e

-'\""
National

Collegeof
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Camila da Silva Weber
Student ID: x20166371

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

“‘
National College of Ireland \ National

MSc Project Submission Sheet College
c Project Submission Shee
Ireland
School of Computing
Student Name: Camila da Silva Weber
Student ID: x20166371
Programme: Master of Data Analytics Year: 2023
Module: MSc Research Project
Lecturer: Vladimir Milosavljevic
Submission Due
Date: 14/08/2023
Project Title: Detecting Fraudulent Transactions in Ethereum Blockchain via

Machine Learning Classification
Word Count: 783 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

oY L T 1= X o - PR

[1= 1 o<

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Camila da Silva Weber
Student ID: x20166371

1 Introduction

The configuration manual is essential to clarify the information referring to the project in
relation to the software used, the hardware and other specifications regarding the programs
applied in the project. Since in section 2 and 3 the configuration systems that were used in the
project will be specified and in section 4 the software used in the project will be presented, in
addition to the pre-processing of the data, presenting the libraries using Python, in addition to
the analysis concerning the correlation between the features and the results using Machine
learning models for classification.

2 System Configuration

The hardware and software and its configuration system that were applied in the project are
described below.

Processor Intel® Core™ 15
Operating System Windows 10

RAM 8GB

CPU NVIDIA RTX 2060

3 Software Specification

The other tools that were in order to carry out the project, separated as programming
language, software and browsers.

Pogramming Language Python

Softwares Excel, Anaconda, Jupyter
Notebook

Browsers Microsoft Edge and
Google Chrome

4 Environment Setup

4.1 Initiation of Jupyter Notebook on Anaconda

The configuration of the project was initiated by the application of Anaconda Navigator since
it is an important software where it is possible to download applications and other software to
support the research. Jupyter Notebook was implemented in the project and application of the
codes using Python since it contains important updates and it facilitates the analysis of the
project.

Flle Hel

." A A e AT
{) ANACONDA NAVIGATOR E
Applications on base (root v| Channels Rolrosh
. Environments el o] =
° o v
S— "
3’
.)
N Leanning Jupyter 5 ’
.V :
Notebook Powershell Prompt
-~n Community
Web-based, interactive computing notebook Run a Pomershell terminst with youwr current
mwironment., £t andd run human-readable 2raronment from Neaostor actaer
while o t |
L] v
¥y ¢ e

Figure 1: Anaconda Navigator interface

Fig. 2 present the Jupyter Notebook home page, where it is possible to organize and create a
file, the format used was ipynb to start the codes in Python.

v J =]
_ jupyter
Select ilems to petform acSons on tham s
« b Name Lasl Mostes 4
Uesh 20 hows ago
! ho
E v
aay o
© day
2 Uy

Figure 2: Jupyter Notebook interface

2

4.2 Data Preparation and Importing Libraries

The libraries applied in the analysis of the project were added according to the progress of the
research and the necessity regarding the use of Machine models implemented.

import pandas as gd
import seaborn as sas
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.metrics import classification_report

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV

from sklearn.metrics import accuracy_score, precision_score, recall_score

from sklearn.ensemble import RandomForestClassifier

Figure 3: Libraries Python

4.3 Importing Dataset

Importing data referring to the project in csv format. to Python and thus reading the file to
start the ETL (extract, transform and load).

df_transaction = pd.read_csv('C:/Users/35383/Desktop/project new/transaction_dataset.csv’)
df_transaction.columns = [i.strip().replace(’ ", "_") for i in df_transaction.columns.to list()]

df_transaction.head(18)

Unnamed:_0 Index Address FLAG Avg_min_between_sent_tnx Avg_min_between_received_tnx Time_Diff_between_firs
0 0 1 0x00009277775ac7d0d59eaad8fee3d 10ac6c8058 0 844 26 1093.71
1 1 2 0x0002b44ddb1476db43c868bd494422ee4c136fed 0 12709.07 2958 44
2 2 3 0x0002bda54ch772d0407779e88eb453cac0daa244 0 245194 54 243402
3 3 4 0x00038e6ba2fd5c09aedb96697c8dTbefab632e5e 0 10219.60 15785.09
4 4 5 (x00062d1dd1aftb6f02540ddad9cdebfe56520d39 0 36.61 1070777
5 5 6 0x000895ad72f4403ecd9468900268d6ee5061361d 0 9900.12 375.48
6 6 7 0x000d63fc5df52b0204374c2f523249779805d5d 1 0 60.46 629.44
7 7 8 0x0002001ab4441a8d6dc4a40218d7 cfcBBfede6dd 0 1497.39 176.84
8] 9 0x0012cb699c836049a4bbeaac2ddcdd47c688e0e4 0 0.00 0.00
9 9 10 0x0012f247c91980eea0a%ad06893bfd95c3145794 0 2570.59 3336.01

10 rows x 51 columns

Figure 4: Importing Dataset

4.4 Dataset Pre-processing

Data pre-processing takes place in the data cleaning phase, where not relevant information to
the project will be discarded, leaving only the data that will be needed for the analysis.

Deleting other nominal qualitative variables

categorias = df_transaction.select dtypes('0").columns.astype(category’)
df _transaction[categorias]

ERC20_most_sent_token_type ERCZ20_most_rec_token_type

0 Cofoundit Numeraire

1 Livepeer Token Livepesr Token

2 MNone XEMNON

3 Raiden XENON

4 StatusNetwork ECS
9836 GSENetwork
9337 Blockwell say NOTSAFU
9838 Free BOB Tokens - BobsRepair.com
9839 NaN NaN
9340 INS Promo

Deleting features with @ variance as those features will not help in the performance of the model

df transaction.drop(df transaction.var()[nc_var].index, axis=1, inplace=True)
df_transaction.var()

FLAG 1.724118e-81
Avg_min_between_sent_tnx 4.5167182+88
Avg_min_between_received_tnx 5.327656e+88
Time Diff between first and last (Mins) 1.842880e+11
Sent_tnx 5.733918e+05
Received Tnx 2.851734e+85
Number_of_Created_Contracts 2.288685:+84
Unigue_Received_From_Addresses 2.917457e+84
Unigue Sent To Addresses 5.0968121e+84
min_wvalue_received 1.862298e+85
max_wvalue received 1.692204e+88
avg_val_received 2.3232382+86
min_wval_sent 1.9212564e+84
max_wval sent 4,.304p46e+87
avg_val_sent 5.715935e+84
min_wvalue sent to contract 5.888371e-88
max_wal_sent_to_contract 2.66@652e-87
avg_value_sent_to_contract 1.8466896e-87
total transactions (including tnx_to create contract 1.828997e+86
total_Ether_sent 1.283952e+11
total ether received 1.326451e+11
total_ether_sent_contracts 2.6686252-87
total_ether_balance 5.877880e+18
Total ERC28 tnxs 1.835847e4+05
ERC28_total_Ether_received 1.817863e+28
ERC28 total ether sent 1.275951e+18
ERC28_total_Ether_sent_contract 3.439675e+87
ERC28_unig_sent_addr 1.814723e+84

Figure 5: Dataset Pre-Processing

In addition to cleaning the data, it is necessary to perform a correlation analysis of the main
features and delete those with the highest correlation to leave the data with only the
information necessary to have the best result in the analysis.

: | # Dropping the highly correlated features

drop = ['total transactions (including tnx to create contract’,
‘total ether sent contracts’,
'max val sent to contract’,
' ERC20 avg val rec’,
' ERC20 avg val rec’,
' ERC26 max val rec’,
' ERC28 min val rec’,
' ERC28 uniq rec contract addr’,
‘max val sent”,
' ERC28 avg val sent”,
' ERC28 min val sent”,
' ERC26 max val sent”,
' Total ERC2@ tnxs',
'avg value sent to contract’,
'Unique Sent To Addresses’,
'Unique Received From Addresses’,
'total ether received',
' ERC28 uniq sent token name’,
‘min value received’,
‘min val sent”,
' ERC28 unig rec addr']

drop_new = []

for index, text in enumerate(drop):
drop_new.append(text.strip().replace(™ ", "_"))

df_transaction.drop(drop_new, axis=1, inplace=True)

Figure 6: Correlated features

4.5 Machine Learning Algorithms

4.5.1 Logistic Regression

Logistic regression was one of the Machine Learning techniques applied, since it is a
classification model and it is a important technique to apply in the analysis of data since it
will be focused on detection of frauds, and the prediction usually has a finite number of
results, such as yes or no.

import pandas as pd

import numpy as np

from sklearn import linear_model

from sklearn.metrics import classification_report

dataset = pd.read_csv('./clean_transaction.csv")
dataset.head()

FLAG Avg_min_between_sent_tnx Avg_min_between_received_tnx Time_Diff_between_first_and_last_(Mins) Sent_tnx Received_Tnx Number_of_Created_Conl

0 0 34426 1093.71 704785.63 721 a9
1 0 12709.07 2958.44 1218216.73 94]
2 0 245194.54 243402 516729.30 2 10
3 0 10219.60 15785.09 397555.90 25 9
4 0 36.61 10707.77 382472 42 4598 20

Figure 7: Logistic Regression libraries

In this phase the data was divided to train and test, the results were improved using 65% of
the total data, thus allowing the real performance to be verified.

Better results with .65 train

train_size=8.65

labels_train = np.array(labels[:int(len(labels)*train_size)}])
labels_train.reshape(-1, 1)

labels_train

array([1, 1, &, ..., @, 8, @], dtype=intéd)

labels_test = np.array(labels[int({len(labels)*train_size):])

labels_test.reshape(-1, 1)
labels_train

array([1, 1, @, ..., @, @, @], dtype=inted)

features_train = dataset[:int(len(dataset)*train_size)]
features_train

Avg_min_between_sent_tnx Avg_min_between_received_tnx Time_Diff_between_first_and_last_{Mins) Sent_tnx Received_Tnx MNumber_of_Created_Contract

0 1641.74 2103.12 327679.35 10 143
1 2511.51 837.95 9812.92 2 5
2 157.32 0.00 314.65 2 1
3 2017 392 68.37 3 2
4 438 24303.06 243074.38 10 10
639 1060.09 115459.87 371911.35 133 2

Figure 8: Logistic Regression Train and Test

There was important results using the Logistic regression model with an accuracy of 83% but
it is still not the best model for the project.

from sklearn import metrics
y_predict = lgr.predict(features_test)
cm = metrics.confusion_matrix(labels test, y_predict)

cm

array([[2643, 22],
[559, 221]], dtype=int64)

print (classification_report(labels test, y_predict))

precision recall fl-score support

8 a.83 @.99 8.9a 2665

1 a.91 8.28 8.43 788

accuracy 8.83 3445
macro avg a8.87 8.64 8.67 3445
weighted avg 8.84 8.83 8.79 3445

Figure 9: Logistic Regression Results

4.5.2 Support Vector Machine

The second model applied in the project was the Support Vector Machine it is a supervised
machine learning algorithm that can be used for classification or regression. Its major focus is
on training and classifying a dataset.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.svm import SVC

from sklearn.model selection import train_test split

from sklearn.model selection import RandomizedSearchCV
from sklearn.metrics import accuracy_score, precision_score, recall score

dados = pd.read_csv("./clean_transaction.csv")

dados . head()

FLAG Avg_min_between_sent_tnx Avg_min_between_received_tnx Time_Difi_between_first_and_last_{Mins) Sent_tnx Received_Tnx MNumber_of_Created_Cont

i 0 34426 1093.71 T04785.63 721 89
1 il 12709.07 2958 44 1218216.73 94 3
2 il 246194 54 243402 516729.30 2 10
3 0 10219.60 15785.09 397555.90 25 9
4 0 36.61 10707.77 38247242 4588 20

Figure 10: SVM libraries

The data was divided to train and test, the results were improved using 70% of the total data,
thus allowing the real performance to be verified.

Better results with 78% test

test_size=8.7
X_train, X_test, y train, y_test = train_test split(features, labels, test size=test size, random_state=42)

X_train.head()

Avg_min_between_sent_tnx Avg_min_between_received_tnx Time_Diff_between_first_and_last_{Mins) Sent_tnx Received_Tnx Number_of_Created_Contract

3808 105.53 1468.66 1054850.45 560 678
1138 0.00 0.00 196.07 1 1
2251 125.71 2436.45 496574.42 132 197
7588 12.30 442866 754914.00 166 170
1787 164.08 0.82 329.78 2 2

Figure 11: SVM Train and Test

The SVM model did not present the best results, even with an accuracy of 78% it was over
fitting and it did not provide the best insights so it should be a good model for this project.

print (classification_report(y_test, y_pred))

precision recall fl-score support

8 8.73 1.ea 8.828 5367

1 8.8 .88 a.ea 1522

accuracy 8.78 6889
macro avg .39 8.58 8.44 6880
weighted avg 8.61 8.78 8.68 6880

Figure 12: SVM Results

4.5.3 Random Forest

The third model applied was the Random Forest, which is also a classification or regression
method that works by building several decision trees during training.

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier

datasel « pd.read_csv('./clean transactlon.csv')
dataset.sample(frac=1, random_state«i2),reset_index(drop=True, inplacesTrue)
dataset.haac()

FLAG AvQ_min_between_sent_tnx Avg_min_between_recelved_inx Time_Dr_between_first_and_last_(Mins) Sent_tnx Recewed_Tax Number_of_Created_Com

0 0 844 26 108371 0478563 721 83
1 0 1270007 295844 1218216.73 22 8
? 0 245104 54 434 51672930 4 10
3 0 1029850 15785.09 307355.90 25 g
" 0 1661 10707.77 38247242 4528 20
4 »

Figure 13: Random Forest libraries

The data was also divided to train and test, and for the Random Forest model the results were
improved using 70% of the total data.

from sklearn.sodel selection import train test split

{ng

X_train, X_test, y_train, y_test = train_test_split{features, labals, test_size-test_size, randco_state-42)

print(X_train, X_test)
print(y_train, y test)

AVE_min_betwesn_sent_tnx AVE_min_betueen_recelived_tnx

iges 185,53 1468.56
1138 0.0 e.90
2257 125,71 2426.45
75838 12,30 4428.68
1787 162,08 9.82
5734 .00 16197.17
519 8.08 9.88
5398 e.00 e.ee
55@ 165,15 a.ee
270 2.84 8.11

Time DIff_between First and last_(Mins) Seat tnx Recelved Tnx

1963 1854858, 45 560 678
1133 1 1
2257 132 197
7588 166 7@
1787 2 2

Figure 14: Random Forest Train and Test

8

Random Forest had the best result within the proposed models, with an accuracy of 97% and
is the ideal model for analyzing fraud on the Ethereum network.

from sklearn import metrics

cm = metrics.confusion_matrix(y_test, pred_model)

np.unique(y_test, return_counts=True)

(array([@, 1], dtype=int6d), array([5367, 1522], dtype=int64))

print (classification_report(y_test, pred_model))}

precision recall fl-score support

8 a.97 68.93 @.938 L367

1 a.94 8.91 @.93 1522

accuracy 8.97 6889
macro avg 8.96 .95 @.95 6889
weighted avg g.97 8.97 .97 5889

Figure 15: Random Forest Results

