

Configuration Manual

MSc Research Project
Data Analytics

Reinaldo Zanello Klostermann
Student ID: x21133018

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Reinaldo Zanello Klostermann

Student ID:

x21133018

Programme:

Masters in Data Analytics

 Year:

2023

Module:

MSc Research Project

Lecturer:

Vladimir Milosavljevic

Submission
Due Date:

14/08/2023

Project Title:

Large Language Model Powered Chatbot for Comprehensive Citizens
Information Services

Word Count:

1600…………………………… Page Count: 17.…………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Reinaldo Zanello Klostermann
Student ID: x21133018

1 Introduction

The goal of this project was to develop a sophisticated chatbot that retrieves, processes, and
interacts with data from a Citizens Information website using a Large Language Model (LLM).
WhatsApp users can engage with this chatbot through the platform. Visual Studio Integrated
Development Environment (IDE) and Python 3.11 were used for this project. The language
model used is GPT-4. Additionally, Pinecone is employed as a vector database management
system. To interact with GPT-4 and Pinecone, API calls are used. This project uses the
LangChain framework. Twilio API is also used to integrate with WhatsApp. The Twilio API
and the chatbot server run on localhost are communicated using ngrok, a tool that exposes
local servers through public URLs. The references for coding this project are in README.md
file in the ICT Solution Artefact.

2 Account Requirements and API Keys for Development

It is necessary to have access to specific platforms and API keys to replicate this
implementation. Table 1 provides URLs to create the necessary accounts. Following the
account creation, the respective API keys must be generated.

Table 1: Required Accounts and Corresponding URLs
Account URL

OpenAI https://openai.com/

Pinecone https://www.pinecone.io/

Twilio https://www.twilio.com/en-us

ngrok https://ngrok.com/

Inspired Critique https://docs.inspiredco.ai/critique/

Except for OpenAI, account creation is free, and the free APIs and services are sufficient to
implement this solution. The embeddings and calls to the LLM are minimal since this is not a
production environment. This project cost approximately fifteen euros.

2

3 Python Libraries

To reproduce this system implementation successfully, certain Python libraries are required.
These libraries provide several functions that are essential to the operation of the application.
Table 2 lists these required Python libraries in addition to links to their documentation. Prior
to running the system, these libraries must be installed in your Python environment. Typically,
pip or conda are used for installation. Pipenv was used for the creation of a virtual environment
for installing the libraries.

Table 2: Required Python Libraries and their Documentation Links
Python Library Documentation

openai https://pypi.org/project/openai/

flask https://pypi.org/project/Flask/

twilio https://pypi.org/project/twilio/

pinecone-client https://pypi.org/project/pinecone-client/

langchain https://pypi.org/project/langchain/

tiktoken https://pypi.org/project/tiktoken/

beautifulsoup4 https://pypi.org/project/beautifulsoup4/https://pypi.org/project/beautifulsoup4/

lxml https://pypi.org/project/lxml/

nltk https://pypi.org/project/nltk/

4 Implementation

Downloading the ICT Solution Artefact file is the first step in the implementation process.
This file will be made publicly available on GitHub1. As shown in Figure 1, the project is
currently set to private. Once the file has been downloaded, it should be unzipped and loaded
into an IDE. A detailed explanation of the system's functionality can be found in the following
sections.

1 GitHub Repository: https://github.com/rklostermann/ICT-Solution-Artefact

3

Figure 1: Project Repository in GitHub

4

4.1 Solution Structure
This solution's structure allows some parts to be reproduced and debugged independently. It
is designed to facilitate the understanding and replication. Table 3 shows this structure.

Table 3: Solution Structure

Folder File Description

data

data_load.ipynb

This notebook includes code for:
• Mapping Citizens Information website
• Data Loading
• Embeddings
• Loading to the vector database

dataset.csv Question-Answer Dataset .csv format

dataset.txt Question-Answer Dataset .txt format (easy to read)

evaluation

evaluation_1_questions.ipynb

This notebook includes code for:
• Random Selection of Citizen Information Pages
• Exclusion of Link-Only Pages
• Query-Answer Dataset Generation

evaluation_2_metrics.ipynb

This notebook includes code for:
- Model Evaluation

• Answer Generation
• Comparison of Real vs. Predicted Answers
• Visualization with Evaluation Charts

metrics_summary.csv Evaluation results, including the mean and standard
deviation of the metrics.

helper
conversation.py

This file includes code for:
• Initialize vector database
• Conversational agent
• API call to the LLM

twilio.py This file includes code for:
• Twilio setup

react
react.ipynb

This notebook includes code for:
• Income Tax Simulation Toolkit
• Demonstration of Chain of Thought/ReAct

tax_template.txt Step by step template for income tax calculation

src app.py This file includes code for:
• Connect all the functions

main run.py This file includes code for:
• Run the application

main README.md References for the code development

4.2 Collecting and Loading the Data
Implementation begins with data collection. All pages of the citizens' information website can
be mapped by accessing the sitemap. Sitemaps contain all 1567 URLs of the website. The file
'data_load.ipynb' contains the Python code for this process presented in Figure 2.

5

Figure 2: Python Code for Website Mapping and Data Collection

4.3 Embeddings and Vector Database
A vector database requires splitting and embedding data before it can be integrated. A
Pinecone index is created first, as illustrated in Figure 3. The name of the index and the API
key are both important to record when creating this index. Pinecone index should be
configured using the same parameters as the OpenAI embedding model since it generates a
1536 dimensional output and uses cosine similarity for its distance metric.

6

Figure 3: Pinecone Index

The process of splitting, embedding, and loading the data into the vector database is illustrated
in Figure 4. The number of vectors in Pinecone also matches the quantity of vectors in
Pinecone.

Figure 4: Split, Embeddings and Vector Database

4.4 Large Language Model

After storing data in the vector database, retrieving the data in response to user inquiries is the
next step. Creating a conversational model is the first step in this process. Figure 5 shows how
'conversation.py' uses the GPT-4 model. In addition, the vector database must be initialized,
and this information must be incorporated into the retrieval process.

7

Figure 5: Conversation Agent

4.5 Application

By using the Twilio API, a Flask application is set up to handle incoming user queries from
WhatsApp. In conversation.py, the create_conversation function creates a conversation model
that responds to user queries. The send_message function in twilio.py makes it possible to
send a message to a user through WhatsApp. Flask has two routes:
The root route (/) confirms that the application is running and capable of handling requests.
/twilio provides a specific route for Twilio API POST requests. This route extracts the user's
message and sender ID (WhatsApp number) from the request. By using the conversation
model, an appropriate response is generated. The response and any relevant source URLs are
returned to the user by using the send_message function. For debugging purposes, print
statements also provide visibility into incoming queries and generated responses. This is
illustrated in Figure 7.

8

Figure 7 – Application ‘app.py’

4.6 Running the Application
For successful system integration and application launch, one must follow the subsequent
steps:

1. Run the file ‘run.py’
2. In the ‘Terminal’ click on the URL as in Figure 8. The web browser opens, and the OK

message confirms it works.
3. Open another terminal window and type ‘ngrok http 5002’. Figure 9 shows connection

with ngrok.
4. Click on the Forwarding URL, in this case it is https://b3b1-2a02-8084-6aa4-3500-

78de-dcbe-1a4d-30e1.ngrok-free.app. Again, a confirmation message with ‘OK’ will
be presented in the web browser.

https://b3b1-2a02-8084-6aa4-3500-78de-dcbe-1a4d-30e1.ngrok-free.app/
https://b3b1-2a02-8084-6aa4-3500-78de-dcbe-1a4d-30e1.ngrok-free.app/

9

Figure 8: Connection

Figure 9: ngrok connection

5. In Twilio web site, access the tab ‘Send a WhatsApp Message’ follow the instructions

scanning the QR code and connecting with the Sandbox as presented in Figure 10.
6. Then in ‘Sandbox settings’ paste the URL from step 4. Illustrated in Figure 11. In the

end add ‘/twilio’ and hit save.

10

Figure 10: Twilio Sandbox WhatsApp connection

Figure 11: Twilio Sandbox Configuration

11

Now, the LLM is connected to WhatsApp. When a message is sent, it should appear in the
'Terminal’. As shown in Figure 12, a question sent from WhatsApp is displayed in the terminal.
On the left, the LLM chain of thought is visible (Wei et al., 2023), while the connection is
shown on the right. Notably, the mention of ‘POST/Twilio 200 OK’ in the requests signifies
the system's operational status.

Figure 12: Terminal when the user asks a question.

4.7 Reasoning and Acting
The ‘react.py’ file contains the template for computing income taxes. This template,
designated tax_template.txt, is intended to assist the LLM in providing accurate answers. It
accomplishes this by guiding the LLM through a series of methodical steps. On the 'Terminal',
Figure 13 demonstrates how this template is prompted to the LLM, underscoring its utility in
determining income taxes accurately. The prompt is based on ReAct (Yao et al., 2023).

12

Figure 13: Terminal Prompt of Tax Calculation.

13

4.8 Evaluation

There are two files in the 'evaluation' folder. The ‘evaluation_1_questions.ipynb’, is
responsible for question generation and dataset creation. The content from previous years
deemed less relevant is omitted from the initial 1567 pages. A random selection of 15 pages is
then made. The pages that consist solely of links have been removed, leaving 13 pages.
Splitting, embedding, and storing them in a vector database are standardized procedures. The
LangChain function is used to construct questions from various segments of the stored vector.
Upon completion of this process, a dataset consisting of questions derived from various pages
of the original data is presented in Figure 14.

Figure 14: LangChain QA generation Code

he subsequent file, evaluation_2_metrics.py, contains the code for comparing actual responses
(originating from dataset creation) with predicted responses (generated by the chatbot). Four
distinct metrics are used in this comparison. The methodology is based on the Inspired

14

Critique2. Figure 15 illustrates the code associated with these metrics visually. Figure 16 shows
a data frame containing metrics results created and presented in chart format.
This configuration manual provides information on the essential software tools and settings
required to replicate an experimental setup successfully. From the LLM's connection with
WhatsApp to the details contained in the 'evaluation' folder, this guide guides the reader
through the core aspects of the program. To focus on the specific aspects of this project, the
manual deliberately avoids discussing standard software installations. The purpose of
implementing this approach is to provide individuals seeking to replicate the setup with a clear
path.

2 Inspired Critique: https://docs.inspiredco.ai/critique/

15

Figure 15: Evaluation Metrics Code

16

Figure 16: Evaluation Charts

17

References

Wei, J. et al. (2023) ‘Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models’. arXiv. Available at: http://arxiv.org/abs/2201.11903 (Accessed: 3 June 2023).

Yao, S. et al. (2023) ‘ReAct: Synergizing Reasoning and Acting in Language Models’. arXiv.
Available at: http://arxiv.org/abs/2210.03629 (Accessed: 3 June 2023).

