~

N\ National
College
Ireland

"Sarcasm Detection using Dilbert and
Albert: An In-Depth Comparative Analysis
with Bert”

MSc Research Project
Data Analytics

Rohit Gopal Wadhwani
Student 1D: 21194645

School of Computing
National College of Ireland

Supervisor: Dr.Muslim Jameel Syed

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Rohit Gopal Wadhwani
Student ID: 21194645
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr.Muslim Jameel Syed
Submission Due Date: 14/08/2023
Project Title: ”Sarcasm Detection using Dilbert and Albert: An In-Depth
Comparative Analysis with Bert”
Word Count: 7521
Page Count: [26]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL Internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use another
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rohit Gopal Wadhwani

Date: 28th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on a computer.

Assignments that are submitted to the Programme Coordinator’s office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

"Sarcasm Detection using Dilbert and Albert: An
In-Depth Comparative Analysis with Bert”

Rohit Gopal Wadhwani
21194645

Abstract

In today’s communication landscape, sarcasm has become a prevalent way of
interacting with one another. However, its written form presents a challenge as
the absence of tone makes understanding sarcastic comments difficult. Accurately
detecting sarcasm in written text is crucial for grasping the true sentiment behind
the words. This ability will not only help people to find the true intention of the
headlines but also will aid companies in improving their services for customers and
will also help identify business gaps and driving exponential growth. To address
this, machine learning models, especially transformers, have been more efficient in
sarcasm detection. For this research, we have compiled a large dataset of sarcastic
and non-sarcastic news headlines from 2 sources: the onion and huffingtonpost, as
headlines are a prime training ground for sarcasm detection. Utilizing transformer-
based models like ALBERT and DILBERT, we aim to compare their performance
with BERT and give a detailed analysis for the same. While retaining high ac-
curacy of 97%, and 98% and in sarcasm detection, comparing BERT, ALBERT,
and DILBERT enables model selection that is optimized based on variables includ-
ing computing resources, scalability, and training efficiency. I hope to offer fresh
approaches to improve sarcasm detection precision and advance NLP techniques
for textual content analysis by examining the strengths and shortcomings of each
model. Finally, the research findings will contribute to more accurate sarcasm
recognition and improved text understanding in a variety of applications.

1 Introduction

Individuals have been tempted to convey their views and feelings on the Internet since
the emergence of the Internet in recent years. Exploring users’ feelings via social media
has been a focus of study for researchers all around the world. Due to the increasing
usage of sarcasm in social networks such as Twitter and newspapers, as well as the anti-
emotional polarity of sarcasm, sarcasm identification for comment phrases has emerged
as an important study subject in machine learning.

Sarcasm has developed into a highly informal means of communication according to
linguistic evolution. The use of mocking and feigned politeness is used to supposedly
enhance animosity. Sarcasm may be picked up in a face-to-face discussion by paying
attention to and studying the speaker’s speech patterns, body language, and the context
in which they are speaking. Additionally, a context-aware approach is required to get
around these challenges because it is impossible to see or hear the speaker’s emotion or
tone. So, in this research, I have used News Headlines from the Kaggle website to detect

Sarcasm. In our project, distinguishing between general concern and sarcasm becomes
particularly challenging since we cannot hear speech or discern emotions. However, the
development of BERT has transformed the detection of sarcasm in written text. Before
BERT, employing traditional deep learning or machine learning techniques like word2vec
or recurrent neural networks (RNNs) proved arduous due to the inherent complexities of
language.Words have diverse meanings in different circumstances, making it difficult to
recognize sarcasm within a sentence. By capturing the complicated links between words,
BERT’s contextual embeddings significantly improved sarcasm detection, resulting in a
more precise and effective examination of written text for sarcasm. With BERT, we
now have a powerful instrument to solve the difficulty of detecting sarcasm in written
communication, opening up exciting possibilities for analyzing sentiment in textual data.
So, Bert for sarcasm detection for analyzing sentiments has been used in the previous
paper by Gosavi (2022) which was highly effective and had shown greater accuracy than
other techniques. BERT (Bidirectional Encoder Representations from Transformers) is
a game-changing advancement in natural language processing. It is an extension of the
basic encoder-decoder transformer architecture that uses a novel technique called self-
supervised training. BERT can learn and construct contextual representations of words
by performing masked language modeling and next-sentence prediction tasks. By ap-
plying self-supervised learning methodologies, BERT gains a more comprehensive under-
standing of the language, allowing it to grasp the complicated linkages and meanings
of words within the context of a phrase. BERT is particularly effective in a number of
language-related tasks due to this contextual awareness, making it a key milestone in the
development of transformer-based models for NLP.

It uses two processes to create unique models for a range of activities: pre-training and
fine-tuning. Bert is a key component of the Transformers. BERT is a transformer-based
model that succeeds at capturing the contextual meaning of words in a sentence. When
encoding each word, it considers the entire phrase and its context, allowing it to better
understand language aspects such as sarcasm. A new model called DistilBERT has been
pre-trained on the same dataset as BERT, but it is smaller and processes information more
efficiently. DistilBERT is a compact, quick, inexpensive, and light Transformer model
that has been instructed by a distilling BERT basis. It has 40% fewer parameters and
runs 60% quicker than bert-base-uncased. During its self-supervised training, it learnt
from the unannotated text by using the BERT base model as guidance. DistilBERT
was able to leverage a large amount of publically available data that was automatically
processed to generate inputs and labels using the BERT base model utilizing this method.

Since the introduction of BERT three years ago, natural language research has em-
braced a new paradigm, leveraging vast quantities of existing text to pre-train a model’s
parameters via self-supervision without the requirement for data annotation. As a res-
ult, rather than developing a machine-learning model for natural language processing
(NLP) from scratch, I might start using a model that has already been pre-trained on a
language. However, in order to improve this novel approach to NLP, it is necessary to
understand precisely what factors influence language-understanding performance, such
as the number of layers, the size of the hidden layer representations, learning criteria for
self-supervision, or something entirely different. Google Research created the ALBERT
language representation model. It is a BERT variant designed to train more rapidly and
effectively while delivering at least as excellent performance on language comprehension
tasks as BERT. The key innovation of ALBERT is its use of a parameter-sharing method
to reduce the number of trainable parameters in the model. Performance is enhanced

despite utilizing fewer resources due to more effective use of training data and faster
convergence during training. ALBERT, like BERT, is pre-trained on massive amounts of
text data using a self-supervised learning technique to develop rich language represent-
ations. These previously trained models can then be upgraded for future tasks such as
natural language processing (NLP).

In this project, I will compare Dilbert and Albert with Bert to find the best prediction
and most efficient model to detect sarcasm for our news Headline Data set

1.1 Reserach Question

The above research problem motivates the following research question: Are Dilbert
and Albert better than Bert at detecting sarcastic texts in news headlines?

This study’s main objective is to compare the Distilled BERT (DILBERT) and A Lite
BERT (ALBERT) language models to the traditional BERT model in order to evaluate
their effectiveness and efficiency. The objective is to evaluate if these modern variations
exceed BERT for sarcasm detection within our chosen dataset in terms of accuracy and
processing speed. We want to identify the best model for boosting sarcasm detection
through thorough investigation.

Our research will begin with a thorough literature review in which we will carefully
assess earlier technology and datasets. This thorough evaluation not only provides an
informative recap of earlier developments but also acts as a guide to ensure that our
research trajectory is on course.

The next stage includes the precise use of the technique, which includes a sequence
of planned research steps designed to achieve the goals of our study. This section will
explain how to use the DILBERT and ALBERT models in a methodical manner before
outlining a comparison with the widely used BERT model.

2 Related Work

Sarcasm is a type of communication that is often used in everyday life to favorably
express negative information. Experts in languages, psychology, and cognitive science
have investigated their ability for detecting sarcasm. In this paper, I will provide an
overview of previous research on this topic.

2.1 Origin of Sarcasm Detection in Computing

Detecting sarcasm is one of the most challenging tasks in computing because it involves
written text rather than verbal communication. Unlike humans, who can discern sarcasm
through tone, NLP faces difficulties in this area. Before the advent of deep learning tech-
niques, achieving accurate sarcasm detection seemed almost impossible. In the research
paper by Davidov et al. (2010), the authors proposed a method that involved training
a classifier (KNN) on a small labeled dataset of sarcastic and non-sarcastic words and
then applying it to a larger unlabeled dataset. The classifier used distinct features such
as syntax, lexicon, and semantics to identify sarcastic comments in both datasets. While
the approach showed impressive results (75.6% accuracy) on the Amazon dataset, it
struggled to provide remarkable results (43.6% accuracy) on the Twitter dataset due to
more noise and non-standard language.This paper highlighted the differences in sarcasm

across languages and focused light on the difficulty of detecting sarcasm in a variety of
linguistic conditions.

The following paper titled "ICWSM - A Great Catchy Name: Semi-Supervised Re-
cognition of Sarcastic Sentences in Online Product Reviews” presents the SASI (Semi-
supervised Algorithm for Sarcasm Identification) for detecting sarcastic sentences in on-
line product reviews. The authors Tsur et al.| (2010) conducted experiments using a
dataset of Amazon reviews.There are two steps to the algorithm: semi-supervised pat-
tern collection and sarcasm classification. It makes use of pattern-based features and
punctuation-based features to classify sentences as either sarcastic or not. The SASI al-
gorithm’s performance was evaluated using the KNN machine learning model, and it was
compared to a baseline heuristic.SASI achieved much higher precision in identifying sar-
castic statements, according to the data. The authors also investigated the most effective
features for detecting sarcasm and discovered that a mixture of subtle features gave the
greatest results. They were astonished by the impressive 76.66% precision achieved by
the algorithm for this dataset. The authors admited the algorithm’s shortcomings, par-
ticularly in detecting subtle sarcasm. They also investigated the motivations for using
sarcasm in online groups and social networks. Finally, the SASI system performed well in
detecting sarcastic words in online product evaluations. Future studies should look into
incorporating sarcasm recognition into review summaries and ranking systems, according
to the authors.

The next paper, titled ”Identifying Sarcasm in Twitter Messages” by (Gonzalez-Ibanez
et al.; 2011)), tackles the complex task of detecting sarcasm in Twitter posts. The author
employs Support Vector Machine (SVM) with sequential minimal optimization (SMO)
and Logistic Regression on extensive Twitter datasets, achieving a commendable 71%
accuracy. The study’s show that machine learning approaches examine a number of vari-
ables, such as the use of emoticons, negation, and the frequency of remarks that are
sarcastic. Notably, the study only considers English, showing the potential advantages
of using deep learning methods to comprehend sarcasm in several languages. The article
comes to the conclusion that deep learning shows promising gains in sarcasm detection,
even if machine learning approaches have some constraints that prevented obtaining bet-
ter accuracy.

The work ”Sarcasm as a Contrast between a Positive Sentiment and a Negative
Situation” focuses on detecting sarcasm in tweets and presents a boosting method to
automatically learn positive sentiment phrases, negative situation phrases, and posit-
ive predictive words from Twitter data. The authors (Riloff et al.; [2013)) evaluate their
method on a manually annotated dataset and compare it to several baselines. For train-
ing and evaluation, the authors utilized a dataset of harsh tweets. The paper explains
the iterative method used by the bootstrapping technique to grow the sets of positive
sentiment and negative circumstance words. The authors also compare their method
to an SVM classifier. The experimental results show that the suggested bootstrapping
algorithm outperforms the baseline approaches in precision, recall, and F-score. Inter-
estingly, the bootstrapped lists of phrases can identify sarcastic tweets that the SVM
classifier misses.In addition, the authors discover that integrating two strategies in a hy-
brid way increases recall. Finally, the paper compares a promising strategy to identifying
sarcasm in tweets using bootstrapping to other baselines and an SVM classifier. The
study demonstrates that using several models and combining their outputs leads to bet-
ter results, providing vital insights into the efficacy of the suggested methodology for
detecting sarcasm in social media texts.

Rajadesingan established from the previously mentioned works that sarcasm detection
extends beyond language analysis and can also be determined from user behavior. In the
study by Rajadesingan et al.| (2015), the authors introduced a novel approach that relies
on behavioral modeling to analyze patterns in Twitter users’ activities. This included
examining factors such as the number of tweets, retweets, followers, and followings, as
well as the length of their tweets. The focus of this approach was on a specific event,
the 2014 World Cup. The authors used a SCUBA model (Sarcasm Classification Using
a Behavioral Modeling Approach) with L1 regularized logistic regression. The SCUBA
model achieved an impressive accuracy of 86.1%. However, the approach had limitations
as it was specifically tailored to capture sarcasm based on the behavior of users during
the World Cup event and may not be directly applicable to other datasets, such as news
headlines or Amazon reviews.

Towards the conclusion of the origin of sarcasm detection, the paper titled ” Who cares
about sarcastic tweets? Investigating the impact of sarcasm on sentiment analysis” looks
at how sarcasm affects sentiment analysis in tweets. The authors Maynard and Green-
wood, (2014)explore hashtag tokenization and sentiment analysis evaluations, while also
devising rules to enhance sentiment analysis in the presence of sarcasm. The experiments
are aimed at identifying sarcasm in tweets. The data show that correctly identifying
sarcasm can significantly improve sentiment recognition; nonetheless, perfect accuracy
remains a difficulty. In summary, the paper identifies sarcasm as a complex aspect of
sentiment analysis that presents challenges for computer systems to accurately identify.

2.2 Deep learning techniques for sarcasm detection

In the year 2016, numerous authors began exploring the application of deep learning
techniques for predicting sarcasm based on context. The motivation behind sarcasm
detection was twofold: to comprehend a user’s intended message more accurately and
to enable companies/organizations to gauge the sentiment of their users. This vital
knowledge could assist businesses in addressing any concerns or discontent with their
services or products, allowing them to make required modifications and better meet the
demands of their customers.

In 2016, Ghosh presented a remarkable paper (Ghosh and Veale; 2016) where they
explored the detection of sarcasm in Twitter datasets using SVM and CNN-DNN-LSTM
techniques. They emphasized the shortcomings of typical feature-based techniques in
dealing with the complexities and variety of sarcasm. To address this, they opted for a
large dataset and devised a model that combines convolutional and recurrent layers to
extract features from the input text and capture its temporal and spatial dependencies.
The authors achieved impressive results with high precision, recall, and F-score (91.9%,
92.3%, and 91.2%, respectively). This accomplishment might be credited to the use
of several pre-processing techniques, such as spell-checking, tokenization, and stemming,
that decreased noise and increased data quality. It is important to highlight, however, that
their approach is built particularly for Twitter data and the English language, restricting
its direct application to other datasets and languages.

In their study titled ”Using millions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion, and sarcasm,” [Felbo et al.| (2017) explored
a unique approach to sentiment analysis using emojis. Given the popularity of emo-
jis during that time, the researchers aimed to leverage them to predict both sarcasm
and sentiments effectively. They utilized LSTM (Long Short-Term Memory) to process

extensive Twitter data enriched with emojis, seeking to understand the semantic and
emotional meanings behind each emoji’s usage in sentences. Remarkably, their approach
surpassed traditional sentiment analysis methods, yielding impressive results with preci-
sion, accuracy, F score, and AUC reaching 85.5. These findings were among the most
optimistic forecasts made for Twitter datasets. However, one significant shortcoming of
this strategy was that it was only applicable to datasets including emojis, such as Twitter
data, limiting its relevance to larger datasets lacking emoji annotations.

The research paper titled ”Sentiments and Emotions Evoked by News Headlines of
Coronavirus Disease (COVID-19) Outbreak” utilized a vast dataset comprising 141,208
news headlines related to COVID-19. These headlines were sourced from reputable news
outlets like Reuters, BBC, and Yahoo News, among others, and collected through the
COVID-19 repository at John Hopkins University. To analyze the sentiments conveyed by
these headlines, the authors|Aslam et al.| (2020) employed sentiment analysis, a branch of
natural language processing (NLP) that categorizes sentiments in opinions and reviews.
Specifically, they used the Lexicon method recommended by Saif, which associates words
with emotions and sentiments. The main objective was to determine the polarity of
words, phrases, or entire documents as either positive or negative.Before performing the
sentiment analysis, the authors completed data processing procedures such as converting
headlines to text files, developing a news headline corpus, eliminating digits and excess
whitespace, stemming words, and creating a Document Term Matrix. These methods
guaranteed that the data was properly prepared for sentiment analysis, yielding useful
insights into the emotional and sentimental components of COVID-19 news headlines.

In the paper ”Twitter sentiment analysis with a deep neural network: An enhanced
approach using user behavioral information” by |Alharbi and de Doncker| (2019), two
Twitter datasets, SemEval-2016_1 and SemEval-2016_2, were utilized, containing 3694
and 1122 manually annotated tweets, respectively, with positive and negative labels. To
label additional tweets, the SentiStrength algorithm was employed. The authors used
10-fold cross-validation to train their model, splitting the dataset into 10 subsets and
performing classification on one while validating the others. Long Short-Term Memory
(LSTM) models, a hybrid visual-textual model, and classic classifiers like Naive Bayes
(NB) and Support Vector Machines (SVM) were all investigated in the study for sen-
timent analysis. LSTM models, which are known for their ability to handle long-term
dependencies, performed brilliantly in sentiment categorization tasks. The joint visual-
textual model combined a convolutional neural network for image sentiment analysis with
a paragraph vector model for textual sentiment analysis. The experimental findings con-
tinuously proved the supremacy of deep learning classifiers, particularly CNN and LSTM,
with CNN obtaining outstanding accuracy of 88.71%.

In the research paper titled ”Sarcasm Detection Using MHA-BiLSTM” authored by
Kumar et al.| (2020) a novel deep neural network approach is proposed for sarcasm de-
tection. The study used two datasets: one balanced with 5,000 sarcastic and 5,000 non-
sarcastic comments, and one imbalanced with 5,000 sarcastic and 10,000 non-sarcastic
comments. The authors compare their MHA-BiLSTM model to a support vector machine
(SVM) model that detects sarcasm using locally produced features. Interestingly, their
feature-rich SVM model achieves superior performance compared to previous works. The
MHA-BIiLSTM model consists of a word encoder layer and a sentence-level multi-head
attention layer. Within a comment, the former captures contextual information from
both directions, whilst the later concentrates on distinct parts of the statement to un-
derstand its underlying semantics. Notably, the authors show that the MHA-BIiLSTM

model outperforms other models, including the SVM technique, in detecting sarcasm in
comments.

In the paper by [Pan et al. (2020), a novel method for detecting sarcasm in multi-
modal data is proposed. The writers consider the contrast between various modes of
communication, such as text and image, as well as the literal and figurative meanings of
words within the same mode. To achieve this, they propose a two-stage model, first ex-
tracting features separately from each mode of communication and then combining them
using a multi-modal fusion layer. The algorithm was trained on a huge dataset of sar-
castic tweets with text and visual sarcasm annotations. Extensive testing on benchmark
datasets demonstrated that our strategy outperforms previous state-of-the-art methods,
resulting in extraordinary accuracy rates of more than 80%. Furthermore, the authors
conducted research to investigate various components of their model, which revealed that
intra- and inter-modal differences are crucial in detecting sarcasm.Overall, this study
suggests a potential technique for detecting sarcasm in multimodal data that employs
Multimodal ANN.

2.3 Transformer-based Sarcasm Detection

A transformer represents a neural network architecture specifically created for handling
sequential data, including natural language text and time series data. It incorporates self-
attention, a mechanism that intelligently assigns varying importance to different parts of
the input data, enabling it to grasp context and meaning by capturing relationships within
sequential data.Transformers are used in a variety of domains such as natural language
processing (NLP) and computer vision (CV) researches. The model uses an advanced
mathematical technique known as attention or self-attention to find the interdependencies
and impacts between distant items in the data. To summarize, transformers use self-
attention to successfully handle sequential information, making them useful tools for a
wide range of data analysis tasks.

In their paper titled ”Sarcasm Detection using Hybrid Neural Network,” Misra and
Arora (2019) present a novel dataset specifically designed for sarcasm detection. This
dataset comprises news headlines sourced from both a sarcastic news website and a genu-
ine news website, addressing previous limitations related to labeling and language found
in Twitter-based datasets. Based on a modified version of a prior model, the authors
specify a comprehensible Hybrid Neural Network architecture to address the sarcasm de-
tection issue. The model incorporates pre-trained word embeddings from the word2vec
model and utilizes both an LSTM module and an Attention module. The LSTM module
helps encode the contextual information of words in a sentence, while the Attention mod-
ule reweighs this encoded context. The model’s training objective involves minimizing
the cross-entropy error between predicted and actual labels. The results suggest that the
proposed model beats a strong baseline in terms of classification accuracy by roughly 5%,
demonstrating its usefulness in sarcasm detection.

In the study conducted by [Potamias et al. (2020), remarkable results were achieved in
sarcasm detection using Recurrent CNN (convolutional neural networks) RoBERTa. The
authors selected a Twitter dataset and combined CNN with RoBERTa, comparing it with
various other transformers and deep learning models like ELMo, USE, NBSVM, XLNet,
BERT, UPF, ClaC, and DESC. RoBERTa demonstrated the highest accuracy and the
least mean squared error (MSE) compared to the other models. This study demonstrates
the usefulness of transformers in detecting sarcasm and offers the possibility of applying

similar algorithms to diverse datasets, such as news articles and customer evaluations.

The research conducted by [Lee et al.| (2020) introduces a novel method to enhance
sarcasm detection models by incorporating unlabeled conversation contexts. Their ap-
proach involves using Bert-large+BiLSTM+NextVLAD, which employs BERT large, a
powerful model with 24 layers and 336 M parameters that enables deep comprehension of
input data. Although BERT is large requires significant processing time and is not the
most efficient option, it delivers exceptional accuracy. The authors achieved precision and
accuracy levels over 90% in the Twitter dataset and results exceeding 80% in the Reddit
dataset, which was obtained through a competition. Given BERT’s amazing performance
as one of the best Transformers, we intend to use its skills for sarcasm detection in our
work.

In their recent paper, Shrivastava and Kumar Shrivastava and Kumar| (2021)) intro-
duced an innovative approach to detect sarcasm in a social media text. Their hybrid
model uses both semantic and syntactic aspects of the text to improve sarcasm detec-
tion accuracy. They compared the model’s performance to that of other regularly used
models, such as Support Vector Machine, Logistic Regression, Long Short-Term Memory,
Convolutional Neural Networks, BILSTM, and attention-based models, to assess its per-
formance. Using a data file, the researchers fine-tuned the BERT model, resulting in
an advanced classification module that efficiently distinguishes between sarcastic and
non-sarcastic data. The process involves two parts: a BERT tokenizer and a BERT pre-
trained model. Notably, their research outperformed all other deep learning models with
an outstanding accuracy of 70%. While specifics about their study procedures were not
revealed, their findings show the model’s ability in detecting sarcasm, particularly when
conducted on high-performance systems such as Google Colab, which provides large GPU
and RAM resources for efficient execution.

Finally, multiple research papers studied the use of Twitter datasets for sentiment
and sarcasm identification, but their results were not consistently better compared to
other types of datasets. Recently, a transformative study by (Gosavi; 2022)) emerged,
focusing on leveraging transformer-based approaches for predicting sarcasm and senti-
ment in text. The researchers used BERT, a pre-trained transformer model, to encode
input text from publicly available datasets, subsequently training and evaluating their al-
gorithm.The results showed that their approach outperformed other cutting-edge models
in terms of accuracy and F1 scores. Notably, the model performed exceptionally well at
detecting positive and negative feelings in textual data. However, the algorithm struggled
to recognize sarcasm in neutral statements, most likely due to the lack of asymmetry in
such scenarios, making sarcasm detection more challenging.

2.4 Conclusion

As a result, this work highlights the utility of transformer-based models in detecting
sentiment and sarcasm in textual data. Furthermore, the results beat all previous meth-
odologies. Finally, analyzing its performance revealed a number of issues that needed to
be addressed. The research’s real-world consequences include the development of more
accurate sentiment and sarcasm recognition systems based on natural language processing
(NLP). These algorithms have the potential to be useful in evaluating social media dis-
cussion and customer feedback ratings in a variety of contexts.

3 Methodology

In the literature review of previous papers, a prominent trend is the extensive use of
Twitter datasets for sarcasm detection. This decision was influenced by the dataset’s
public availability and ease of use for academics and students. The primary motivation
behind focusing on Twitter data was to unravel the hidden sentiment behind sarcasm.
Sarcasm often masks genuine emotions, and users use it to express their true feelings
indirectly. For instance, when someone sarcastically remarks, ”Oh, fantastic! My flight
has been postponed,” it actually reflects their frustration or disappointment with the
flight delay. The sarcastic expression serves as a coping mechanism, allowing them to
humorously convey their annoyance at the inconvenience caused by the disrupted travel
plans.

Figure 1: CRISP-DM Methodology

The implementation of ”Sarcasm Detection using DiLiBERT and ALBERT: An In-
Depth Comparative Analysis with BERT” followed the well-structured and widely recog-
nized CRISP-DM methodology. This method is well-known for its planned and meth-
odical approach to planning data mining initiatives. It ensures a successful and efficient
implementation by outlining each step in the process.

Imagine a step-by-step approach like a well-organized roadmap which is also shown in
figure [l Firstly, I will clearly define the goal of the project, which was to detect sarcasm
in text using the DILIBERT and ALBERT models, and then compare their performance
with the BERT model.

Next, For this research project, I chose a dataset called the "News Headline dataset”
compiled by Rishabh Mishra, and it was obtained from the Kaggle website. Initially, the
dataset was in a zip file, and after extracting it in my local computer , there were 2 files
with json file which were then uploaded in Google Colab with the help of the pandas
library.

The original format of the data was JSON, a structured data format often used for
storing and exchanging data. The data was converted to a Data frame format using the

Pandas package to make it easier to work with and understand. The Data frame format
arranges the data in a tabular form, making it more accessible for analysis and processing.

The dataset consists of three columns: ”is_sarcastic,” ”Headline,” and ”article link.”
However, for this research, only two columns were primarily relevant: ”headline” and
"is_sarcastic.” In the dataset, "headline” contains the news headlines in the form of
text strings, and ”is_sarcastic” is a binary attribute. In this context, the value 1 in the
"is_sarcastic” column represents a sarcastic news headline, while the value 0 denotes a
non-sarcastic news headline.

The study focuses on using this dataset to train and test models for detecting sar-
casm. [hope to construct models that can accurately recognize and discriminate sarcastic
news headlines from non-sarcastic ones by working with the "headline” and ”is_sarcastic”
columns, so giving useful insights to the field of natural language understanding and sen-
timent analysis.

Once they had the data ready, I Preprocessed the text data, including lowercasing,
tokenization, and padding/truncation to ensure a consistent format for model input.
Also, I created labels (target variable) that correspond to each headline’s sarcasm status.
Then I Split the data into training, validation, and testing sets to evaluate the model’s
performance.

The next crucial step was training the models. They selected DiLiBERT, ALBERT,
and BERT as the architectures for sarcasm detection and fine-tuned them on the prepared
data. This procedure involved enhancing the models’ pre-trained information for the
sarcasm detection task.

As these models were overfitting, so I used a method called early stopping which will
help our model to do overfitting and will give us accurate results.

After training, I will then evaluate all the models on the validation set that was split
earlier to choose the best-performing model based on appropriate evaluation metrics like
accuracy, precision, recall, and ROC-AUC. This enabled me to choose the best-performing
model based on a variety of metrics, ensuring that it was capable of recognizing sarcasm.

I analyzed the model’s performance throughout the process to guarantee it remains
accurate and successful in real-world settings as well.

I was able to conduct a well-organized and extensive analysis of sarcasm detection util-
izing DiLIBERT, ALBERT, and BERT models using the CRISP-DM approach, offering
useful insights and results for future research and practical applications.

3.1 Data set selection

I will focus on sarcasm detection using news headlines as the primary dataset in this re-
search. While some previous studies utilized Twitter datasets with hashtag-based labels,
these datasets can be noisy and limited in terms of language variety. Furthermore, tweets
often include replies, requiring contextual information for accurate sarcasm recognition.
To address these limitations, I will utilize the News Headlines dataset for Sarcasm De-
tection, sourced from two news websites. The dataset includes headlines from TheOnion,
which produces sarcastic versions of current events, and non-sarcastic news headlines
from HuffPost.I intend to use this dataset to investigate the efficacy of several models in
identifying sarcasm in news headlines. I may also consider incorporating more datasets
to test the models’ robustness across different data sources. Kaggle’s popularity and ease
of use makes it an one of the excellent platforms for gathering and analyzing data.

10

3.1.1 This news dataset has the following advantages over the existing Twit-
ter datasets:

In news headlines, spelling errors or informal language are rare as they are crafted by
professionals with great care. This increases the availability of pre-trained embeddings
and makes language analysis easier. Additionally, compared to Twitter datasets, the
labels we obtain from The Onion, a satirical news outlet, are of higher quality with
minimal noise. The news headlines collected are independent statements, unlike tweets
that may be responses to others, simplifying the process of identifying genuine sarcastic
elements. These factors contribute to the dataset’s reliability and make it conducive for
accurate sarcasm detection research.

3.1.2 Actual Content of Data set

In Figure [2| we will display small amount of data

article_link headline is_sarcastic
0 nhitps:/iwww.huffingtonpost.com/entry/versace-b... former versace store clerk sues over secret 'b...
1 https://www.huffingtonpost.com/entrylroseanne-... the 'roseanne’ revival catches up to our thomn...
2 https:/flocal.theonion.com/mom-starting-to-fea... mom starting to fear son's web series closest ...

3 https://politics.theonion.com/boehner-just-wan... boehner just wants wife to listen, not come up...

o = = O o

4 hitps://www.huffingtonpost.com/entry/jk-rowlin... j.k. rowling wishes snape happy birthday in th...

Figure 2: Snippet of the data

Each record consists of three attributes:

is_sarcastic: 1 if the record is sarcastic otherwise 0

headline: the headline of the news article

article_link: link to the original news article. Useful in collecting supplementary data

The dataset consists of 26710 total observations as well as the three Features Headline,
Sarcastic (a binary feature), and Link (the news link). After that, the dataset will be
used for additional analysis. This news dataset was chosen due to the text’s authenticity,
which included both sarcastic and non-sarcastic content. [[

3.2 Data Pre-processing

Once the dataset was imported into the Google colab notebook, we proceeded with
data pre-processing pipelines. The essential libraries employed were pandas, numpy,
and NTLK and deep learning frameworks like TensorFlow, PyTorch, and Keras. Addi-
tionally, I have installed some additional packages like transformers. The data, in JSON
format, was read using the pandas library. During the initial analysis, we determined the
total word count and obtained value counts for both sarcastic and non-sarcastic labels.
Subsequently, we conducted a basic exploratory analysis. To prepare the data for fur-
ther analysis, we utilized NLP pipelines to remove stop words, punctuation, and other

!Data Collection: https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detectio

11

https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detection

unnecessary elements. The cleaned data was then divided into separate data frames for
sarcastic and non-sarcastic instances to gain a better understanding of the dataset.
In Figure [3| and Figure [d] we will display the split of data

Counts for real and fake news headlines

Number of headlines
Sdl@’“_)

Number of headlines

News Type

Figure 3: Data Split % Figure 4: Total news headlines

3.3 Data Analyzing

We have converted the data from JSON to data frame as mentioned before, as we were
analyzing the data we can see that words in the news headlines plays a vital role in the
detection of sarcasm and so for this we used word cloud to get an idea of the words which
were used the most and for the words which were used in headlines were sarcastic or not.

3.3.1 Word Cloud

From the figures Figure 5] and Figure [6] we can understand that trump, new, say, and etc.
were used in such kind of headlines where it was not meant to be a sarcastic headline. But
on the other hand, we can see new, man, nation and etc were used for sarcastic headlines.
If we can understand that new words were used for both sarcastic and non-sarcastic
headlines. So it is not easy to understand sarcasm just by words.

D0 s LT o _pa) rightstill
getting i ;

1en
might

time radesl e

student
;

future

=
o=
us
L e
—ic
L 02
>
(oX
U]
-

o
—
(1]
(o]
+
[
o
=

democrat

Cyear old

Figure 5: Words used which are not Sarcastic

12

,little : t, lme KHUH‘rgOYle

women
office
name

c
(]
e}
=
—
<.
9}

hand

areamman
b F1ENd

let
l(eep

Figure 6: Words which are used in Sarcastic headlines

3.3.2 Average word length in a text

I have analyzed the text length of the news headlines and wanted to check if there is
any differentiation between the average word length of the sarcastic headlines and non-
sarcastic headlines, but from the figure Figure[7] we can justify that the sarcastic headlines
text length was almost the same as non-sarcastic word length

Average word length in each text

Sarcastic text Not Sarcastic text

02

Figure 7: Word length

3.3.3 Headlines length Distribution and removal of outliers

It is very important to remove outliers that affect our machine learning model, So we
can see that we have one outlier which was calculated by the headline sentence in the

13

figure Figure |8 given below, we can also analyze and can state that the length of the
sarcastic headline is usually more than the non-sarcastic headlines. This will help our
machine learning model to discriminate between the headlines and give a good accuracy
for detecting sarcastic headlines.

Headlines Length Distribution

1000

headline_length

Figure 8: headlines length

4 Design Specification

In this research paper, we will be using 3 models that are a pre-trained encoder trans-
formers model which are BERT(Bidirectional Encoder Representations from Transformers),
Distilled BERT, and A-lite BERT whose parameters are discussed below:

e BERT:12-layer, 768-hidden, 12-heads, 110M parameters. Trained on lower-cased
English text

e DILBERT: 6-layer, 768-hidden, 12-heads, 66M parameters. The DistilBERT model
distilled from the BERT model bert-base-uncased checkpoint

e ALBERT:12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M paramet-
ers. ALBERT base model with no dropout, additional training data, and longer
training

In this project, as computational needs were not matched by my personal computer
so I have used google collab E| which is a hosted Jupyter Notebook service that requires
no setup to use and provides free access to computing resources, including GPUs and
TPUs. In which I have used GPU as a hardware accelerator and T4 as the GPU type, a
snippet [9] is shown below.

Using the Tesla T4 GPU in Google Colab provides significant advantages over a nor-
mal CPU runtime session.The T4 GPU is a strong hardware accelerator that is optimized
for parallel processing, making it an excellent choice for deep learning tasks. With GPU

2colab: https://colab.google/

14

https://colab.google/

Notebook settings

Runtime type
Hardware accelerator

GPU R ©)

GPU type
T4 v

Want access to premium GPUs? Purchase additional compute units

[] Automatically run the first cell or section
[omit code cell output when saving this notebook

Cancel Save

Figure 9: Run time Type

acceleration, training complex neural networks is much faster compared to CPU-only ses-
sions, reducing training times from hours to minutes. The T4 GPU also supports larger
datasets and models, allowing for advanced and accurate results. In contrast, a normal
CPU session lacks the specialized processing capabilities of a GPU, leading to longer
training times and limitations on the scale and complexity of deep learning tasks.

5 Implementation

For sarcasm detection in this research, we have built 3 pre-trained deep learning models
which were BERT, DILBERT, and ALBERT which will be implemented on the news
headlines clean dataset. First, we will use a BERT-based binary classification model for
sarcasm detection.It implements the model using the TensorFlow library. It uses the
"bert-base-uncased’ pre-trained BERT model as an encoder to convert input word IDs
into contextualized word embeddings. The input consists of word IDs represented by a
16-token sequence.

The BERT encoder produces embeddings, and the Lambda layer extracts the first
token’s representation (i.e., [CLS] token) which contains a summary of the whole se-
quence. A dense layer with 128 units and ReLU activation is applied, followed by a
dropout layer to prevent overfitting. Finally, a dense layer with 1 unit and a sigmoid
activation function is used for binary classification, predicting the probability of the in-
put being sarcastic or non-sarcastic. If validation loss does not improve for successive 5
epochs, early stopping with the patience of 5 epochs is employed to cease training.

The resulting model is a BERT-based binary classifier for sarcasm detection, taking
tokenized input sequences and returning a probability score indicating the likelihood of
the input being sarcastic.

I will be using the same fine-tuning for the other 2 models which are DILBERT, and
ALBERT.It implements the model using the TensorFlow library. The ALBERT encoder

15

is loaded from the ’albert-base-v2’ pre-trained model and the DILBERT encoder is loaded
from the ”distilbert-base-uncased” pre-trained model. The model’s architecture consists
of an input layer that takes word IDs as input, followed by the BERT encoder layer to
encode the input text. The output of BERT is passed through a Dense layer with 128
units and a ReLU activation function. A dropout layer with a dropout rate of 0.2 is
added to prevent overfitting. The final output layer is a Dense layer with 1 unit and a
sigmoid activation function, suitable for binary classification. The model aims to predict
whether a given headline is sarcastic (1) or non-sarcastic (0). If validation loss does not
improve over the next 5 epochs, early stopping with the patience of 5 epochs is employed
to halt training.

5.1 Application Phase

During this stage, the three models underwent evaluation using various metrics such as
accuracy, precision, recall, and F1 score to assess their performance. Additionally, a mix
of sarcastic and non-sarcastic sentences was inputted into the neural network to gauge
how well the model functioned.

6 Evaluation

6.1 Case Study 1: BERT

The model design has been explained in detail in the above section. I will implement the
model using the training data, represented by train_ids (input sequences) and train_labels
(corresponding target labels), which is used to train the model over 20 epochs. Dur-
ing training, progress updates are displayed as indicated by verbose = 1. The training
data is divided into batches of size 64 (batch_size = 64), and an early stopping callback
(early_stop) is employed to potentially halt training if the model’s performance on a val-
idation dataset (represented by test_ids and test_labels) stops improving. This training
process aims to optimize the model’s parameters based on the provided training data and
labels while monitoring its performance on the validation set to prevent overfitting.

735/735 [
Epoch 2/20
735/735 [
Epoch 3/20
735/735 [
Epoch 4/20
735/735 [
Epoch 5/20
735/735 [
Epoch 6/20
735/735 [
Epoch 7/20
735/735 [
Epoch 8/20
735/735 [
Epoch 9/20
735/735 [
Epoch 10/20
735/735 [

- 243s 258ms/step - loss: ©.2609 - accuracy: ©.8886 - val loss: ©.1507 - val accuracy: ©.9423

- 187s 255ms/step - loss: ©.1177 - accuracy: 0.9564 - val loss: ©.1060 - val accuracy: ©.9604

- 1765 24@ms/step - loss: ©.0520 - accuracy: ©.9817 - val loss: ©.8889 - val accuracy: ©.9725

- 177s 241ms/step - loss: ©.0270 - accuracy: ©.9909 - val loss: ©.0940 - val accuracy: ©.9746

- 1765 239ms/step - loss: ©.0161 - accuracy: 0.9948 - val loss: 0.8594 - val accuracy: 0.9851

- 1765 239ms/step - loss: ©.0133 - accuracy: 0.9956 - val loss: ©0.8734 - val accuracy: 0.9811

- 1765 24ems/step - loss: ©.01@5 - accuracy: 0.9965 - val loss: 0.8746 - val accuracy: 0.9818

- 1765 239ms/step - loss: ©.0082 - accuracy: ©.9972 - val loss: ©.8707 - val accuracy: 0.9843

- 1755 239ms/step - loss: ©.0062 - accuracy: ©.9978 - val loss: ©.8684 - val accuracy: ©.9873

- 176s 239ms/step - loss: ©.0062 - accuracy: 0.9979 - val loss: 0.8710 - val accuracy: ©0.9857

Figure 10: BERT- model and their accuracies and loss values

from figure [L0] we can see that it took 10 epochs for the model to reach validation
accuracy at 99% and due to early stopping which is a method to avoid the model from
overfitting. we have done early stopping on validation loss. we can also see the same

16

graphs for our accuracy on the training and testing dataset acquiring 99 and 98%
accuracy and the same for loss [12| on the training and testing dataset and acquiring as
low as 0.0062 and 0.071 loss.

— loss

0257 val_loss

0.20 1

accuracy
loss

0.10 1

0.05 1

—— accuracy
val_accuracy

0.00 1

T T T T T T T T T T

0 2 4 6 8 0 2 4 6 8
Epochs Epochs

Figure 11: BERT Model Accuracy over Figure 12: BERT Model loss over 10
10 Epochs Epochs

In figure 13| we can see that values in prediction are decimal points, so converting the
decimal system by converting the values to 1 if it is greater than 0.5 and 0 to less than
0.5 to get a clear picture and help us to analyze more efficiently as shown in the figure

Actual Predicted

0 0 0

1 0 0
array([[1.98449492-06],

[1.6871287e-05], 2 1 1
[9.9999607¢-01],

[2.9999654e-01], 3 1 1
[2.9999833e-01],
[4.81756362-05],

[9.9998105e-01], 4 1 1
[2.9974185¢e-01],
[2.6628870e-06],

[1.2346713e-02]], dtype=float32)
Figure 13: Prediction Values Before Figure 14: Prediction Values After

We can also see the results in the given figures 15| and [L6| from this we can understand
that Bert was struggling to find sarcastic comments and predicted non-sarcastic comments
which he predicted wrong for 93 such headlines and where it was not sarcastic model
predicted sarcastic was just 26, which is 4x times less.

17

precision

] 2.99
1 9.98

accuracy
macro avg 9.99
weighted avg 9.99

recall f1-score

Predicted

o- 4375
2
- 3806
9.99
8.99 2.99
@.99 9.99
0 1

4000

3500

3000

2500

2000

1500

1000

Figure 15: Classification report for Figure 16: -Confusion Matrix for BERT
BERT Model model
Receiver Operating Characteristic (ROC) Curve
1.0 n "v
’
’
r
4
’4’
0.8 1 ”
rF
#
R
€ 0.6 »7
v -’
= -~
= e
Vi
& 0.4 ,f’
b} =T ”
=
= g
-
-
s
0.2 1 7
’
Fd
-
-
Fa
po4d ROC curve (AUC = 0.99)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 17: ROC Curve for BERT model

6.2 Case Study 2: ALBERT

While we discussed BERT earlier, with the same configurations for the model with the
same fine tunning and using a pre-trained model ”albert-base-v2” which tends to use 11M
parameters but it takes the same amount of time to run 1 epoch as compared to Bert
with 1 epoch As compared to BERT, ALBERT has achieved 98% |19 of accuracy on
the training dataset and 98% on the validation dataset with 11 epochs out of 20 epochs.
As we can see in [20] the loss was as low as 0.0077 on the training dataset and 0.0964 on

the testing dataset.

18

735/735 [] - 213s 263ms/step - loss: ©.4096 - accuracy: 0.7848 - val _loss: ©.2201 - val_accuracy: 0.9137
Epoch 2/20
735/735 [] - 182s 247ms/step - loss: 0.1564 - accuracy: 0.9425 - val loss: 0.1331 - val_accuracy: 6.9512
Epoch 3/20
735/735 [] - 171s 233ms/step - loss: ©.1192 - accuracy: ©0.9539 - val loss: ©.1712 - val accuracy: 0.9480
Epoch 4/20
735/735 [] - 18@s 245ms/step - loss: ©.0568 - accuracy: 0.9814 - val_loss: ©.1193 - val accuracy: 0.9671
Epoch 5/20
735/735 [] - 180s 245ms/step - loss: ©.0300 - accuracy: 0.9906 - val loss: ©.0983 - val_accuracy: 0.9740
Epoch 6/20
735/735 [] - 169s 23ems/step - loss: ©.0230 - accuracy: 0.9928 - val loss: ©.0823 - val accuracy: 0.9771
Epoch 7/20
735/735 [1 - 1795 244ms/step - loss: 0.0154 - accuracy: 0.9958 - val loss: ©.0909 - val accuracy: 0.9808
Epoch 8/20
735/735 [] - 176s 232ms/step - loss: ©.0126 - accuracy: 0.9964 - val_loss: ©.0901 - val accuracy: 0.9790
Epoch 9/20
735/735 [] - 18@s 245ms/step - loss: ©.0107 - accuracy: 0.9966 - val loss: ©.0900 - val accuracy: 0.9804
Epoch 18/20
735/735 [] - 180s 245ms/step - loss: ©.0105 - accuracy: 0.9964 - val loss: ©.0914 - val accuracy: ©.9830
Epoch 11/20
735/735 [] - 1865 245ms/step - loss: ©.0077 - accuracy: 0.9974 - val loss: ©.0964 - val accuracy: 0.9827
1.00 - —
0.40 loss
— val_loss
0.357
0.95 4
0.30 -
> 0.25 A
& 0.90 1 9
2 © 0.201
o
©
0.15 1
0.85 1
0.10 1
0.05 -
0.80 1 — accuracy
— val_accuracy
0.00 A
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Epochs Epochs

Figure 19: ALBERT Model Accuracy Figure 20: ALBERT Model Loss over 11
over 11 Epochs Epochs

19

From the figure 22]23we can see that for evaluation, we have used the ROC curve and
Confusion matrix we can analyze that ALBERT was equally struggling to find sarcasm
and non-sarcasm detection and was not too fast with less number of parameters.

- 4000
- 3500
o - 4401
- 3000
2500
H
=]
2000
precision recall fi-score support
1500
2] 0.98 0.99 8.98 4466
1 2.98 9.98 0.98 3834 - 3755
1000
accuracy ©.98 8300
macro avg 9.98 0.98 @.98 8300 500
weighted avg 09.98 9.98 9.98 8300
o i

Predicted

Figure 21: Classification report for Al- Figure 22: Confusion Matrix for AL-
bert Model BERT model

6.3 Case Study 3: DILBERT

As we have discussed BERT and ALBERT, DILBERT is a distilled bert with 66M para-
meters and is the fastest model in our project taking the time of approx-90-100s for each
epoch as shown in figure 24 From this we can understand that DILBERT might have
been designed to take better advantage of parallel computing, leading to faster processing
on multi-core CPUs or GPUs. But it takes 16 epochs with early stopping to avoid over-
fitting shown in the below figures and achieved 99% on the training dataset and
validation with 97% accuracy and with loss of 0.0124 and 0.138 which is much higher
than other 2 models compared.

The model stopped at the 16th epoch as it saw the validation loss was fluctuating as
shown in figure 26 so after having the patience of 5 epochs it stopped the model to train
more and test it.

As we can see through the confusion matrix [27]and 28| Dilbert has an accuracy of 98%
which is almost the same accuracy as Bert, but it was not only struggling with sarcastic
headlines but also non-sarcastic headlines to predict it properly

20

True Positive Rate

Receiver Operating Characteristic (ROC) Curve

1.0 1

0.8 1

0.6 1

0.4 +

0.2 +

0.0 1

ROC curve (AUC = 0.98)

T T
0.4 0.6 0.8 1.0

False Positive Rate

Figure 23: ROC Curve for ALBERT model

Epoch 9/20
735/735 [

Epoch 10/20
735/735 [

Epoch 11/20
735/735 [

Epoch 12/20
735/735 [

Epoch 13/20
735/735 [

Epoch 14/20
735/735 [

Epoch 15/20
735/735 [

Epoch 16/20
735/735 [

] - 93s 126ms/step - loss: ©.0376 - accuracy: ©.9872 - val loss: 0.1158 - val_accuracy: 9.9698
] - 92s 125ms/step - loss: ©.0319 - accuracy: 0.9886 - val loss: 0.1355 - val accuracy: ©.9680
] - 91s 124ms/step - loss: ©.0275 - accuracy: ©.9906 - val loss: ©.1058 - val accuracy: ©.9723
] - 92s 125ms/step - loss: ©.0209 - accuracy: ©.9928 - val loss: 0.1407 - val_accuracy: 9.9690
1 - 925 125ms/step - loss: ©.0188 - accuracy: ©.9936 - val loss: ©.1233 - val accuracy: ©.9737
] - 92s 125ms/step - loss: ©.0147 - accuracy: ©.9947 - val loss: ©.1340 - val accuracy: ©.9737
] - 92s 125ms/step - loss: ©.0142 - accuracy: 0.9950 - val_loss: ©.1246 - val_accuracy: ©.9746
1 - 97s 132ms/step - loss: ©.0124 - accuracy: ©.9958 - val loss: 0.1380 - val accuracy: ©.9765

Figure 24:

DILBERT- model and their accuracies and loss values

21

1.00 4

0.95 1

0.90 1

0.85 4

accuracy

0.80 1

0.75 1

0.70 +— T

—— accuracy
val_accuracy

Epochs

Figure 25: DILBERT Model Accuracy
over 16 Epochs

2]
1

accuracy
macro avg
weighted avg

precision
@.98

0.98

.98
0.98

recall fi-score

9.98
9.97

8.98
9.98

0.98
0.97

0.98
0.98
0.98

support

4466
3834

8300
8300
8300

Figure 27:

(Classification report
DILBERT Model

for

22

— loss
0.5 4 val_loss
0.4+
0.3 4
&
o
0.24
0.1
0.01
T T T T T T T T
0 2 4 6 8 10 12 14

Epochs

Figure 26: DILBERT Model loss over 16
Epochs

Truth

Figure 28:

Predicted

Confusion Matrix

DILBERT model

- 4000

- 3500

- 3000

2500

2000

1500

1000

500

for

Receiver Operating Characteristic (ROC) Curve

1.0 1 =
-’
-
‘I
.
,I
0.8 1 ”
”
-
e
LB}
5 -~
® 0.6 7
W ’
= s
= ,f
(7]
£ 0.4 f’”
o U4
2 7
= ’
’
”
’I'
0.2 Y
”’
-~
r
#
e
ood - ROC curve (AUC = 0.98)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 29: ROC Curve for DILBERT model

6.4 Discussion

In this research paper, we have discussed 3 models which were BERT, ALBERT, and
DILBERT. For all of these models, we had taken similar model complexity to not create
any biases, these models were fine-tuned to get the best results, and as well as we can un-
derstand the difference between the model in detail. All of the models outperformed and
got an accuracy of 98 to 99% and a validation loss of less than 0.1. Detailed observation
is given in Table [1| But to avoid any overfitting we used early stopping for these models
with patience= 5 epochs, which indeed helped us to model to stop when the validation
loss was fluctuating and was not decreasing gradually. From all the above models we can
see that DILBERT was the fastest running model with approx 90-100s for each epoch,
as it was the fastest but when the models were tested on the Y data set it took around
10-11 epochs to reach an accuracy of 98.57% and 98.27% on BERT and Albert while
DILBERT reached 97.23% on 11 epochs but overall it took 16 epochs to reach 97.65%
accuracy overall. This concludes that DILBERT can be used as one of the optimized
solutions for sarcasm detection as compared to BERT as it takes less time and fewer
parameters to reach a higher accuracy.

23

7 Conclusion and Future Work

This research introduced and executed a sarcasm detection approach by integrating the
BERT machine learning algorithm and subsequently comparing its performance against
DILBERT and ALBERT. The research looked at the Sarcasm news dataset to use it
for testing and learning. Throughout the research, a comprehensive modeling process
was meticulously followed, encompassing critical stages such as data preparation, feature
engineering, model creation, and performance evaluation.

The data preparation phase encompassed essential tasks like data cleansing—removing
stopwords, punctuation, and irrelevant text, along with tokenization and lemmatization.
Subsequently, the research concentrated on fine-tuning and evaluating three distinct mod-
els: BERT, ALBERT, and DILBERT. Remarkably, this endeavor yielded significantly en-
hanced accuracy compared to prior research endeavors (Gosavi; 2022). The application
of algorithms to the dataset was a major novelty of this research; especially, while BERT
had previously been applied, the research introduced the first-time implementation of
ALBERT and DILBERT on News Headline data.

Although the research was successful, certain model limitations were identified. Par-
ticularly, the ALBERT model exhibited fewer parameters yet consumed equivalent pro-
cessing time as BERT. This discrepancy provides an opportunity for future advancement
since improving ALBERT’s runtime could considerably improve its practical utility in
effectively evaluating customer perceptions for organizational advantage. In essence, this
study not only exhibited higher precision, but it also opened the door to improving model
efficiency and effectiveness, leading the way for more advanced sentiment analysis meth-
odologies.

Model Epochs | Precision | Accuracy | Average Running Time for 1 epoch(s)
BERT 10 0.9932 0.9856 183.8

ALBERT 11 0.9829 0.9826 180.36

DILBERT 11 0.9737 0.9723 96.18

DILBERT 16 0.9776 0.9765 95.18

Table 1: Performance Metrics of Different Models

24

References

Alharbi, A. S. M. and de Doncker, E. (2019). Twitter sentiment analysis with a deep
neural network: An enhanced approach using user behavioral information, Cognitive
Systems Research 54: 50-61.

Aslam, F., Awan, T. M., Syed, J. H., Kashif, A. and Parveen, M. (2020). Sentiments
and emotions evoked by news headlines of coronavirus disease (covid-19) outbreak,
Humanities and Social Sciences Communications T(1).

Davidov, D., Tsur, O. and Rappoport, A. (2010). Semi-supervised recognition of sarcasm
in twitter and amazon, Proceedings of the fourteenth conference on computational nat-
ural language learning, pp. 107-116.

Felbo, B., Mislove, A., Sggaard, A., Rahwan, I. and Lehmann, S. (2017). Using millions of
emoji occurrences to learn any-domain representations for detecting sentiment, emotion
and sarcasm, arXiv preprint arXiv:1708.0052) .

Ghosh, A. and Veale, T. (2016). Fracking sarcasm using neural network, Proceedings
of the 7th workshop on computational approaches to subjectivity, sentiment and social
media analysis, pp. 161-169.

Gonzélez-Ibanez, R., Muresan, S. and Wacholder, N. (2011). Identifying sarcasm in
twitter: a closer look, Proceedings of the 49th annual meeting of the association for
computational linguistics: human language technologies, pp. 581-586.

Gosavi, S. R. (2022). Transformer based Detection of Sarcasm and it’s Sentiment in
Textual Data, PhD thesis, Dublin, National College of Ireland.

Kumar, A., Narapareddy, V. T., Srikanth, V. A., Malapati, A. and Neti, L. B. M. (2020).
Sarcasm detection using multi-head attention based bidirectional lstm, leee Access

8: 6388-6397.

Lee, H., Yu, Y. and Kim, G. (2020). Augmenting data for sarcasm detection with un-
labeled conversation context, arXiv preprint arXiv:2006.06259 .

Maynard, D. G. and Greenwood, M. A. (2014). Who cares about sarcastic tweets? in-
vestigating the impact of sarcasm on sentiment analysis, Lrec 201/ proceedings, ELRA.

Misra, R. and Arora, P. (2019). Sarcasm detection using hybrid neural network, arXiv
preprint arXiw:1908.07414 .

Pan, H., Lin, Z., Fu, P., Qi, Y. and Wang, W. (2020). Modeling intra and inter-modality
incongruity for multi-modal sarcasm detection, Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 1383-1392.

Potamias, R. A., Siolas, G. and Stafylopatis, A.-G. (2020). A transformer-based approach
to irony and sarcasm detection, Neural Computing and Applications 32: 17309-17320.

Rajadesingan, A., Zafarani, R. and Liu, H. (2015). Sarcasm detection on twitter: A
behavioral modeling approach, Proceedings of the eighth ACM international conference
on web search and data mining, pp. 97-106.

25

Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N. and Huang, R. (2013). Sarcasm
as contrast between a positive sentiment and negative situation, Proceedings of the
2013 conference on empirical methods in natural language processing, pp. 704-714.

Shrivastava, M. and Kumar, S. (2021). A pragmatic and intelligent model for sarcasm
detection in social media text, Technology in Society 64: 101489.

Tsur, O., Davidov, D. and Rappoport, A. (2010). Icwsm—a great catchy name: Semi-
supervised recognition of sarcastic sentences in online product reviews, Proceedings of
the International AAAI Conference on Web and Social Media, Vol. 4, pp. 162-169.

26

	Introduction
	Reserach Question

	Related Work
	Origin of Sarcasm Detection in Computing
	Deep learning techniques for sarcasm detection
	Transformer-based Sarcasm Detection
	Conclusion

	Methodology
	Data set selection
	This news dataset has the following advantages over the existing Twitter datasets:
	Actual Content of Data set

	Data Pre-processing
	Data Analyzing
	Word Cloud
	Average word length in a text
	 Headlines length Distribution and removal of outliers

	Design Specification
	Implementation
	Application Phase

	Evaluation
	 Case Study 1: BERT
	 Case Study 2: ALBERT
	Case Study 3: DILBERT
	Discussion

	Conclusion and Future Work

