

Enhancing Chronic Kidney Disease Prediction through Machine Learning

> MSc Research Project Data Analytics

Revanth Vijay Kumar Student ID: x21218374

School of Computing National College of Ireland

Supervisor: Dr. Syed Muslim Jameel

Project Submission Sheet

Student Name:	Revanth Vijay Kumar
Student ID:	x21218374
Program:	Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Dr. Syed Muslim Jameel
Submission Due Date:	14/08/2023
Project Title:	Enhancing Chronic Kidney Disease Prediction through Machine Learning
Word Count:	145
Page Count:	27

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Revanth Vijay Kumar
Date:	12/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Revanth Vijay Kumar X21218374

1. Introduction

This configuration manual is used as supporting document for the research project "Enhancing Chronic Kidney Disease Prediction through Machine Learning". Several machine learning algorithms were constructed, even with its versions were evaluated, and compared to see which one performs better at predicting chronic kidney disease. In addition to highlighting key portions of the code, this document gives an overview of the computational environment utilized to carry out this research and contains some of the graphs and outputs that were created as a result.

2. Specifications

The following sub-sections contain a list of the specifications and prerequisites needed to create and execute the files created for this research project.

2.1 Hardware specifications:

Hardware	Configuration						
System	ASUSTek COMPUTER INC.						
Processor	Intel [®] Core [™] i7-1065G7 CPU @ 1.30GHz, 14						
	Mhz, 4 Cores, 8 Logical Processors						
Operating System	Microsoft Windows 10 Home (64 bit)						
Installed Physical Memory (RAM)	16 GB						
Total Physical Memory	15.7 GB						
Available Physical Memory	4.79 GB						
Total Virtual Memory	46.7 GB						
Available Virtual Memory	30.8 GB						
Hard Drive	952 GB						
Graphic Card	Intel [®] Iris [®] Plus Graphics						

2.2 Device Specifications:

Version10.0.19044 Build 19044Other OS DescriptionNot AvailableOS ManufacturerMicrosoft CorporationSystem NameLAPTOP-T35D2GUBSystem ManufacturerASUSTEK COMPUTER INC.System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKUProcessorProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWSSystem Boot DeviceUnited Kingdom	
Other OS DescriptionNot AvailableOS ManufacturerMicrosoft CorporationSystem NameLAPTOP-T35D2GUBSystem ManufacturerASUSTeK COMPUTER INC.System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKUProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JAUX393JAMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWS\system32Boot Device\Device\HarddiskVolume1LocaleUnited Kingdom	
OS ManufacturerMicrosoft CorporationSystem NameLAPTOP-T35D2GUBSystem ManufacturerASUSTeK COMPUTER INC.System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKUProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC.\WINDOWSSystem JirectoryC.\WINDOWSSystem JirectoryC.\WINDOWSSystem JirectoryDivice\HarddiskVolume1LocaleUnited Kingdom	
System NameLAPTOP-T35D2GUBSystem ManufacturerASUSTeK COMPUTER INC.System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKUProcessorProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
System ManufacturerASUSTEK COMPUTER INC.System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKUProcessorProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JAJaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot Device\Device\HarddiskVolume1LocaleUnited Kingdom	
System ModelZenBook UX393JA_UX393JASystem Typex64-based PCSystem SKU	
System SKUProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
ProcessorIntel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1498 Mhz, 4 Core(s), 8 Logical Processor(s)BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JAPlatform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWS\system32Boot DeviceUDevice\HarddiskVolume1LocaleUnited Kingdom	
BIOS Version/DateAmerican Megatrends Inc. UX393JA.304, 28/01/2021SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWS\system32Boot DeviceUDevice\HarddiskVolume1LocaleUnited Kingdom	
SMBIOS Version3.2Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
Embedded Controller Version255.255BIOS ModeUEFIBaseBoard ManufacturerASUSTEK COMPUTER INC.BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
BIOS ModeUEFIBaseBoard ManufacturerASUSTeK COMPUTER INC.BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
BaseBoard ManufacturerASUSTek COMPUTER INC.BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot DeviceUnited Kingdom	
BaseBoard ProductUX393JABaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot Device\Device\HarddiskVolume1LocaleUnited Kingdom	
BaseBoard Version1.0Platform RoleMobileSecure Boot StateOnPCR7 ConfigurationElevation Required to ViewWindows DirectoryC:\WINDOWSSystem DirectoryC:\WINDOWS\system32Boot Device\Device\HarddiskVolume1LocaleUnited Kingdom	
Platform Role Mobile Secure Boot State On PCR7 Configuration Elevation Required to View Windows Directory C:\WINDOWS System Directory C:\WINDOWS\system32 Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
Secure Boot State On PCR7 Configuration Elevation Required to View Windows Directory C:\WINDOWS System Directory C:\WINDOWS\system32 Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
PCR7 Configuration Elevation Required to View Windows Directory C:\WINDOWS System Directory C:\WINDOWS\system32 Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
Windows Directory C:\WINDOWS System Directory C:\WINDOWS\system32 Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
System Directory C:\WINDOWS\system32 Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
Boot Device \Device\HarddiskVolume1 Locale United Kingdom	
Locale United Kingdom	
3	
Hardware Abstraction Layer Version = "10.0.19041.1806"	
Username LAPTOP-T35D2GUB\aggui	
Time Zone GMT Summer Time	
Installed Physical Memory (RAM) 16.0 GB	
Total Physical Memory 15.7 GB	
Available Physical Memory 4.79 GB	
Total Virtual Memory 46.7 GB	
Available Virtual Memory 30.8 GB	
Page File Space 31.0 GB	

2.3 Software specifications:

Resources	Specification
Operating System (OS)	Windows 10
Main Memory (RAM)	8GB
Hard disk	256GB SSD and 1TB HDD
Programming Language	Python
Platform	Jupyter Notebook

2.4 Python Libraries:

- Pandas
- NumPy
- Seaborn
- Matplotlib
- IPython.display
- Scikit-learn
- sklearn.preprocessing
- sklearn.impute
- sklearn.model_selection
- sklearn.metrics
- sklearn.neighbors
- Imblearn
- imblearn.over_sampling.

2.5 Code and Output

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from IPython.display import display from sklearn.mputer import LabelEncoder, MinMaxScaler from sklearn.impute import KNNImputer, SimpleImputer from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_selection import chi2, mutual_info_classif

pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)

df = pd.read_csv('<u>/content/kidney_disease.csv</u>')
set index to id
df.set_index('id', inplace=True)
display(df)

3		age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc
	id												
	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.0	1.2
	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.0	0.8
	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	1.8
	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	3.8
	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.0	1.4
	395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0	49.0	0.5
	396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0	31.0	1.2
	397	12.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.0	26.0	0.6
	398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.0	50.0	1.0
	399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	131.0	18.0	1.1
4	400 ro ∢	ws × 2	5 colur	mns									•

```
# check column attribute
columns = df.columns
columns_numerical = ["age", "bp", "sg", "al", "su", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv", "wc", "rc"]
columns_categorical = ["rbc", "pc", "pcc", "ba", "htn", "dm", "cad", "appet", "pe", "ane", "classification"]
print("attribute Numerical: {}".format(columns_numerical))
print("attribute Categorical: {}".format(columns_categorical))
      attribute Numerical: ['age', 'bp', 'sg', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc']
attribute Categorical: ['rbc', 'pc', 'pcc', 'ba', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane', 'classification']
# check misssing value
missing_value_numerical = df[columns_numerical].isnull().sum()
missing_value_categorical = df[columns_categorical].isnull().sum()
display(missing_value_numerical)
display(missing_value_categorical)
                       9
         age
                      12
         bp
         sg
                      47
          al
                      46
          su
                      49
                      44
         bgr
         bu
                      19
                      17
         SC
         sod
                      87
         pot
                      88
         hemo
                      52
  # check data type
  data_type = df.dtypes
  print(data_type)
  df['dm'] = df['dm'].replace(to_replace={'\tno':'no', '\tyes':'yes', ' yes':'yes'})
  df['cad'] = df['cad'].replace(to_replace='\tno', value='no')
  df['classification'] = df['classification'].replace(to_replace='ckd\t', value='ckd')
  df['pcv'] = df['pcv'].replace(to_replace={'\t?':np.nan, '\t43':43})
df['wc'] = df['wc'].replace(to_replace={'\t?':np.nan, '\t6200':6200, '\t8400':8400})
df['rc'] = df['rc'].replace(to_replace={'\t?':np.nan, '\t3.9':3.9, '\t4.0':4.0, '\t5.2':5.2})
  for i in columns_categorical:
       print(i)
        print(df[i].unique())
  for i in columns_numerical:
       print(i)
        print(df[i].unique())
```

age	float64
bp	float64
sg	float64
al	float64
su	float64
rbc	object
pc	object
pcc	object
ba	object
bgr	float64
bu	float64
SC	float64
sod	float64
pot	float64
hemo	float64
pcv	object
WC	object
nc	object
htn	object
dm	object
cad	object
appet	object
pe	object
ane	object
classification	object
dtype: object	
rbc	
[nan 'normal' 'a	normal']
рс	
['normal' 'abnorr	ual' nan]
pcc	
['notpresent' 'pr	esent' nan]
ba	
['notpresent' 'pr	esent' nan]
htn	
['yes' 'no' nan]	
dm	
['yes' 'no' nan]	
cad	
['no' 'yes' nan]	
appet	
['good' 'poor' na	in]
pe	
['no' 'yes' nan]	
ane	
['no' 'yes' nan]	
classification	
['ckd' 'notckd']	
age	
	60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
	76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
	38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
	3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
20. 29. 28. 22.	79.]
bp	
-	90. nan 100. 60. 110. 140. 180. 120.]
sg	

```
[1.02 1.01 1.005 1.015 nan 1.025]
# change df classficication to 0 and 1
df['classification'] = df['classification'].replace(to_replace={'ckd':1, 'notckd':0})
print("Dataset Original")
display(df)
nan_values = df[columns_categorical].isnull().sum()
simpleImputer = SimpleImputer(missing_values = np.nan, strategy = 'most_frequent')
df[columns_categorical] = simpleImputer.fit_transform(df[columns_categorical])
print("After being imputed with Categorical")
display(df)
encoder = LabelEncoder()
df[columns_categorical] = df[columns_categorical].apply(encoder.fit_transform)
print("After being encoded")
display(df)
imputer = KNNImputer(n_neighbors=5)
df[columns_numerical] = imputer.fit_transform(df[columns_numerical])
print("After being imputed with Numerical data")
```

```
display(df)
```

Datas	set Or	igina	1												
	age	bp	sg	al	su	rbc	рс	pcc	ba	bgr	bu	sc	sod	pot	hen
id															
0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.0	1.2	NaN	NaN	15
1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.0	0.8	NaN	NaN	11
2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	1.8	NaN	NaN	9
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	3.8	111.0	2.5	11
4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.0	1.4	NaN	NaN	11
395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0	49.0	0.5	150.0	4.9	15
396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0	31.0	1.2	141.0	3.5	16
397	12.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.0	26.0	0.6	137.0	4.4	15
398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.0	50.0	1.0	135.0	4.9	14
399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent notpresent		131.0	18.0	1.1	141.0	3.5	15
400 r	ows × 2	25 colu	mns												
After being imputed with Categorical															
	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot	her
id															
0	48.0	80.0	1.020	1.0	0.0	normal	normal	notpresent	notpresent	121.0	36.0	1.2	NaN	NaN	15
1	7.0	50.0	1.020	4.0	0.0	normal	normal	notpresent	notpresent	NaN	18.0	0.8	NaN	NaN	11
2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	1.8	NaN	NaN	9
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	3.8	111.0	2.5	11
4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.0	1.4	NaN	NaN	11
395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0	49.0	0.5	150.0	4.9	15
396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0	31.0	1.2	141.0	3.5	16

```
# plot label target (classification)
value_1_classification = df[df['classification'] == 1].shape[0]
value_0_classification = df[df['classification'] == 0].shape[0]
# change df classification to 0 and 1
print("data classification 1 (kidney disease): {}".format(value_1_classification))
print(" data classification 0 (not kidney disease){}".format(value_0_classification))
```

```
data classification 1 (kidney disease): 250
data classification 0 (not kidney disease)150
       id
# check missing value
missing_value_numerical = df[columns_numerical].isnull().sum()
missing_value_categorical = df[columns_categorical].isnull().sum()
print("Missing Value Numerical: {}".format(missing_value_numerical))
print("Missing Value Categorical: {}".format(missing_value_categorical))
     Missing Value Numerical: age
                                      0
     bp
              0
     sg
              0
     al
              0
     su
              0
     bgr
              0
              0
     bu
              0
     sc
              0
     sod
     pot
              0
     hemo
              0
     pcv
              0
              0
     WC
     rc
              0
     dtype: int64
     Missing Value Categorical: rbc
                                                     0
                        0
     рс
                        0
     рсс
                        0
     ba
     htn
                        0
                        0
     dm
     cad
                        0
                        0
```

pe	0
ane	0
classification	0
dtype: int64	

appet

X = df.drop(columns=['classification'])

y = df['classification']

Х

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	sc	sod	pot	hemo	pcv	WC	rc	ht
id																			
0	48.0	80.0	1.020	1.0	0.0	1	1	0	0	121.0	36.0	1.2	137.6	4.20	15.4	44.0	7800.0	5.20	
1	7.0	50.0	1.020	4.0	0.0	1	1	0	0	113.0	18.0	0.8	137.4	4.00	11.3	38.0	6000.0	4.96	
2	62.0	80.0	1.010	2.0	3.0	1	1	0	0	423.0	53.0	1.8	133.8	4.20	9.6	31.0	7500.0	3.80	
3	48.0	70.0	1.005	4.0	0.0	1	0	1	0	117.0	56.0	3.8	111.0	2.50	11.2	32.0	6700.0	3.90	
4	51.0	80.0	1.010	2.0	0.0	1	1	0	0	106.0	26.0	1.4	138.4	3.98	11.6	35.0	7300.0	4.60	
395	55.0	80.0	1.020	0.0	0.0	1	1	0	0	140.0	49.0	0.5	150.0	4.90	15.7	47.0	6700.0	4.90	
396	42.0	70.0	1.025	0.0	0.0	1	1	0	0	75.0	31.0	1.2	141.0	3.50	16.5	54.0	7800.0	6.20	
397	12.0	80.0	1.020	0.0	0.0	1	1	0	0	100.0	26.0	0.6	137.0	4.40	15.8	49.0	6600.0	5.40	
398	17.0	60.0	1.025	0.0	0.0	1	1	0	0	114.0	50.0	1.0	135.0	4.90	14.2	51.0	7200.0	5.90	
399	58.0	80.0	1.025	0.0	0.0	1	1	0	0	131.0	18.0	1.1	141.0	3.50	15.8	53.0	6800.0	6.10	

400 rows × 24 columns

from imblearn.over_sampling import SMOTE

num_additional_samples = 50

Calculate the target number of samples after augmentation target_samples = len(y) + num_additional_samples

Calculate the sampling strategy to achieve the target number of samples sampling_strategy = {class_label: target_samples for class_label in set(y)}

Apply SMOTE to generate the specified number of additional synthetic samples smote = SMOTE(sampling_strategy=sampling_strategy, random_state=42) X_resampled, y_resampled = smote.fit_resample(X, y)

/usr/local/lib/python3.10/dist-packages/imblearn/utils/_validation.py:313: UserWarning: After over-sampling, the number of samples
warnings.warn(
/usr/local/lib/python3.10/dist-packages/imblearn/utils/_validation.py:313: UserWarning: After over-sampling, the number of samples
warnings.warn(

•

.

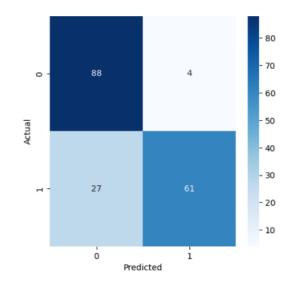
X = X_resampled y = y_resampled X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

print(" X_train: {}".format(X_train.shape))
print(" X_test: {}".format(X_test.shape))
print(" y_train: {}".format(y_train.shape))
print(" y_test: {}".format(y_test.shape))

print("Dataset X_train") display(X_train) print("Dataset X_test") display(X_test) print("Dataset y_train") display(y_train) print("Dataset y_test") display(y_test)

> X_train: (720, 24) X_test: (180, 24) y_train: (720,) y_test: (180,) Dataset X_train

I


	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	
10	50.000000	60.000000	1.01000	2.000000	4.000000	1	0	1	0	490.000000	55.000000	4.0000
334	24.000000	80.000000	1.02500	0.000000	0.000000	1	1	0	0	125.000000	28.200000	0.8800
244	64.000000	90.000000	1.01500	3.000000	2.000000	1	0	1	0	463.000000	64.000000	2.8000
678	43.181836	69.090821	1.02000	0.000000	0.000000	1	1	0	0	117.636329	25.545459	0.7454
306	52.000000	80.000000	1.02000	0.000000	0.000000	1	1	0	0	128.000000	30.00000	1.2000
106	50.000000	90.000000	1.01400	1.600000	0.400000	1	1	0	0	89.000000	118.000000	6.1000
270	23.000000	80.000000	1.02500	0.000000	0.000000	1	1	0	0	111.000000	34.000000	1.1000
860	46.686736	60.460026	1.01477	2.861992	0.092005	0	0	0	0	153.029385	35.564090	1.2736
435	34.874672	61.771107	1.02000	0.000000	0.000000	1	1	0	0	105.280676	46.114447	0.9937
102	17.000000	60.000000	1.01000	0.000000	0.000000	1	1	0	0	92.000000	32.000000	2.1000
720 ro	ws × 24 colu	mns										
Datas	et X_test											
Datas	et X_test age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	
	-		-			rbc 1			ba 0	-		_
70	age	80.000000	1.015000	0.000000	4.000000					360.000000	19.000000	0.70
70 827	age 61.000000	80.000000 65.313546	1.015000 1.014686	0.000000	4.000000 2.312877	1	1	0	0	360.000000 216.165144	19.000000 33.438965	0.70 23.17
70 827 231	age 61.000000 69.000000	80.000000 65.313546 90.000000	1.015000 1.014686 1.015000	0.000000 0.281187 1.400000	4.000000 2.312877 1.000000	1	1	0	0	360.000000 216.165144 269.000000	19.000000 33.438965 51.000000	0.70 23.17 2.80
70 827 231	age 61.000000 69.000000 60.000000 59.791747	80.000000 65.313546 90.000000	1.015000 1.014686 1.015000 1.020000	0.000000 0.281187 1.400000 0.000000	4.000000 2.312877 1.000000 0.000000	1 1 1	1	0	0 0 0	360.000000 216.165144 269.000000 103.419729	19.000000 33.438965 51.000000 30.071566	0.70 23.17 2.80 1.07
70 827 231 588	age 61.000000 69.000000 60.000000 59.791747	80.000000 65.313546 90.000000 67.440362	1.015000 1.014686 1.015000 1.020000	0.000000 0.281187 1.400000 0.000000	4.000000 2.312877 1.000000 0.000000	1 1 1	1 1 1 1	0 0 0 0	0 0 0	360.000000 216.165144 269.000000 103.419729	19.000000 33.438965 51.000000 30.071566	0.70 23.17 2.80 1.07
70 827 231 588 39 	age 61.000000 69.000000 60.000000 59.791747 82.000000	80.000000 65.313546 90.000000 67.440362 80.000000 	1.015000 1.014686 1.015000 1.020000 1.010000	0.000000 0.281187 1.400000 0.000000 2.000000 	4.000000 2.312877 1.000000 0.000000 2.000000 	1 1 1 1	1 1 1 1	0 0 0 0 0 0	0 0 0 0 0	360.000000 216.165144 269.000000 103.419729 140.000000	19.000000 33.438965 51.000000 30.071566 70.000000	0.70 23.17 2.80 1.07 3.40
70 827 231 588 39 897	age 61.000000 69.000000 60.000000 59.791747 82.000000 	80.000000 65.313546 90.000000 67.440362 80.000000 79.635563	1.015000 1.014686 1.015000 1.020000 1.010000 1.010073	0.000000 0.281187 1.400000 0.000000 2.000000 0.032799	4.000000 2.312877 1.000000 0.000000 2.000000 0.000000	1 1 1 1	1 1 1 1 1	0 0 0 0 0	0 0 0 0	360.000000 216.165144 269.000000 103.419729 140.000000 132.291549	19.000000 33.438965 51.000000 30.071566 70.000000 96.924912	0.70 23.17 2.80 1.07 3.40 2.78
70 827 231 588 39 897 578	age 61.000000 69.000000 60.000000 59.791747 82.000000 74.127553	80.000000 65.313546 90.000000 67.440362 80.000000 79.635563 63.710572	1.015000 1.014686 1.015000 1.020000 1.010000 1.010073 1.023145	0.000000 0.281187 1.400000 0.000000 2.000000 0.032799 0.000000	4.000000 2.312877 1.000000 0.000000 2.000000 0.000000 0.000000	1 1 1 1 	1 1 1 1 1	0 0 0 0 0 0 0 0 0		360.000000 216.165144 269.000000 103.419729 140.000000 132.291549 123.742114	19.000000 33.438965 51.000000 30.071566 70.000000 96.924912 43.031543	0.70 23.17 2.80 1.07 3.40 2.78 0.85
70 827 231 588 39 897 578	age 61.000000 69.000000 60.000000 59.791747 82.000000 74.127553 44.144714 69.781546	80.000000 65.313546 90.000000 67.440362 80.000000 79.635563 63.710572	1.015000 1.014686 1.015000 1.020000 1.010000 1.010073 1.023145 1.015683	0.000000 0.281187 1.400000 0.000000 2.000000 0.032799 0.000000 0.683078	4.000000 2.312877 1.000000 2.000000 2.000000 0.000000 0.273231	1 1 1 1 1	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	000000000000000000000000000000000000000	360.000000 216.165144 269.000000 103.419729 140.000000 132.291549 123.742114 130.027716	19.000000 33.438965 51.000000 30.071566 70.000000 96.924912 43.031543 54.541574	0.70 23.17 2.80 1.07 3.40 2.78 0.85 5.96
70 827 231 588 39 897 578 779	age 61.000000 69.000000 59.791747 82.000000 74.127553 44.144714 69.781546 61.000000	80.000000 65.313546 90.000000 67.440362 80.000000 79.635563 63.710572 80.00000	1.015000 1.014686 1.015000 1.020000 1.010000 1.010073 1.023145 1.015683 1.025000	0.000000 0.281187 1.400000 0.000000 2.000000 0.032799 0.000000 0.683078 0.000000	4.000000 2.312877 1.000000 0.000000 2.000000 0.000000 0.273231 0.000000	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	360.000000 216.165144 269.000000 103.419729 140.000000 132.291549 123.742114 130.027716 108.000000	19.000000 33.438965 51.000000 30.071566 70.000000 96.924912 43.031543 54.541574 75.000000	0.70 23.17 2.80 1.07 3.40 2.78 0.85 5.96 1.90

model_knn_original = KNeighborsClassifier(n_neighbors=5)
model_knn_original.fit(X_train, y_train)

y_pred = model_knn_original.predict(X_test)

df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})

```
cm_knn_original = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_knn_original, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```


classification report cr_knn_original = classification_report(y_test, y_pred) print(cr_knn_original)

print(model_knn_original.score(X_train, y_train))

	precision	recall	f1-score	support
0 1	0.77 0.94	0.96 0.69	0.85 0.80	92 88
accuracy macro avg weighted avg	0.85 0.85	0.82 0.83	0.83 0.82 0.82	180 180 180
0.9				

cv_knn_original = cross_val_score(model_knn_original, X_train, y_train, cv=5)
cv_knn_original_precision = cross_val_score(model_knn_original, X_train, y_train, cv=5, scoring='precision')
cv_knn_original_recall = cross_val_score(model_knn_original, X_train, y_train, cv=5, scoring='recall')

```
cv_knn_original_T1 = cross_val_score(model_knn_original, A_train, y_train, cv=5, scoring= T1 )
# check data cv each fold
print("Cross Validation Score Accuracy: {}".format(cv_knn_original))
print("Cross Validation Score Accuracy Mean: {}".format(cv_knn_original.mean()))
Cross Validation Score Accuracy: [0.81944444 0.85416667 0.7777778 0.82638889 0.78472222]
Cross Validation Score Accuracy Mean: 0.8125
# feature scaling with minmaxscaler
scaler = MinMaxScaler()
print("Dataset before Scaling")
```

```
display(X)
X[columns_numerical] = scaler.fit_transform(X[columns_numerical])
print("Dataset after Scaling")
display(X)
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```
print(" X_train: {}".format(X_train.shape))
print(" X_test: {}".format(X_test.shape))
print(" y_train: {}".format(y_train.shape))
print(" y_test: {}".format(y_test.shape))
```

Datas	et before s	Scaling										
	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	sc
0	48.000000	80.000000	1.020000	1.000000	0.000000	1	1	0	0	121.000000	36.000000	1.200000
1	7.000000	50.000000	1.020000	4.000000	0.000000	1	1	0	0	113.000000	18.000000	0.800000
2	62.000000	80.000000	1.010000	2.000000	3.000000	1	1	0	0	423.000000	53.000000	1.800000
3	48.000000	70.000000	1.005000	4.000000	0.000000	1	0	1	0	117.000000	56.000000	3.800000
4	51.000000	80.000000	1.010000	2.000000	0.000000	1	1	0	0	106.000000	26.000000	1.400000
895	38.930639	70.000000	1.010208	0.097106	0.000000	1	1	0	0	119.820858	23.953594	0.876297
896	9.728786	62.015560	1.010504	3.798444	0.302334	0	0	0	1	104.118111	63.271214	1.010078
897	74.127553	79.635563	1.010073	0.032799	0.000000	1	1	0	0	132.291549	96.924912	2.787245
898	65.544483	72.833289	1.005944	1.283329	0.000000	0	0	0	0	205.613412	30.077745	1.400000
899	52.709156	65.849661	1.010000	0.000000	0.000000	0	1	0	0	222.960813	45.637264	1.914706
900 ro	ws × 24 colu	mns										

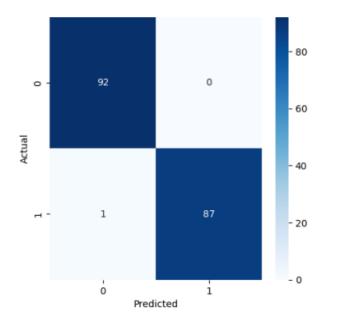
Dataset after Scaling

	age	bp	sg	al	su	rbc	рс	pcc	ba	bgr	bu	sc	
0	0.522727	0.230769	0.750000	0.200000	0.000000	1	1	0	0	0.211538	0.088575	0.010582	0.839
1	0.056818	0.000000	0.750000	0.800000	0.000000	1	1	0	0	0.194444	0.042362	0.005291	0.838
2	0.681818	0.230769	0.250000	0.400000	0.600000	1	1	0	0	0.856838	0.132221	0.018519	0.815
3	0.522727	0.153846	0.000000	0.800000	0.000000	1	0	1	0	0.202991	0.139923	0.044974	0.671
4	0.556818	0.230769	0.250000	0.400000	0.000000	1	1	0	0	0.179487	0.062901	0.013228	0.844
895	0.419666	0.153846	0.260404	0.019421	0.000000	1	1	0	0	0.209019	0.057647	0.006300	0.813
896	0.087827	0.092427	0.275195	0.759689	0.060467	0	0	0	1	0.175466	0.158591	0.008070	0.825
897	0.819631	0.227966	0.253644	0.006560	0.000000	1	1	0	0	0.235666	0.244993	0.031577	0.812
898	0.722096	0.175641	0.047221	0.256666	0.000000	0	0	0	0	0.392336	0.073370	0.013228	0.833
899	0.576240	0.121920	0.250000	0.000000	0.000000	0	1	0	0	0.429403	0.113318	0.020036	0.744
900 ro	ws x 24 col	umns											

900 rows × 24 columns

model_knn_scaling = KNeighborsClassifier(n_neighbors=5)
model_knn_scaling.fit(X_train, y_train)

y_pred = model_knn_scaling.predict(X_test)


df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)

	Actual	Predicted
70	1	1
827	1	1
231	1	1
588	0	0
39	1	1
897	1	1
578	0	0
779	1	1
25	1	1
84	1	1

180 rows × 2 columns

```
cm_knn_scaling = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_knn_scaling, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
```

plt.ylabel('Actual')
plt.show()

cr_knn_scaling = classification_report(y_test, y_pred)
print(cr_knn_scaling)
print(model_knn_scaling.score(X_train, y_train))

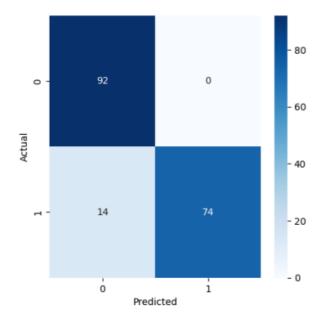
	pred	ision	recall	f1-score	support
	0 1	0.99 1.00	1.00 0.99	0.99 0.99	
accurac macro av eighted av	g	0.99 0.99	0.99 0.99	0.99 0.99 0.99	180

0.994444444444445

W

cv_knn_scaling = cross_val_score(model_knn_scaling, X_train, y_train, cv=5) cv_knn_scaling_precision = cross_val_score(model_knn_scaling, X_train, y_train, cv=5, scoring='precision') cv_knn_scaling_recall = cross_val_score(model_knn_scaling, X_train, y_train, cv=5, scoring='recall') cv_knn_scaling_f1 = cross_val_score(model_knn_scaling, X_train, y_train, cv=5, scoring='f1') print("Cross Validation Score Accuracy: {}".format(cv_knn_scaling)) print("Cross Validation Score Accuracy Mean: {}".format(cv_knn_scaling.mean()))

Cross Validation Score Accuracy: [0.99305556 0.97916667 0.99305556 0.99305556 1.] Cross Validation Score Accuracy Mean: 0.9916666666666666 from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_selection import chi2, mutual_info_classif
from sklearn.decomposition import PCA


model_bnb_original = GaussianNB()
model_bnb_original.fit(X_train, y_train)

y_pred = model_bnb_original.predict(X_test)

df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)

70	1	1
827	1	1
231	1	1

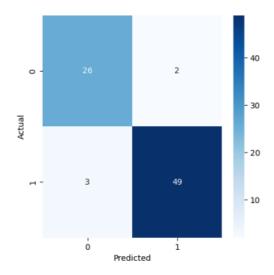
cm_bnb_original = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_bnb_original, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

cr_bnb_original = classification_report(y_test, y_pred)
print(cr_bnb_original)

print(model_bnb_original.score(X_train, y_train))

	precision	recall	f1-score	support
0	0.87	1.00	0.93	92
1	1.00	0.84	0.91	88
accuracy			0.92	180
macro avg	0.93	0.92	0.92	180
weighted avg	0.93	0.92	0.92	180

cv_bnb_original = cross_val_score(model_bnb_original, X_train, y_train, cv=5) cv_bnb_original_precision = cross_val_score(model_bnb_original, X_train, y_train, cv=5, scoring='precision') cv_bnb_original_recall = cross_val_score(model_bnb_original, X_train, y_train, cv=5, scoring='recall') cv_bnb_original_f1 = cross_val_score(model_bnb_original, X_train, y_train, cv=5, scoring='f1') print("Cross Validation Score Accuracy: {}".format(cv_bnb_original)) print("Cross Validation Score Accuracy Mean: {}".format(cv_bnb_original.mean()))


Cross Validation Score Accuracy: [0.96527778 0.96527778 0.97222222 0.9375 0.92361111] Cross Validation Score Accuracy Mean: 0.95277777777778 model_dt_original = DecisionTreeClassifier(max_depth=5)
model_dt_original.fit(X_train, y_train)

y_pred = model_dt_original.predict(X_test)

df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)

	id		
	209	1	1
	280	0	1
	33	1	1
	210	1	1
	93	1	1
	246	1	1
÷	original	= confusion	matrix(

```
cm_dt_original = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_dt_original, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```


cr_dt_original = classification_report(y_test, y_pred)
print(cr_dt_original)
print(model_bnb_original.score(X_train, y_train))

precision	recall	f1-score	support

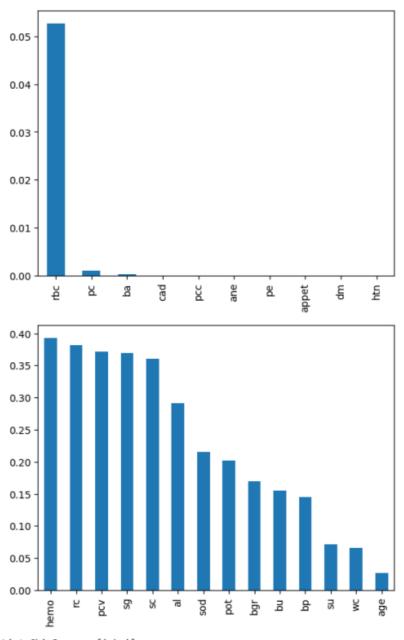
	0	0.90	0.93	0.91	28
	1	0.96	0.94	0.95	52
accur	racy			0.94	80
macro	avg	0.93	0.94	0.93	80
weighted	avg	0.94	0.94	0.94	80

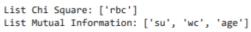
0.934375

cv_dt_original = cross_val_score(model_dt_original, X_train, y_train, cv=5) cv_dt_original_precision = cross_val_score(model_dt_original, X_train, y_train, cv=5, scoring='precision') cv_dt_original_recall = cross_val_score(model_dt_original, X_train, y_train, cv=5, scoring='recall') cv_dt_original_f1 = cross_val_score(model_dt_original, X_train, y_train, cv=5, scoring='f1') print("Cross Validation Score Accuracy: {}".format(cv_dt_original)) print("Cross Validation Score Accuracy Mean: {}".format(cv_dt_original.mean()))

Cross Validation Score Accuracy: [0.96875 0.96875 0.953125 0.9375 0.9375] Cross Validation Score Accuracy Mean: 0.953125

```
# Feature Selection
# Chi-square is used to determine the relationship between two categorical variables
# column_categorical without classification
column_categorical_without_classification = columns_categorical.copy()
column_categorical_without_classification.remove('classification')
X_column_categorical = X[column_categorical_without_classification]
y_column_categorical = y
```


```
X_column_numerical = X[columns_numerical]
```


```
chi_scores = chi2(X_column_categorical, y_column_categorical)
p_value = pd.Series(chi_scores[1], index = X_column_categorical.columns)
p_value.sort_values(ascending = False, inplace = True)
p_value.plot.bar()
plt.show()

# Mutual information is used to measure the relationship between a numeric attribute and a categorical attribute.
mutual_infomation = mutual_info_classif(X_column_numerical, y_column_categorical)
mutual_infomation = pd.Series(mutual_infomation, index = X_column_numerical.columns)
mutual_infomation.sort_values(ascending = False, inplace = True)
mutual_infomation.plot.bar()
plt.show()

list_chi = p_value[p_value > 0.05].index.tolist()
```

```
list_mutual = mutual_infomation[mutual_infomation < 0.1].index.tolist()
print("List Chi Square: {}".format(list_chi))
print("List Mutual Information: {}".format(list_mutual))</pre>
```

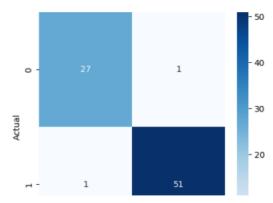

drop columns list_drop = list_chi + list_mutual print("List Drop: {}".format(list_drop)) X = X.drop(columns=list_drop) display(X)

	bp	sg	al	рс	pcc	ba	bgr	bu	sc	sod	pot	hemo	pc
id													
0	0.230769	0.75	0.2	1	0	0	0.211538	0.088575	0.010582	0.839748	0.038202	0.836735	0.77777
1	0.000000	0.75	0.8	1	0	0	0.194444	0.042362	0.005291	0.838486	0.033708	0.557823	0.64444
2	0.230769	0.25	0.4	1	0	0	0.856838	0.132221	0.018519	0.815773	0.038202	0.442177	0.48888
3	0.153846	0.00	0.8	0	1	0	0.202991	0.139923	0.044974	0.671924	0.000000	0.551020	0.51111
4	0.230769	0.25	0.4	1	0	0	0.179487	0.062901	0.013228	0.844795	0.033258	0.578231	0.57777
395	0.230769	0.75	0.0	1	0	0	0.252137	0.121951	0.001323	0.917981	0.053933	0.857143	0.84444
396	0.153846	1.00	0.0	1	0	0	0.113248	0.075738	0.010582	0.861199	0.022472	0.911565	1.0000
397	0.230769	0.75	0.0	1	0	0	0.166667	0.062901	0.002646	0.835962	0.042697	0.863946	0.88888
398	0.076923	1.00	0.0	1	0	0	0.196581	0.124519	0.007937	0.823344	0.053933	0.755102	0.93333
399	0.230769	1.00	0.0	1	0	0	0.232906	0.042362	0.009259	0.861199	0.022472	0.863946	0.9777

print("Dimensi X_train: {}".format(X_train.shape))
print("Dimensi X_test: {}".format(X_test.shape))
print("Dimensi y_train: {}".format(y_train.shape))
print("Dimensi y_test: {}".format(y_test.shape))

Dimensi X_train: (320, 20) Dimensi X_test: (80, 20) Dimensi y_train: (320,) Dimensi y_test: (80,)

model_knn_feature_selection = KNeighborsClassifier(n_neighbors=5)
model_knn_feature_selection.fit(X_train, y_train)


y_pred = model_knn_feature_selection.predict(X_test)

df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)

	Actual	Predicted		
id				
209	1	0		
280	0	1		

209	1	0			
280	0	1			
33	1	1			
210	1	1			
93	1	1			
246	1	1			
227	1	1			
369	0	0			
176	1	1			
289	0	0			
80 rows × 2 columns					

cm_knn_feature_selection = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_knn_feature_selection, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

cr_knn_feature_selection = classification_report(y_test, y_pred)

print(cr_knn_feature_selection)
print(model_knn_feature_selection.score(X_train, y_train))

	precision	recall	f1-score	support
0	0.96	0.96	0.96	28
1	0.98	0.98	0.98	52
accuracy			0.97	80
macro avg	0.97	0.97	0.97	80
weighted avg	0.97	0.97	0.97	80

0.99375

cv_knn_feature_selection = cross_val_score(model_knn_feature_selection, X_train, y_train, cv=5) cv_knn_feature_selection_precision = cross_val_score(model_knn_feature_selection, X_train, y_train, cv=5, scoring='precision') cv_knn_feature_selection_recall = cross_val_score(model_knn_feature_selection, X_train, y_train, cv=5, scoring='recall') cv_knn_feature_selection_f1 = cross_val_score(model_knn_feature_selection, X_train, y_train, cv=5, scoring='recall') print("Cross Validation Score Accuracy: {}".format(cv_knn_feature_selection)) print("Cross Validation Score Accuracy Mean: {}".format(cv_knn_feature_selection.mean()))

Cross Validation Score Accuracy: [1. 0.96875 0.9375 1. 1.] Cross Validation Score Accuracy Mean: 0.98125

Dimensionality Reduction

pca = PCA(n_components=3)
pca.fit(X)
print("Data PCA")
display(X)
X_pca = pca.transform(X)
print("Data PCA")
df_X_pca = pd.DataFrame(X_pca, columns=['PC1', 'PC2', 'PC3'])
display(df_X_pca)

Data	PCA												
	bp	sg	al	pc	pcc	ba	bgr	bu	sc	sod	pot	hemo	pc
id													
0	0.230769	0.75	0.2	1	0	0	0.211538	0.088575	0.010582	0.839748	0.038202	0.836735	0.77777
1	0.000000	0.75	0.8	1	0	0	0.194444	0.042362	0.005291	0.838486	0.033708	0.557823	0.644444
2	0.230769	0.25	0.4	1	0	0	0.856838	0.132221	0.018519	0.815773	0.038202	0.442177	0.48888
3	0.153846	0.00	0.8	0	1	0	0.202991	0.139923	0.044974	0.671924	0.000000	0.551020	0.51111
4	0.230769	0.25	0.4	1	0	0	0.179487	0.062901	0.013228	0.844795	0.033258	0.578231	0.57777
395	0.230769	0.75	0.0	1	0	0	0.252137	0.121951	0.001323	0.917981	0.053933	0.857143	0.84444
396	0.153846	1.00	0.0	1	0	0	0.113248	0.075738	0.010582	0.861199	0.022472	0.911565	1.00000
397	0.230769	0.75	0.0	1	0	0	0.166667	0.062901	0.002646	0.835962	0.042697	0.863946	0.88888
398	0.076923	1.00	0.0	1	0	0	0.196581	0.124519	0.007937	0.823344	0.053933	0.755102	0.93333
399	0.230769	1.00	0.0	1	0	0	0.232906	0.042362	0.009259	0.861199	0.022472	0.863946	0.97777
lf_X_p	ca												

y = df['classification']

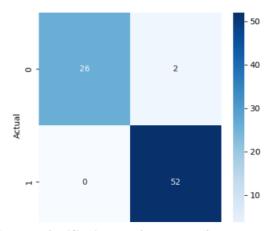
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

print("Dimensi X_train: {}".format(X_train.shape))
print("Dimensi X_test: {}".format(X_test.shape))
print("Dimensi y_train: {}".format(y_train.shape))
print("Dimensi y_test: {}".format(y_test.shape))

Dimensi X_train: (320, 3) Dimensi X_test: (80, 3) Dimensi y_train: (320,) Dimensi y_test: (80,)

model_knn_pca = KNeighborsClassifier(n_neighbors=5)
model_knn_pca.fit(X_train, y_train)

y_pred = model_knn_pca.predict(X_test)


df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)

Actual Predicted

id		
209	1	1
280	0	1
33	1	1
210	1	1
93	1	1
246	1	1
227	1	1
369	0	0
176	1	1
289	0	0

80 rows × 2 columns

cm_knn_pca = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_knn_pca, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

cr_knn_pca = classification_report(y_test, y_pred)
print(cr_knn_pca)

1.00	0.93	0.96	28
0.96	1.00	0.98	52
0.98 0.98	0.96 0.97	0.97 0.97 0.97	80 80 80
	0.96	0.96 1.00 0.98 0.96	0.96 1.00 0.98 0.97 0.98 0.96 0.97

0.99375

cv_knn_pca = cross_val_score(model_knn_pca, X_train, y_train, cv=5)

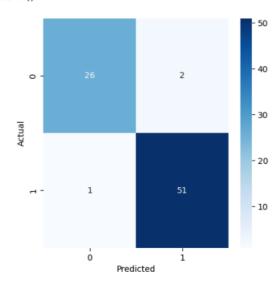
cv_knn_pca_precision = cross_val_score(model_knn_pca, X_train, y_train, cv=5, scoring='precision') cv_knn_pca_precision = cross_val_score(model_knn_pca, X_train, y_train, cv=5, scoring='recall') cv_knn_pca_f1 = cross_val_score(model_knn_pca, X_train, y_train, cv=5, scoring='recall') cv_knn_pca_f1 = cross_val_score(model_knn_pca, X_train, y_train, cv=5, scoring='f1') print("Cross Validation Score Accuracy: {}".format(cv_knn_pca)) print("Cross Validation Score Accuracy Mean: {}".format(cv_knn_pca.mean()))

Cross Validation Score Accuracy: [1. 0.984375 0.984375 0.984375 1.] Cross Validation Score Accuracy Mean: 0.990625

model_bnb_pca = GaussianNB()
model_bnb_pca.fit(X_train, y_train)

y_pred = model_bnb_pca.predict(X_test)

df_result = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
display(df_result)


Actual Predicted

	Actual	Predicted
id		
209	1	0
280	0	1
33	1	1
210	1	1
93	1	1
246	1	1
227	1	1
369	0	0
176	1	1
289	0	0

80 rows × 2 columns

cm_bnb_pca = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5,5))
sns.heatmap(cm_bnb_pca, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')

plt.ylabel('Actual')
plt.show()

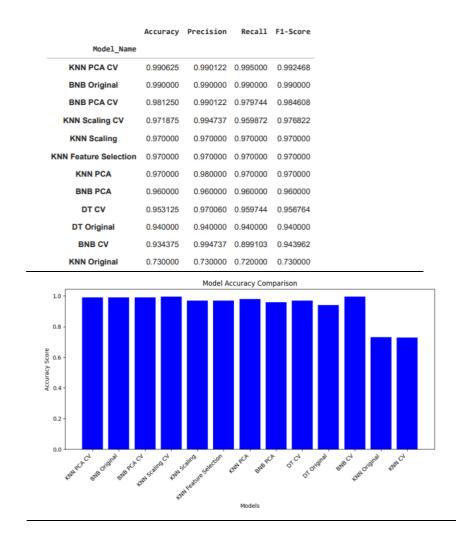
cr_bnb_pca = classification_report(y_test, y_pred)
print(cr_bnb_pca)
print(model_bnb_pca.score(X_train, y_train))

	precision	recall	f1-score	support
0 1	0.96 0.96	0.93 0.98	0.95 0.97	28 52
accuracy macro avg weighted avg	0.96 0.96	0.95 0.96	0.96 0.96 0.96	80 80 80
0.978125				

cv_bnb_pca = cross_val_score(model_bnb_pca, X_train, y_train, cv=5)
cv_bnb_pca_precision = cross_val_score(model_bnb_pca, X_train, y_train, cv=5, scoring='precision')
cv_bnb_pca_recall = cross_val_score(model_bnb_pca, X_train, y_train, cv=5, scoring='recall')
cv_bnb_pca_f1 = cross_val_score(model_bnb_pca, X_train, y_train, cv=5, scoring='f1')
print("Cross Validation Score Accuracy Mean: {}".format(cv_bnb_pca.mean()))

Cross Validation Score Accuracy: [1. 0.96875 0.984375 0.984375 0.96875] Cross Validation Score Accuracy Mean: 0.98125

df_result_acc_precision_recall_knn_original = pd.DataFrame({'Accuracy': [cr_knn_original.split()[15]], 'Precision': [cr_knn_original.split df_result_acc_precision_recall_knn_cv = pd.DataFrame({'Accuracy': [cv_knn_original.mean()], 'Precision': [cv_knn_original.split df_result_acc_precision_recall_bnb_original = pd.DataFrame({'Accuracy': [cr_bnb_original.mean()], 'Precision': [cv_bnb_original.split df_result_acc_precision_recall_dt_original = pd.DataFrame({'Accuracy': [cr_bnb_original.mean()], 'Precision': [cv_bnb_original.split df_result_acc_precision_recall_dt_original = pd.DataFrame({'Accuracy': [cr_bnb_original.mean()], 'Precision': [cr_dt_original.split() df_result_acc_precision_recall_dt_original = pd.DataFrame({'Accuracy': [cr_dt_original.split()[15]], 'Precision': [cr_dt_original.split() df_result_acc_precision_recall_knn_scaling = pd.DataFrame({'Accuracy': [cr_knn_scaling.split()[15]], 'Precision': [cr_knn_scaling.split() df_result_acc_precision_recall_knn_scaling = pd.DataFrame({'Accuracy': [cr_knn_scaling.split()[15]], 'Precision': [cr_knn_scaling.split() df_result_acc_precision_recall_knn_scaling_v = pd.DataFrame({'Accuracy': [cr_knn_scaling.split()[15]], 'Precision': [cr_knn_scaling.precision df_result_acc_precision_recall_knn_feature_selection = pd.DataFrame({'Accuracy': [cr_knn_feature_selection.split()[15]], 'Precision': [cr_knn_scaling.precision': [cr_knn_pca.split()[25]], 'Reca df_result_acc_precision_recall_knn_pca = pd.DataFrame({'Accuracy': [cr_knn_pca.split()[15]], 'Precision': [cr_knn_pca.split()[25]], 'Reca df_result_acc_precision_recall_bnb_pca = pd.DataFrame({'Accuracy': [cr_


df_result_acc_precision_recall = pd.concat([df_result_acc_precision_recall_knn_original, df_result_acc_precision_recall_knn_cv, df_result

df_result_acc_precision_recall.index = ['KNN Original', 'KNN CV', 'BNB Original', 'BNB CV', 'DT Original', 'DT CV', 'KNN Scaling', 'KNN S

df_result_acc_precision_recall['Accuracy'] = pd.to_numeric(df_result_acc_precision_recall['Accuracy'], errors='coerce')

df_result_acc_precision_recall.sort_values(by=['Accuracy'], inplace=True, ascending=False)
display(df_result_acc_precision_recall)

Result:

