\*
\ National
College o

[reland

Configuration Manual

MSc Research Project
Data Analytics

Reinaldo Zanello Klostermann
Student ID: x21133018

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic




“l
\ National

College
MSc Project Submission Sheet Ireland

National College of Ireland

School of Computing

Student Reinaldo Zanello Klostermann
Name:

Student ID: x21133018

Programme: Masters in Data Analytics Year: 2023
Module: MSc Research Project
Lecturer: Vladimir Milosavljevic

Submission
Due Date: 14/08/2023

Project Title: Large Language Model Powered Chatbot for Comprehensive Citizens
Information Services

Word Count: 1600...........cccoeveveecnennee Page Count: 17........ccccoiiiiiiiere e,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)
Attach a Moodle submission receipt of the online project | o
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):




Configuration Manual

Reinaldo Zanello Klostermann
Student ID: x21133018

1 Introduction

The goal of this project was to develop a sophisticated chatbot that retrieves, processes, and
interacts with data from a Citizens Information website using a Large Language Model (LLM).
WhatsApp users can engage with this chatbot through the platform. Visual Studio Integrated
Development Environment (IDE) and Python 3.11 were used for this project. The language
model used is GPT-4. Additionally, Pinecone is employed as a vector database management
system. To interact with GPT-4 and Pinecone, API calls are used. This project uses the
LangChain framework. Twilio API is also used to integrate with WhatsApp. The Twilio API
and the chatbot server run on localhost are communicated using ngrok, a tool that exposes
local servers through public URLs. The references for coding this project are in README.md
file in the ICT Solution Artefact.

2 Account Requirements and API Keys for Development

It is necessary to have access to specific platforms and API keys to replicate this
implementation. Table 1 provides URLs to create the necessary accounts. Following the
account creation, the respective API keys must be generated.

Table 1: Required Accounts and Corresponding URLSs

Account URL
OpenAl https://openai.com/
Pinecone https://www.pinecone.io/
Twilio https://www.twilio.com/en-us
ngrok https://ngrok.com/
Inspired Critique https://docs.inspiredco.ai/critique/

Except for OpenAl, account creation is free, and the free APIs and services are sufficient to
implement this solution. The embeddings and calls to the LLM are minimal since this is not a
production environment. This project cost approximately fifteen euros.



3 Python Libraries

To reproduce this system implementation successfully, certain Python libraries are required.
These libraries provide several functions that are essential to the operation of the application.
Table 2 lists these required Python libraries in addition to links to their documentation. Prior
to running the system, these libraries must be installed in your Python environment. Typically,
pip or conda are used for installation. Pipenv was used for the creation of a virtual environment

for installing the libraries.

Table 2:

Required Python Libraries and their Documentation Links

Python Library

Documentation

openai https://pypi.org/project/openai/
flask https://pypi.org/project/Flask/
twilio https://pypi.org/project/twilio/

pinecone-client

https://pypi.org/project/pinecone-client/

langchain

https://pypi.org/project/langchain/

tiktoken

https://pypi.org/project/tiktoken/

beautifulsoup4

https://pypi.org/project/beautifulsoup4/https://pypi.org/project/beautifulsoup4/

Ixml

https://pypi.org/project/Ixml/

nltk

https://pypi.org/project/nltk/

4 Implementation

Downloading the ICT Solution Artefact file is the first step in the implementation process.
This file will be made publicly available on GitHub!. As shown in Figure 1, the project is
currently set to private. Once the file has been downloaded, it should be unzipped and loaded
into an IDE. A detailed explanation of the system's functionality can be found in the following

sections.

! GitHub Repository: https://github.com/rklostermann/ICT-Solution-Artefact

2




++ ICT-Solution-Artefact  Private @ Unwatch 1~

¥ version-1 had recent pushes 1 minute ago Compare & pull request

¥ version-1 + ¥ 2 branches © 0tags Go to file Add file ~ <> Code ~

This branch is 1 commit ahead of main. 19 Contribute ~
:|||: rklostermann start 5d4bb57 14 hours ago ) 2 commits
B .vscode start 14 hours ago
M data first commit 14 hours ago
B8 evaluation first commit 14 hours ago
M helper start 14 hours ago
fm images first commit 14 hours ago
B react first commit 14 hours ago
M src start 14 hours ago
[ .DS_Store start 14 hours ago
Y .gitignore start 14 hours ago
Y Pipfile start 14 hours ago
[ Pipfile.lock start 14 hours ago

Figure 1: Project Repository in GitHub



4.1 Solution Structure

This solution's structure allows some parts to be reproduced and debugged independently. It

is designed to facilitate the understanding and replication. Table 3 shows this structure.

Table 3: Solution Structure

Folder

File

Description

data

data_load.ipynb

This notebook includes code for:
e  Mapping Citizens Information website
e Data Loading
e Embeddings
e Loading to the vector database

dataset.csv

Question-Answer Dataset .csv format

dataset.txt

Question-Answer Dataset .txt format (easy to read)

evaluation

evaluation_1_questions.ipynb

This notebook includes code for:
e Random Selection of Citizen Information Pages
e  Exclusion of Link-Only Pages
e Query-Answer Dataset Generation

evaluation_2_metrics.ipynb

This notebook includes code for:

- Model Evaluation
e Answer Generation
e  Comparison of Real vs. Predicted Answers
e  Visualization with Evaluation Charts

metrics_summary.csv

Evaluation results, including the mean and standard
deviation of the metrics.

helper

conversation.py

This file includes code for:
e |Initialize vector database
e  Conversational agent
e APl call to the LLM

twilio.py

This file includes code for:
e Twilio setup

react

react.ipynb

This notebook includes code for:
e Income Tax Simulation Toolkit
e Demonstration of Chain of Thought/ReAct

tax_template.txt

Step by step template for income tax calculation

src

app.py

This file includes code for:
e  Connect all the functions

main

run.py

This file includes code for:
e Run the application

main

README.md

References for the code development

4.2 Collecting and Loading the Data

Implementation begins with data collection. All pages of the citizens' information website can
be mapped by accessing the sitemap. Sitemaps contain all 1567 URLs of the website. The file
'data_load.ipynb' contains the Python code for this process presented in Figure 2.

4



import requests
from bs4 import BeautifulSoup

response = requests.get('https://www.citizensinformat i itemap.xml')
assert response.status_code 200

soup = BeautifulSoup(response.text, 'html.parser'
urls = [element.text for element in soup.find_all('loc')]
for url in urls:

print(url)

Python

v.citizensin

v.citizensinformation.ie/en/health

ww.citizensinformation.

v.citizensinformation.ie 1t liv th—-covid19-plan/

v.citizensinformation. ] alt g s—for-covid19/
ww.citizensinformation.

v.citizensinformation.

v.citizensinformation.

ce-coverings—-during-covid19/
-‘/

1ealth/health—-system/ e
.ie/en/health/h

.citizensinformation.ie/en/health/health-system/health-services—-and-visitors-to-ireland/

v.citizensinformation.ie/en/health/h —health-services-in-ireland/
laint-about-the-health

th-system/patien

citizensinformation.ie/en/health/health-

.citizensinformation.

.citizensinformation.

.citizensinformation. sit-cards—for-under-6s/

.citizensinformation. —visit-cards/

http://www.citizensinformation.ie/en/health/medical-cards—and-gp sit-cards/medical-card/
J.citizensinformation. my—situation/mysituation/

Jv.citizensinformation. en/my-situation/categorytree/
ww.citizensinformation.ie/en/my—-situation vents

v.citizensinformation. en/my-situation/overv

W

Output is truncated. View as a t or open in a text Adjust cell output S...

/opt/homebrew/lib/python3.11/site-packages/bs4/buil init . 545: XMLParsedAsHTMLWarning: It looks like you're parsing an X
warnings.warn(

num_pages = len(urls)
print(f'The number of pages is: {num_pages}')

Python
The number of pages is: 1567

This script makes use of the UnstructuredURLLoader from the langchain library to load content from a list of URLs

from langchain.document_loaders import UnstructuredURLLoader
loaders = UnstructuredURLLoader(urls=urls)
document = loaders. load()

Python

Figure 2: Python Code for Website Mapping and Data Collection

4.3 Embeddings and Vector Database

A vector database requires splitting and embedding data before it can be integrated. A
Pinecone index is created first, as illustrated in Figure 3. The name of the index and the API
key are both important to record when creating this index. Pinecone index should be
configured using the same parameters as the OpenAl embedding model since it generates a
1536 dimensional output and uses cosine similarity for its distance metric.



e citizens-information-doc-index ( Free Tier

https://citizens-information-doc-index- Cloud & GCP

7b6b631.svc.asia-southeast1-gcp- Region ™ Singapore (asia-southeast1)

free.pinecone.io I Environment  asia-southeast1-gcp-free I

Dimensions 1536

Monthly Cost Vectors Pod Fullness
$0 25577 —_— Metric  cosine
20.0%

Figure 3: Pinecone Index

The process of splitting, embedding, and loading the data into the vector database is illustrated
in Figure 4. The number of vectors in Pinecone also matches the quantity of vectors in
Pinecone.

text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=50
)
texts = text_splitter.split_documents(document)
print(f"Split into {len(texts)} chunks")

Python

Split into 25577 chunks
Enter the API keys

from getpass import getpass

OPENAI_API_KEY = getpass("OpenAI API Key:")
YOUR_API_KEY = getpass("Pinecone API Key: ")
YOUR_ENV = input("Pinecone environment: ")

Python

index_name = 'citizens-information-doc-index"
pinecone.init(
api_key=YOUR_API_KEY,
environment=YOUR_ENV

Python

Embeddings and load the vectors to the vector database

embeddings = OpenAIEmbeddings(openai_api_key=0PENAI_API_KEY)
print(f"Going to add {len(texts)} to Pinecone")

Pinecone. from_documents(texts, embeddings, index_name=INDEX_NAME)
print("x#x Loading to vectorestore done sxx")

Python

Going to add 25577 to Pinecone
*k* Loading to vectorestore done sk

Figure 4: Split, Embeddings and Vector Database

4.4 Large Language Model

After storing data in the vector database, retrieving the data in response to user inquiries is the
next step. Creating a conversational model is the first step in this process. Figure 5 shows how
'conversation.py' uses the GPT-4 model. In addition, the vector database must be initialized,
and this information must be incorporated into the retrieval process.



pinecone.init(
api_key=os.environ["PINECONE_API_KEY"],
environment=o0s.environ["PINECONE_ENVIRONMENT_ REGION"],

INDEX_NAME = "citizens-information-doc-index"
embeddings = OpenAIEmbeddings(openai_api_key=o0s.environ["OPENAI_API_KEY"])
docsearch = Pinecone.from_existing_index(

embedding=embeddings,
index_name=INDEX_NAME,

def create_conversation() -> ConversationalRetrievalChain:

1lm = ChatOpenAI(model_name="gpt-4-0613", temperature=0.0)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key="answer",
verbose=True,

)

ga = ConversationalRetrievalChain.from_11lm(
1lm=11lm,
chain_type="stuff",
memory=memory,
retriever=docsearch.as_retriever(),
return_source_documents=True
verbose=True,

return qa

Figure 5: Conversation Agent

4.5 Application

By using the Twilio API, a Flask application is set up to handle incoming user queries from
WhatsApp. In conversation.py, the create _conversation function creates a conversation model
that responds to user queries. The send message function in twilio.py makes it possible to
send a message to a user through WhatsApp. Flask has two routes:

The root route (/) confirms that the application is running and capable of handling requests.
/twilio provides a specific route for Twilio API POST requests. This route extracts the user's
message and sender ID (WhatsApp number) from the request. By using the conversation
model, an appropriate response is generated. The response and any relevant source URLs are
returned to the user by using the send message function. For debugging purposes, print
statements also provide visibility into incoming queries and generated responses. This is
illustrated in Figure 7.



from 31355 import Flask, request
from helper.conversation import create_conversation
from helper.twilio_api import send_message

qa = create_conversation()

app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def home():
return "0OK", 200

@app.route("/twilio", methods=["P0OST"])
def twilio():
query = request.form["Body"]
sender_id = request.form["From"]
print(sender_id, query)
res = qa({"question": query, "chat_history": 1)
output = f"Answer: {res['answer']}\nURL Source:\n"
unique_urls = set(
document.metadata["source"] for document in res["source_documents"]
)
for i, url in enumerate(unique_urls, start=1):
output += f"{i} - {url}\n"

print(res)

send_message(sender_id, output)
return (

"OoK",

200,

Figure 7 — Application ‘app.py’

4.6 Running the Application

For successful system integration and application launch, one must follow the subsequent
steps:

Run the file ‘run.py’

In the ‘Terminal’ click on the URL as in Figure 8. The web browser opens, and the OK

message confirms it works.

3. Open another terminal window and type ‘ngrok http 5002°. Figure 9 shows connection
with ngrok.

4. Click on the Forwarding URL, in this case it is https://b3b1-2a02-8084-6aa4-3500-

78de-dcbe-1a4d-30el.ngrok-free.app. Again, a confirmation message with ‘OK’ will

be presented in the web browser.

N —



https://b3b1-2a02-8084-6aa4-3500-78de-dcbe-1a4d-30e1.ngrok-free.app/
https://b3b1-2a02-8084-6aa4-3500-78de-dcbe-1a4d-30e1.ngrok-free.app/

run.py — ICT Solution Artefact

@ run.py X

>

@ run.py
from src.app import app

if __name__ == "__main__":
app.run(host="0.0.0.0", port=5002, debug=True)

PROBLEMS (16 OUTPUT DEBUG CONSOLE TERMINAL JUPYTER +

>
* Tip: There are .env or .flaskenv files present. Do "pip install python-dotenv" to use them. BJzsh
* Serving Flask app 'src.app’ BE Python De..
* Debug mode: on

* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:5002
* Running on http://192.168.0.191:5002
Press CTRL+C to quit
* Restarting with stat
* Tip: There are .env or .flaskenv files present. Do "pip install python-dotenv" to use them.
* Debugger is active!
* Debugger PIN: 529-877-888
ﬁ27.0.0.1 - - [06/Aug/2023 16:28:59] "GET / HTTP/1.1" 200 -

App (ICT Solution Artefact) Ln5,Col1 Spaces:4 UTF-8 LF {g Python 3.11.464-bit &
[ [ ] @ 127.0.0.1:5002 X (@ Messaging | Twilio X + v
C  ® 127.0.0.1:5002 % DO »0O@
OK

Figure 8: Connection

(Ctrl+C to quit)
g.

S€5S51 1 STAtus 1L1ne

Account reinaldo.klostermann@gmail.com (Plan: Free)

Update update available (version 3.3.2, Ctrl-U to update)

Version 3.3.1

Region Europe (eu)

Latency 50ms

Web Interface http://127.0.0.1:4040

Forwarding https://b3bl-2a02-8084-6aa4-3500-78de-dcbe-1a4d-30el.ngrok-free.app -

Connections ttl opn rtl rt5 p50 p90

Figure 9: ngrok connection

5. In Twilio web site, access the tab ‘Send a WhatsApp Message’ follow the instructions
scanning the QR code and connecting with the Sandbox as presented in Figure 10.

6. Then in ‘Sandbox settings’ paste the URL from step 4. Illustrated in Figure 11. In the
end add ‘/twilio’ and hit save.



Sandbox Sandbox settings

. L L . Next step >
Connect to sandbox Business-Initiated message User-Initiated conversation Wrap-up

Connect to WhatsApp Sandbox

To begin testing, connect to Twilio sandbox by sending a WhatsApp message from your device to the Twilio

number.

Scan the QR code on
mobile
Send a WhatsApp message

Use WhatsApp and send a message from
your device to

OR
®+1415 523 8886

with code join shallow-machine

Open WhatsApp [2

Twilio WhatsApp Sandbox
Figure 10: Twilio Sandbox WhatsApp connection

Sandbox Configuration

To send and receive messages from the Sandbox to your Application, configure your endpoint URLs. Learn more

4

When a message comes in Method

-78de-dcbe-1a4d-30e1.ngrok-free.appscre/twilio { POST + ]

Status callback URL Method

W‘GET v’

Figure 11: Twilio Sandbox Configuration

10



Now, the LLM is connected to WhatsApp. When a message is sent, it should appear in the
"Terminal’. As shown in Figure 12, a question sent from WhatsApp is displayed in the terminal.
On the left, the LLM chain of thought is visible (Wei et al., 2023), while the connection is
shown on the right. Notably, the mention of ‘POST/Twilio 200 OK” in the requests signifies
the system's operational status.

ngrok (Ctrl+C to quit)

-

> Entering new LLMChain chain... L=
Prompt after formatting:
System: Use the following pieces of context to answer the users question. Session Status online
If you don't know the answer, just say that you don't know, don't try to make Account reinaldo.klostermann@gmail.com (Plan: Free)
Update update available (version 3.3.2, Ctrl-U to up
Version 3.3.1
Region Europe (eu)
Latency 40ms
The Universal Social Charge (USC) is tax you pay on gross income (this is you Web Interface http://127.0.0.1:4040
r total pay before any money is deducted, including your basic salary and any Forwarding https://ec47-2a02-8084-6aa4-3500-78de-dcbe-1a
overtime, commission or bonus).
Connections ttl opn rt1 rt5 p50 poo
If you earn more than €13,000 a year, you pay USC on your full income. 4 ] 0.00 0.01 2.00 5.90

You do not pay any USC if your total income is €13,000 or less a year. HTTP Requests

Do I have a right to be paid overtime?
POST /twilio 200 0K

You are entitled to overtime pay if your full-time co-workers are paid overti POST /twilio 200 0K

me. GET /favicon.ico 404 NOT FOUND
GET / 200 0K

Home

Money and Tax

Tax

Income tax

>

Universal Social Charge (USC)
Universal Social Charge (USC)
Introduction
Rules
Rates

Administration of the Universal Social
Charge

Where to apply
Introduction

The Universal Social Charge (USC) is a tax on income.

Service. You can also contact your local Revenue
o e for a review of vo dod

Figure 12: Terminal when the user asks a question.

4.7 Reasoning and Acting

The ‘react.py’ file contains the template for computing income taxes. This template,
designated tax_template.txt, is intended to assist the LLM in providing accurate answers. It
accomplishes this by guiding the LLM through a series of methodical steps. On the 'Terminal’,
Figure 13 demonstrates how this template is prompted to the LLM, underscoring its utility in
determining income taxes accurately. The prompt is based on ReAct (Yao et al., 2023).

11



> Entering new AgentExecutor chain...

> Entering new RetrievalQA chain...
Number of requested results 4 is greater than number of elements in index 2, updating n_resu

> Finished chain.

Observation:

Thought:

Figure 13: Terminal Prompt of Tax Calculation.

12




4.8 Evaluation

There are two files in the 'evaluation' folder. The ‘evaluation 1 questions.ipynb’, is
responsible for question generation and dataset creation. The content from previous years
deemed less relevant is omitted from the initial 1567 pages. A random selection of 15 pages is
then made. The pages that consist solely of links have been removed, leaving 13 pages.
Splitting, embedding, and storing them in a vector database are standardized procedures. The
LangChain function is used to construct questions from various segments of the stored vector.
Upon completion of this process, a dataset consisting of questions derived from various pages
of the original data is presented in Figure 14.

from langchain.evaluation.ga import QAGenerateChain
example_gen_chain = QAGenerateChain.from_l1lm(OpenAI())
examples = example_gen_chain.apply_and_parse([{"doc": t} for t in texts])

examples

Python

[{'query': "What are the requirements for qualifying for Jobseeker's Benefit?",
'answer': "To qualify for Jobseeker's Benefit (JB) you must be aged under 66 and have social insurance (PRSI) cont
{'query': "What must an individual be aged under in order to qualify for Jobseeker's Benefit (JB)?",
'answer': '66'},
{'query': "How much of the normal rate of Jobseeker's Benefit is deducted for each day of part-time work?",
‘answer': "1/5th of the normal rate of Jobseeker's Benefit is deducted."},
{'query': "What must have occurred for a person to be eligible for Jobseeker's Benefit?",
‘answer': "They must have suffered a substantial loss of employment in any period of 7 consecutive days, have lost
{'query': "How many weeks of Class A, H or P PRSI paid contributions are required to qualify for Jobseeker's Benefi
‘answer': "At least 104 weeks of Class A, H or P PRSI paid contributions are required to qualify for Jobseeker's B
{'query': "How many Class A, H, or P contributions must be paid in order to qualify for Jobseeker's Benefit?",
‘answer': '104 Class A, H, or P contributions.'},
{'query': "What must an individual have done to be disqualified from receiving Jobseeker's Benefit?",
‘answer': "An individual may be disqualified from getting Jobseeker's Benefit for 9 weeks if they left work volunt
{'query': "How long is a period of disqualification for Jobseeker's Benefit if an individual receives a redundancy
‘answer': '8 weeks'},
{'query': "How many PRSI contributions must be made to re-qualify for Jobseeker's Benefit?",
'answer': "13 PRSI contributions for at least 13 weeks must be made to re-qualify for Jobseeker's Benefit."},
{'query': "What must a part-time or systematic short-time worker have suffered in order to re-qualify for Jobseeker
‘answer': 'They must have suffered a substantial loss of employment.'},
{'query': "What is the maximum amount of time a claimant can sign off of their Jobseeker's Benefit claim before it
'answer': '26 weeks.'},
{'query': 'How many days must a claimant wait before receiving a payment if they are making a new Jobseekers Benefi
‘answer': '3 days'},
{'query': "What is the maximum personal rate of Jobseeker's Benefit in 20237",

'answer': 'The first step is usually to speak to the class teacher.'},
{'query': "What should be done if a complaint is made about a teacher's fitness to teach? ",

‘answer': "The complainant should first use the school's complaints procedure. If the outcome is unsatisfactory, a
{'query': 'What is the phone number for the Citizens Information Phone Service?',

'answer': '0818 07 4000'}]

Output is truncated. View as a s able element or open in a text editor. Adjust cell output settings...

Figure 14: LangChain QA generation Code

he subsequent file, evaluation 2 metrics.py, contains the code for comparing actual responses

(originating from dataset creation) with predicted responses (generated by the chatbot). Four

distinct metrics are used in this comparison. The methodology is based on the Inspired
13



Critique?. Figure 15 illustrates the code associated with these metrics visually. Figure 16 shows
a data frame containing metrics results created and presented in chart format.

This configuration manual provides information on the essential software tools and settings
required to replicate an experimental setup successfully. From the LLM's connection with
WhatsApp to the details contained in the 'evaluation' folder, this guide guides the reader
through the core aspects of the program. To focus on the specific aspects of this project, the
manual deliberately avoids discussing standard software installations. The purpose of
implementing this approach is to provide individuals seeking to replicate the setup with a clear
path.

2 Inspired Critique: https://docs.inspiredco.ai/critique/

14



import inspiredco.critique
CRITIQUE_API_KEY = getpass("Critique API Key:")
critique = inspiredco.critique.Critique@api_key=CRITIQUE_API_KEY@

Python

metrics = {
"rouge": {
: "rouge",
“config": {"variety": "rouge_l1"},
h
"bert_score": {
“metric": "bert_score",
"config": {"model": "bert-base-uncased"},
}l
"uni_eval": {
"metric": "uni_eval",
"config": {"task": "summarization", "evaluation_aspect": "relevance"},
h
"bleu": {
"metric leu",
"config": {"variety": "bleu"}}

critique_data = [
{"target": pred["result"], "references": [pred["answer"]]} for pred in predictions
1
eval_results = {
k: critique.evaluate(dataset=critique_data, metric=v["metric"], config=v["config"])
for k, v in metrics.items()

Python

for i, eg in enumerate(examples):
score_string = ", ".join(
[f*{k}={v['examples'][i] ['value']:.4f}" for k, v in eval_results.items()]
)
print(f"Example {i}:")
print("Question: " + predictions[i] ["query"])
print("Real Answer: " + predictions[i] ["answer"])
print("Predicted Answer: " + predictions[i] ["result"])
print("Predicted Scores: " + score_string)
print()

Python

Example 0:

Question: What are the requirements for qualifying for Jobseeker's Benefit?

Real Answer: To qualify for Jobseeker's Benefit (JB) you must be aged under 66 and have social insurance (PRSI) cont
Predicted Answer: To qualify for Jobseeker's Benefit (JB), you must be aged under 66, unemployed (fully unemployed
Predicted Scores: rouge=0.6129, bert_score=0.7913, uni_eval=0.9140, bleu=0.2312

Example 1:

Question: What must an individual be aged under in order to qualify for Jobseeker's Benefit (JB)?
Real Answer: 66

Predicted Answer: 66

Predicted Scores: rouge=1.0000, bert_score=1.0000, uni_eval=0.9413, b

Figure 15: Evaluation Metrics Code

15



import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

sns.set(style="whitegrid")
metrics_summary = pd.read_csv('metrics_summary.csv')
metrics_summary = metrics_summary.sort_values(by="'mean')

plt.figure(figsize=(4, 2))

sns.barplot(x='mean', y='metric', data=metrics_summary)
plt.title('Average Scores for each Metric', fontsize=11)
plt.xlabel('Score', fontsize=10)

plt.ylabel('Metric', fontsize=10)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

plt.show()

plt.figure(figsize=(4, 2))

sns.barplot(x="'std_dev', y='metric', data=metrics_summary, order=metrics_summary['metric'])
plt.title('Std of Scores for each Metric', fontsize=11)

plt.xlabel('Standard Deviation', fontsize=10)

plt.ylabel('Metric', fontsize=10)

plt.xticks(fontsize=8)

plt.yticks(fontsize=8)

plt.show()

Average Scores for each Metric

bert_score

uni_eval

uni_eval

0.2
Standard Deviation

Figure 16: Evaluation Charts

16



References

Wei, J. et al. (2023) ‘Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models’. arXiv. Available at: http://arxiv.org/abs/2201.11903 (Accessed: 3 June 2023).

Yao, S. et al. (2023) ‘ReAct: Synergizing Reasoning and Acting in Language Models’. arXiv.
Available at: http://arxiv.org/abs/2210.03629 (Accessed: 3 June 2023).

17



