\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Lilian Ifeoma Enwereobi
Student ID: x20255322

School of Computing
National College of Ireland

Supervisor: Qurrat UI Ain

‘-
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Lilian Ifeoma Enwereobi
Student ID: X20255322
Programme: MSc Data Analytics Year: 2022/2023
Module: Research Project
Lecturer: Qurrat UI Ain
Submission Due
Date: 14-08-2022
Project Title: Stoke prediction Using Model Comparison and Feature Selections
Word Count: 1031 Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Lilian Ifeoma Enwereobi

Date: 14-08-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Sighature: Lilian Ifeoma Enwereobi
Date: 14-08-2023

Penalty Applied (if applicable):

Configuration Manual

Lilian Ifeoma Enwereobi
Student ID:

1 Introduction
Python was implemented to create algorithms based on machine learning and Deep Learning

techniques for Stroke Prediction Research. In this manual, the system's specs and usage are
described in depth.

2 Technical Specifications

2.1 Hardware Required
System Software: Windows 10, 64 bits.
RAM: 12GB

These are the only hardware-related criteria that have been met.
2.2 Software Required

You'll require to have Anaconda Jupyter Notebook installed to run the Python code. At the
command prompt, type cd /some folder name to access the start-up folder. Enter jupyter
notebook in the keyword search box to launch the Jupyter Notebook app. A fresh page or
window in your browser will open with the user interface for the laptop.

Computation Syntax: Python

The most recent version of Anaconda, 5.0.0, as well as the Jupyter Notebook modifications it
offers, are necessary since they let users define environment-specific kernels from the Jupyter
Notebook interface. Designed to simplify package management and deployment,
the anaconda is a package management system of the Python and R computational science
programming languages.

o

{2 ANACONDA NAVIGATOR =

Fig 1: Anaconda Navigator Window

3. Collecting Dataset

The dataset can be obtained at https://www.kaggle.com/datasets/prosperchuks/health-dataset.
There will be a file called Diabetes, Hypertension, and Stroke Prediction Dataset there, and
downloading it only requires a single mouse click.

« > © 1 https//www.kaggle.com/data

s/prosperchuks/health-dataset B oA e v - @ ow @

Diabetes, Hypertension and Stroke Prediction

1
L - 4,
Data Card Code (20) Discussion (0) 131 New Notebook &5 DT (@D @
@ Data Explorer
@ diabetes_data.csv (5.29 MB) & D> 7.75 MB
[diabetes_data.csv
m Detail Compact Column 10 of 18 columns v 0D hypertension_data.csv
[0 stroke_data.csv
& About this file
<> This dataset has 17 feature variables and 1 target variable and its classes are balanced.
H Age = 4 sex = H HighChol = H CholCheck = H BMI
= 13-level age catagory patient's gender (1: male; 0 = no high cholesterol 1 0 = no cholestarol chack Body N
(LAGEGS5YR see O: female). = high cholesterol in 5 years 1 = yes
hd codebook) 1=18-24 9 = cholesterol check in 5§
60-64 13 = 80 or older years

Fig 2: Kaggle Dataset Repository

4. Downloading data for Jupyter Notebook: The dataset must first be
saved on any system-available local drive. It was saved as an archive because it has 3
datasets, so I separated it to take the dataset I needed.

< ~ “™ i=m << Doww... > archive (.. ~ < = Search archive (5)
- Cuick access Name Tyvpe Compressed size
Bl Desktop diabetes_data Microsoft Excel Comma S... sS993 KB
L Downloads hypertension_data Microsoft Excel Comma S... 152 KB
] Documents .
stroke_data Microsoft Excel Comma S... 276 KB

P9 Pictures
archive (5)
AT MSO
Screenshots
Screenshots

> « OneDrive - Personz

~ [l This PC

> @l Desktop
> — Documents

> -l Downloads

Fig 2: My Download Drive held the dataset.

You can use the ANACONDA navigator to open the Jupyter Notebook version. The software
used for the development of the notebook version makes use of the Python programming
language.

S. Package Installations and Library Importing

The following libraries were utilized in this study for data pre-processing, model
construction, and model evaluation:

import warnings

import numpy as np

import pandas as pd

from sklearn.model selection import train_test_split
import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix, accuracy_score, fl_score, classification_report, precisic
import matplotlib.pyplot as plt
warnings.filterwarnings(ignore')

from tensorflow.keras.models import Segquential

from tensorflow.keras.layers import Dense

Fig 3: Imported Libraries and Packages

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from boruta import BorutaPy

from lightgbm import LGBMClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.ensemble import AdaBoostClassifier

from sklearn.preprocessing import StandardScaler,MinMaxScaler

from tensorflow.keras.wrappers.scikit learn import KerasClassifier

from sklearn.model_selection import RandomizedSearchCV

from sklearn.metrics import accuracy_score , classification_report,ConfusionMatrixDisplay,precision_sco
from sklearn.model selection import RandomizedSearchCV, cross_wval_score, KFold
from sklearn.tree import DecisionTreeClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

from sklearn.preprocessing import QuantileTransformer

from sklearn.linear_model import LogisticRegression

from mlxtend.feature_selection import ExhaustiveFeatureSelector

from scipy.stats import yeojohnson

Fig 4: Imported libraries and Packages

To create frameworks for Stroke Prediction Using Model Comparison and Feature Selection,
these libraries were imported into the Jupyter Notebook.

Figure 5 illustrates the process of installing the Boruta, TensorFlow, Keras, lightgbm,
mlxtend, and Plotly packages. Installing this package is required to predict stroke.

pip install boruta

pip install lightgbm
pip insdtall mlwxtend
pip install tensorflow
pip istall keras

pip install plotly

Fig 5: Package Installation

As seen in Figure 6, the data is initially inserted through the Data frame and confirmed.

3

data = pd.read_cswv{"C:\\Wsers\\1lilia\\Desktop\\stroke_data.csv")
data

sex age hypertension heart_disease ever_married work_type Residence_type awg_glucose_level bmi smoking_stal

0 1.0 630 a 1 1 4 1 228689 385
1 1.0 420 a 1 1 4 o 10582 325
2 00 61.0 a [4] 1 4 1 17123 344
3 10 $10 1 [4] 1 3 o 174,12 240
4 1.0 850 a [4] 1 4 1 186.21 290
40005 1.0 380 o 0 a 4 1 12084 297
40906 ©0 53.0 a [4] 1 4 o 7786 408
40907 1.0 320 a [4] 1 2 o 23185 332
40908 1.0 420 a [4] 1 3 o 215.38 3245
40909 1.0 350 a [4] a 4 o 85.01 280

40910 rows = 11 columns

Fig 6: Caption Data File

6. Checking For Zero Values in some Features and Replacing
them with Median

#checking for @ values in 4 columns

print{data[data['hypertension']==8].5hape[@])
print{data[data['heart_dize Ese']==0] shape[@])
print{data[data['smoking_status']==0].shape[@])
print{data[data['age’]==0].shape[@])

321682

35685

28921

23

#replacing @ values with median of thot column

data['hypertension']=data['hypertension'].replace(®,data['hypertension’].mean())#normal distribution
data["heart_disease']=data[’ hes"t_dissase'].replace{a,data['hsa't_:isease'] mean{) }#normal distribution
data['smoking_status®]=data['smoking status'].replace(d,data['smoking_status'].median())#skewed distrif
data["age’]=data['age'].replace(d,data['age'].median())#skewed distribution

Fig 7: Checking And Replacing the Zero Values

7. Exploratory Data Analysis

Bivariate bar plot for categorical variables

ALL data columns

feature_cols = data.columns

plt.figure(figsize = (38,58))
plt.suptitle('stroke by categorical features')

#subplots
for i in enumerate(feature_cols):
plt.subplot(2,4, i[@]+1)
x = sns.countplot{data=data, x=i[1], hue='stroke', palette = ['blue','crimson'])
for z in x.patches:
x.a@nnotate(' {:.1f}" .format((z.get_height()/data.shape[8])*188)+'%" ,(z.get_x(}+8.25, z.pet_heighti

Fig 8: Code for Stroke Proportion Bar Plot

Figure 8 shows the percentage of people who have experienced a stroke compared to those
who have not.

7.1. Analysis of All the Features

ALL data columns

feature_cols = data.columns

plt.figure(fipsize={25, 4@))

Loop for subplots

for i in range(len(feature_cols)):
plt.subplot(2, 5, i+1)
plt.title(feature_cols[i])
plt.xticks{rotation=9a)
plt.hist{data[feature_cols[i]], color="blus"}

plt.tight_layout()

Fig 9: Code for Histograms of all the Features

8. Implementation and Evaluation

8.1. Feature Selection

Three feature selection was used to select important features by eliminating the features that
are relevant to stroke predictions.

Boruta Feature selection model

¢t Fit Boruto on the datoset
woruta_selector = BorutaPy(model, n_estimators='auvto', verbose=2, random_state=42)
woruta_selector.fit(X.values, y.values)

Check the selected feotures

selected_features = X.columns[boruta_selector.support]
Print the feature importances
Ffeat_importances = pd.Series(boruta_selector.ranking , index=X.columns)

plt.fipure(figsize=(8, 6))
feat_importances.nsmallest(6).plot{kind="barh"')}
plt.show()

Fig 10: Code for implementing Borutél.

SelectKBest Feature Selection Model

#apply SelectkBest closs to extract top 5 best features #0o this before guantile transformotion

Initiolize the SelectkBest closs for feoture selection
best_features = SelectKBest(score_func=chi2, k=5)

Fit the feoture selector on the data
fit = best_features.fit(¥_transformed, v}

Get the scores ond feature names

feature scores = pd.DataFrame(fit.scores_)
feature _names = pd.DataFrame¥.columns)

Concatenate the feature scores and names
feature scores_df = pd.concat([feature_names, feature_scores], axis=1)
feature_scores_df.columns = ['Specs', "Score']

Print the top 5 best features
print(feature_scores_df.nlargest(5, 'Score')}])

Fig 11: Code for Implementing SelectKBest.

Exhaustive Feature Selection Model

Create an ExhaustiveFeatureSelector ohject

efs = ExhaustiveFeatureSelector{estimator=1r,
min_features=1,
max_fteatures=5,
scoring="accuracy”,
cv=4)

Train EFS with our dataset

efs. Fit(X, v)

Fig 12: Code for Implementing Exhaustive Model

All the models were hyper-tuned with RandomSearchCV and these are the codes we used on
each model and their estimators

Gradient Boosting Classifier (XGB)

param_grid_xgh = {
‘n_estimators': [58, 18@,
‘learning_rate’': [8.1, @
‘max_depth': [3, 5, 71,
'subsample’: [@.8, 8.9, 1.8],

Create the RandomizedSearchCV objects for each model

random_search_xgb = RandomizedSearchCV(
estimator=GradientBoostingClassifier(),
param_distributions=param_prid xgb,

n_iter=18,
scoring="accuracy"',
cv=5,

verbose=3,
random_state=42,
n_jobs=-1

J
Fig 13: XGB Hyperparameter Tuning.

Figure 13 shows the code for utilizing RandomSearchCV and 10-fold cross-validation to
discover the optimal parameters for XGB. The n_estimator for XGB is 100.

AdaBoosting Classifier (Adaboost)

param_grid_ada = {
‘n_estimators"': [

S@, 1@
‘learning_rate': [©

a
-1, @.

H

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTresClassifier

Define the parameter grid for the base estimator (DecisionTreeClassifier)
param_grid_base = {

‘max_depth': [1, 2, 3],

‘min_samples_split': [2, 5, 18],

‘min_samples_leaft': [1, 2, 3]

¥

Create gn instance of the base estimator
base_estimator = DecisionTreeClassifier()

Perform RondomizedSearchCV for AdoSoostClassifier
random_search_ada = RandomizedSearchCW(
AdaBoostClassifier(base_estimator=base_estimator),
param_grid_ada,
cw=5

)

random_search_ada.fit(X_train, y_train)

Fig 13: Adaboost Hyperparameter Tuning.

Figure 13 shows the code for utilizing RandomSearchCV and 10-fold cross-validation to
discover the optimal parameters for the Adaboost classifier. The n_estimators for the
Adaboost classifier is 50.

Light Gradient Boosting Classifier (LightGBM)

param_grid_lgbm = {
'boosting_type': ['gbdt', '"dart'],
"mum_leaves': [31, &3, 127],
'learning_rate': [8.1, ©.81, @.801],
'n_estimators': [188, 280, 3081,
'max_depth': [5, 18, 15],
'min_child_samples': [28, 58, 1688],
'subsample’': [8.8, 8.9, 1.8],
"colsample_bytree': [8.8, 8.9, 1.8]

¥

random_search_lgbm = RandomizedSearchCV(
estimator=LGEBMClassifier(),
param_distributions=param_grid_lgbm,
n_iter=1a,
scoring="accuracy",
cw=5,
verbose=3,
random_state=42,
n_jobs=-1

)

random_search_lgbm.fit(X_train, y_train)

best_params_lgbm = random_search_lgbm.best_params_

best_lgbm model = LGBMClassifier(**best_params_lgbm)

cv_scores_lgbm = cross_wval_score(best_lgbm model, X_train, y_train, cv=k_fold, scoring="accuracy")

average_cv_score_lgbm = np.mean{cv_scores_lgbm)

print("LightG8M - Best Hyperparameters:", best_params_lgbm)

print("LightGBM - Average Cross-validation Score:™, average_cv_score_lgbm)

Fig 14: LightGBM Hyperparameter tuning.

Figure 14 shows the code for utilizing RandomSearchCV and 10-fold cross-validation to
discover the optimal parameters for the LightGBM classifier. The n_estimators for the
LightGBM classifier is 300.

Random Forest (RF)

param_grid rf = {
'n_estimators': [18@, 288, 380], # Number of trees in the forest
‘criterion’': ['gini', ‘entropy'], & Split guolity crit
‘max_depth': [None, 5, 18], # Maximum depth of the tree
‘min_samples_split': [2, 5, 18], um number of somples required to split an internal node
‘min_samples_leaf': [1, 2, 4], # Minimum number of somples regquired to be ot a legf node
‘max_features': ['auto', 'sqrt', "log2'], # Number of feotures to consider at eoch split
‘pootstrap’: [True, False] # Whether bootstrop samples are used when building trees

random_search_rf = RandomizedSearchCWV(
estimator=RandomForestClassifier(),
param_distributions=param_grid_rf,
n_iter=18,
scoring="accuracy',
cw=5,
verbose=3,
random_state=42,
n_jobs=-1

)

random_search_rf.fit(X_train, y_train)

Fig 15: Random Forest Hyperparameter Tuning

Figure 15 shows the code for utilizing RandomSearchCV and 10-fold cross-validation to
discover the optimal parameters for the Random Forest classifier. The n_estimators for the
Random Forest classifier is 200.

Artificial Neural Networks (ANN)

ann_classifier = KerasClassifier(build fn=create_model)

param_grid_ann = {
'hidden_layer sizes': [(32,), (64,), (128,)1,
‘activation': ['relu", 'tanh'],
'solver': ["adam®],
‘learning_rate_init': [@.
‘alpha': [@.8@91, 9.891,

a1

1, 8.81, 8.1],
.81]

o
a
random_search_ann = RandomizedSearchCW(MLPClassifier(), param_grid_ann, cv=35)
random_search_ann.fit(X_train, y_train)

Fig 16: Artificial Neural Network Hyperparameter Tuning

Figure 15 shows the code for utilizing RandomSearchCV and 10-fold cross-validation to
discover the optimal parameters for the Artificial Neural Networks.

9. Conclusion

You can adhere to the following steps to carry out the complete piece of code in Jupyter
successfully. The system's 12 gigabytes of random-access memory guarantee that the code
will run more swiftly and without hiccups.

10. References

Dritsas, E. and Trigka, M., 2022. Stroke risk prediction with machine learning techniques.
Sensors, 22(13), p.4670. Sailasya, G. and Kumari, G.L.A., 2021. Analyzing the performance

of stroke prediction using ML classification algorithms. International Journal of Advanced
Computer Science and Applications, 12(6)

	1 Introduction
	2 Technical Specifications

