intrusion detection. 

 

 

Table 3. Models Performance Results on CICIDS 2017 Dataset 

Models Accuracy F1-score AUC 

LR 99.07% 99.06% 99.07% 

NB 97.78% 97.79% 97.78% 

DT 99.27% 99.26% 99.27% 

CNN 99.20% 99.19% 99.20% 

RNN 99.22% 99.21% 99.22% 
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Figure 9. Model Comparison Bar Chart on CICIDS 2017 Dataset 

 

Table 4. Models Performance Results on UNSW NB15 Dataset 

Models Accuracy F1-score AUC 

LR 99.13% 99.13% 99.13% 

NB 98.70% 98.69% 98.70% 

DT 99.28% 99.28% 99.28% 

CNN 99.18% 99.18% 99.18% 

RNN 99.18% 99.18% 99.18% 

 

 

Figure 10. Model Comparison Bar Chart on CICIDS 2017 Dataset 
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5.3 Discussion 

Overall, DT performed well across tests, datasets, and optimisation strategies, making it a 

trustworthy option. NB, on the other hand, remained the weakest model in all testing, showing 

its limitations for complicated intrusion detection tasks. In the second trial, the most improved 

models were LR, DT, and CNN, demonstrating the importance of optimisation in improving 

model performance. These findings highlight the need of rigorous model selection, dataset 

appropriateness, and optimisation strategies in creating successful intrusion detection systems. 

The findings show that when optimised, models like as LR, DT, CNN, and RNN have the 

ability to provide solid security solutions in real-time network monitoring, however, Naive 

Bayes should be used with caution in complicated intrusion detection scenarios.  

When compared to other (Belouch, El Hadaj and Idhammad, 2018) and (Koroniotis et al., 

2018), I observed some similarities in the findings. The decision tree performed better than the 

other models except in the former study where the decision tree was the best model with a 

95.82% accuracy. In the later study, the network intrusion detection model obtained 93.23% 

accuracy, which is less than the 99.28% obtained in this research. This difference could be as 

a result of the number of samples used. 

 

5.4 Limitations 

This research faced some challenges and hence, encountered some shortcomings. One major 

limitation of this study is the number of samples used in the training and testing datasets. 

Because of the limited computing capacity, a small portion of the datasets were used. 
 

 

6 Conclusion and Future Work 
 

Network security concerns have been exacerbated by the expansion of computer networks, 

leading to various intrusion attempts. These attempts jeopardize data and system 

confidentiality, integrity, and availability. Statistics show a rising prevalence of malware 

attacks and denial of service incidents, underscoring the need to address the growing dangers 

of cyberattacks. Three major challenges exacerbate network security: the surge in network 

traffic, the complexity of Network Intrusion Detection Systems (NIDS), diversity of protocols 

and data transmitted across modern networks. Developing an effective NIDS is crucial, with 

signature-based approaches proving inadequate for addressing evolving threats. This research 

aimed to compare various machine and deep learning techniques for Network Intrusion 

Detection, focusing on binary classification performance of 5 models. Two experiments were 

conducted. The first experiment was the implementation of the base models and the second 

experiment was the implementation of the optimal models using hyperparameter tuning. The 

outcome of the research showed that machine learning and deep learning models perform well 

in segregating the network traffic types into normal and attack on both the CICIDS 2017 and 

UNSW NB15 benchmark datasets. The results show that feature selection combined with 

hyperparameter tuning significantly improves performance in some models and slight 

improvements in others. The decision tree was the best performing model in both experiments 

on the CICIDS 2017 and UNSW NB15 datasets with an accuracy of 99.27% and 99.28% 
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respectively. These findings highlight the need of rigorous model selection, dataset 

appropriateness, and optimisation strategies in creating successful intrusion detection systems. 

6.1 Future Work 

In the future, an ensemble of feature selection techniques could be used on a larger dataset 

sample size and a mitigation system. Moreover, as the implemented solution relies only on a 

single feature selection technique and hyperparameter tuning and no mitigation, I believe it can 

be extended to other advanced optimization techniques and enable real-time mitigation for 

more robust commercial products. 
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