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Configuration Manual

Shylesh Veeraraghavan Govindarajulu
X21219249

1 Introduction

This configuration manual comprises of the basic setup and requirements for building a framework
for interpreting social media data, specifically Twitter for this research. This document lists the steps
and the Python libraries required for extracting the tweets and preprocessing the text data. The main
aim is to employ a machine-learning approach to forecast the tourist numbers who are coming to
Ireland. Topic A sentiment analysis is done on a dataset of tweets to get the end user's opinions on
social media. A text blob a Python library is used to conduct sentiment analysis on the dataset of
tweets. Matplotlib and seaborn python libraries are used to plot the visualization of the final data.

2 Hardware Requirements

1 Device Name MSI GF 65

2 Processor 11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40GHz 2.42 GHz
3 RAM 16.0 GB (15.8 GB usable)

4 Type 64-bit operating system, x64-based processor

3 Software Requirements

Anaconda Navigator

Jupyter Notebook or Google Colab

Python 3.6.3 version

Python libraries like keras, sci-kit learn and tensorflow

In this study, Python is the programming language which is used for the creation and evaluation
of the machine learning model. The jupyter Notebook is used as the main tool for the research
which was versatile and flexible with the requirements of the project. To ensure a cohesive
development ecosystem replete with the necessary Python libraries, we employed Anaconda
Navigator.

The Anaconda Navigator served as both our development interface and a debugger for the Python
scripts. My system, running Windows 11, was equipped with the 64-bit version of Anaconda
Navigator. For those interested in replicating our environment, the software can be obtained from
the official Anaconda documentation: Anaconda Navigator. In depth details in relation to the
specific Python libraries and their purpose of use in the research will be discussed in the
forthcoming sections of this configuration manual.

https://docs.anaconda.com/free/navigator/install/

1



https://docs.anaconda.com/free/navigator/install/

4 List of Python Libraries Installed

4.1. Data Collection and Manipulation

e pandas: For data analysis and manipulation.
e requests: For making HTTP requests (only if data is fetched via APIs).
e Json: For handling JSON formatted data (usually when dealing with APIs).

4.2. Topic modeling and NLP

Spacy: Advanced NLP and tokenization.

gensim: For topic modeling and document similarity.
emoji, regex: For handling emojis and regular expressions.
wordcloud: For creating word cloud visualizations.

4.3. Data Visualization

Matplotlib: Basic plotting library.

Seaborn: Statistical data visualization based on ‘matplotlib’.
Plotly: For interactive plots.

PyLDAVvis: For interactive topic model visualization.
Chart_studio: For online publishing of “plotly’ visualizations.

4.4. Sentiment analysis
o Textblob: Simple library for NLP tasks, including sentiment analysis.
4.5. Machine Learning Model Building

e Scikit learn: Comprehensive ML library with a range of algorithms, tools for model
selection, evaluation metrics, etc.

e xgboost: Gradient boosting library that provides an efficient implementation of the gradient
boosting algorithm.

5 Data collection

In [1]: |pip install snscrape

Requirement already satisfied: snscrape in c:\users\msil\anaconda3\lib\site-packages (©.5.8.20230113)

Requirement already satisfied: beautifulsoupd in c:\users\msilanaconda3\lib\site-packages (from snscrape) (4.11.1)
already satisfied: requests[socks] i ers\msilanaconda3\lib\site-packages (from snscrape) (2.27.1)
already satisfied: filelock in c:h\us “anaconda2\lib\site-packages (from snscra pe) (3.5.0)

Requ nt already satisfied: Lxml in c:\usersimsilanaconda3\lib\site-packages (from snscrape) (4.8.8)

Requirement already satisfied: soupsisve>1.2 in c:\users\msilanaconda3\lib\site-packages (from beautifulsoupd->snscrape) (2.3
1y

Requirement already satisfied: idna<4,»>=2.5 in c:\users\msilanaconda3\lib\site-packages (from requests[socks]->snscra pe) (3.3)

Requirement already satisfied: certifi»=2017.4.17 in c:\users\msilanaconda3\lib\site-packages (from requests[socks]->snscrape)
(2021.10.8)

Requirement already satisfied: charset-normalizer~=2.@.0 in c:\users\msilanaconda3\lib\site-packages (from requests[socks]->sns
crape) (2.0.4)

Reguirement already satisfied: wurllib3<1.27,>=1.21.1 in c:\users\msilanaconda3\lib\site-packages (from requests[socks]->snscrap
e) (1.26.9)

Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in c:\users\msilanaconda3\lib\site-packages (from requests[socks]->snscra
pe) (1.7.1)
Note: you may need to restart the kernel to use updated packages

In [2]: impert snscrape.modules.twitter as sntwitter

import pandas as pd

In [7]: |Query = "ireland Ireland lang:en until:2@15-12-31 since:2015-01-61"
tweets = []
limit = 10600

In [8]: Ffor tweet in sntwitter.TwitterSearchScraper(query).get_items():

# print(vars(tweet))
# break
if len(tweets) == limit:
break
else:
tweets.append([tweet.date, tweet.content])

Figure 1: Tweets extracted from twitter
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Tweets from the year 2012 to 2016 with the keyword Ireland has been collected and for each year
10000 tweets were collected using python library snscrape. The tweets of these five years are merged
together in SQL server.

6 Data cleaning

The dataset used in this research consists of text data which are tweets extracted from Twitter, so the
process of data cleaning involves text preprocessing which is the step used in the process of NLP.

Text preprocessing is a crucial step in many natural language processing (NLP) and machine learning
tasks. The exact preprocessing steps often depend on the specific task at hand. However, a general
framework for text preprocessing typically includes the following steps:

The first step of text preprocessing is text cleaning which involves removing the URLs, special
characters, and punctuation. This process also involves conversion to lowercase letters and removing
numbers.

—— e

# Step 2! Text cleaning
def clean_text{text):
# Remove URLs
text = re.sub(r'1LLD%S+|WWNXS—|th:5&S—', v, text)
# Remove special charocters and punctuation
text = re.sub(r'[*\wis]', "", text)
# Convert to Llowercase
text = text.lower()
# Remove numbers
text = re.sub(r'\d+", ', text)
return text

Figure 2: Text cleaning

Lemmatization is a linguistic process that involves converting a word to its base or root form. This is
especially valuable in natural language processing (NLP) tasks to reduce the number of distinct words
or tokens in a text and to understand the essential meaning of the content. This process is carried out
in the cleaned text.

In [23]:

# Apply tokenizer
df[ "lemma_tokens'] = df["lemmas_back_to_text'].apply(tokenize)
In [24]:

# Create a id2word dictionary
id2word = Dictionary(df[ " lemma_tokens'])
print{len{id2word))

48191

In [25]:

# Filtering Extremes
id2word.filter_extremes{no_below=2, no_above=.99)
print{len(id2word))

16948

In [26]:

# Creating a corpus object

corpus = [id2word.docZbow(d) for d in df['lemma_tokens']]

Figure 3: Lemmatization



Text is broken into individual words or tokens which is a part of text preprocessing. The ‘tokenize'

function processes a given text to extract semantic units, or tokens, from it. Initially, the function

removes URLs using regular expressions. It then employs a series of 're. sub()' operations to

eliminate various non-alphanumeric characters, punctuation, words containing numbers, and

specific symbols like '@', "', and '$'. Several ‘strip()’ methods are tested sequentially to remove
mn

certain trailing or leading characters like ', ', '?", 'I', ", and '.'. Finally, the text is converted to
lowercase and split into individual words or tokens. The resulting list of tokens is then returned.

# Tokenizer function
def tokenize(text):

Parses a string into a list of semantic units (words)
Args:

text (str): The string that the function will tokenize.
Returns:

list: tokens parsed out

# Removing url's
pattern = r"http\s+”

tokens = re.sub{pattern, "", text) # https:/ / www.youtube.com/watch?v=02onAdrslaY
tokens = re.sub('[“a-zA=Z B8=9]"', "', text)

tokens = re.sub{'[%s]' ¥ re.escape(string.punctuation), '", text) # Remove punctuation
tokens = re.sub{"‘w*\d\w*", "', text) # Remove words contoining numbers

tokens = re.sub{ @ 1*=\§*"', "', text) # Remove @ | ¥

tokens = tokens.strip(',') # TESTING THIS LINE

tokens = tokens.strip{'?") # TESTING THIS LINE

tokens = tokens.strip('1") & TESTING THIS LINE

tokens = tokens.strip("'") # TESTING THIS LINE

tokens = tokens.strip{".") # TESTING THIS LINE

tokens = tokens.lower().split() # Make text lowercase and split it

return tokens
Figure 4: Tokenization

7 Topic modeling

7.1. LDA base model

The provided code initiates a topic modeling task using the LDA (Latent Dirichlet Allocation) method
from the “gensim’ library. After initializing the LDA model with the "LdaMulticore’ function on a
given corpus and specifying 5 topics, the model's derived topics are fetched with ‘base _model.
print_topics()'. This output is parsed to extract the most representative words for each topic using
regular expressions. The top words for each topic are then combined into a space-separated string and
stored in a list. Finally, the code loops through the topics list, displaying each topic's number and its
corresponding top words in a user-friendly
format.

R
—> e,

oo o
- - o
- B °

Cluster of docromnent by topic

Figure 5: Topic modeling using LDA



In [27]:

# Instontioting a Bose LOA model
base_model = LdaMulticore{carpus=carpus, num_topicss=5, iddwsrd=idiword, workers=1%, passes=S5)

Im [28]

¥ Filtering fo WO,

words = [ra.findall(r " ([~"1%1"',4[1]1} for t in base _model,print_topics(i]
In [29]

& Cregte Topics

topics [ Jjoindt[e:ia)) for t in words]

--=--- Topit @ ------
ireland not northern m uk come Live know s right

Topic 1

ireland northern m amp 3 brexit pot love irizh state

===c== Toplc 2 -=----
ireland job hire come good time jobfairy app

¥ irish travel

--=--= Toplt 3 ------
ireland year day good love new northern christmas c talk

Figure 6: LDA base model
------ Topic @ ------

------ Topic 1 ------

------ Topic 2 ------

------ Topic 3 ------

------ Topic 4 ------
ireland new year go amp m today northern not day

Figure 7: Topics extracted from base LDA model

7.2. Hyperparameter tuning

The code starts by transforming a DataFrame column "df['lemmas_back to text']" into a document-
term matrix using the "CountVectorizer'. This matrix is then processed using the Latent Dirichlet
Allocation (LDA) model for topic modeling. To find the best hyperparameters for the LDA model,
grid search is employed with specified parameters for the number of topics (‘n_components’) and the
learning decay (‘learning decay'). Using the "GridSearchCV" class, the optimal LDA model is
determined from a combination of provided hyperparameters. Once the best model is found, its
perplexity—a measure of how well the model predicts the sample—is printed, which can help
evaluate the model's quality on the given data.



In [44]:

vactorizer = CountVectorizer()

data_wvectarized = vectorizer.Fit_transform{dF] " lewmas_back_te text'])

In [45]

# Define Search Param

search_params = {‘n_components’: [18, 15, 28, 25, 38], “learning_gecay’: [.5, .7. .9]}
In [46]:

# Init the Model
lda = LatentDirichletallocation()

id Search Closs
sridSearchiVilde, paran_grid=search_params)

In [48]:

#rom sklearn.nodel selection import GrigSearchCy

from sklearn.deconposition import LatemtDirichletAllocation
In [49]:

¥ Creole a GridSearchlV instance

grid_search = GridiearchCv(lda, search_params, cv=Yone)

In [58]:

# Fit the GridsearchCy instance
grid_search.fit{data_vectorized)

out[se]:
GridsearchiV{estinator=LatentDirichletAllocation(),

paran_grids{'learning_decay™: [@.5, 8.7, 8.9],
‘n_components’: (18, 15, 28, 25, 38)})

In [51]:

& Best Madel
mest_lda_model = grid_search.best_sstimator_

In [52]:

& Perplexity
print{"Model Perplexity: ", best_lda_model.perplexity(data_wvectorized})

Model Perplexity: 3663.213@524271145

Figure 8: Grid search

7.3. Important parameters selection to build the final LDA model
This code initializes an instance of the LDA (Latent Dirichlet Allocation) model using the

‘LdaMulticore’ method from the “gensim’ library. This method is specifically optimized to run on
multiple CPU cores. Here's the breakdown of the provided parameters:

Coherence Score vs Number of Topics

0.265 1

0.260 1

0.255 1

0.250

0245

Coherence Score

0.240 4

0.235 4

5 10 15 20 25
Number of Topics

Figure 9: Coherence Score vs Number of Topics



Coherence Score vs Iterations
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Figure 10: Coherence Score vs Number of Iterations
Coherence Score vs Number of Passes
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Figure 11: Coherence Score vs Number of Passes
Coherence Score vs Minimum Probability
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Figure 12: Coherence Score vs Minimum probability
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7.3. Final LDA model

Ir [112]:

final_mogel = Leatulticore|corpus=corpus,
igdward=1d2ward,
num_topicss1s,
randeon_state=i,
chunksize=2888,
passes=if,
decay=@.&,
iterationg=14)

Figure 13: Final LDA model

e corpus=corpus : The dataset being passed to the model. In topic modeling, a corpus
is a collection of documents.

e id2word=id2word : A mapping from word IDs to words. This helps the model know
the vocabulary of the corpus and is used for interpreting topics.

e num_topics=15 : Specifies that the model should identify 15 distinct topics within the
provided corpus.

e random_state=42 : A seed for the random number generator to ensure reproducibility.
Using the same seed will give the same results across different runs with the same
data.

e chunksize=2000 : The number of document samples the training algorithm will use in
each update. Larger chunk sizes speed up the training at the expense of memory.

e passes=30 : The number of times the entire corpus will be processed. Multiple passes
can help in achieving a more accurate topic distribution, especially for larger corpora.

e decay=0. 9: A hyperparameter that controls the learning rate in the online learning
method. Values closer to 1 will give more weight to newer batches of documents,
while values closer to 0 will give more weight to older batches.

e iterations=30: The maximum number of times the model will iterate over each
document's topic distribution during the E-step of the algorithm.

In summary, the code initializes a more finely-tuned LDA model using the ‘LdaMulticore’
function from the "gensim’ library. This model aims to discover 15 distinct topics in the
given corpus with the specified hyperparameters for training.

A topic distance visualisation of 15 topics extracted using the pyLDAvis as shown below.
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Figure 15: Topics extracted

The text describes a visualization of 15 topics derived from tweets via the LDA model, with
each topic represented by a circle whose size indicates its frequency. On the visualization's
set to 0. 6, dictates term importance within
topics. Beside this, the 30 most defining terms of each topic are displayed. Topics are
named by discerning a theme from their most frequent words, then vetted for relevance to

top-right, an adjustable Lambda (A) value,
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tourism. Out of the original 15, only 15 topics were deemed pertinent to tourism after this
evaluation.

8 Sentiment analysis

df[*sentiment_score'] = df['cleaned_text'].apply(lambda x: TextBlob(x).sentiment.polarity)

In [9]:

# Define a function to map sentiment scores to sentiment Labels
def get_sentiment_label(score):
if score > @:
return 'Positive”
elif score < 8:
return 'Negative’
else:
return ‘Neutral’

In [18]:

# Create a new column to store sentiment Labels

df['sentiment_label’'] = df['sentiment_score'].apply(get_sentiment_label)

In [11]:

average_sentiment = df.groupby([ 'year', 'topic']l)[ 'sentiment_score'].mean()
In [12]:

# Print the average sentiment scores for each vear
print (average_sentiment)

year topic

2812 Accomodation @.884315
Beach @.896475
Business_environment @.896970
Castle @.127609
Christmas 2.e36421

2816 Marketing @.131685
New_year @.103876
Party ®.135216
Travel @.e78834
Weather 8.e85697

Name: sentiment_score, Length: 75, dtype: floatéd

Figure 16: Sentiment analysis using the Topics extracted

The code processes a DataFrame, "df’, to analyze the sentiment of its "cleaned text’ column
using the "TextBlob" library. For each entry, it computes a sentiment polarity score, ranging
from -1 (negative) to 1 (positive), storing this in a new column ‘sentiment score’.
Subsequently, a function ‘get sentiment label" classifies these scores into 'Positive’,
'Negative', or 'Neutral' categories, which are then added to the DataFrame in the
‘sentiment_label” column. The code concludes by calculating the average sentiment score for
each combination of year and topic within the dataset, printing these average sentiment
values for analysis.

year topic year topic year topic

2812 Accomodation 0984315 2013 Acconodation #.168027 2014 Acconodation 0.104757
Beach 9.896475 Beach 0.697336 Beach 0.891668
Business environment  8.896970 Business_enviromment  €.693878 Business_environment  @.113549
Castle 8.127609 Castle 8. 115747 Castle 2.107202
Christnas 9.636421 Christmas -8.62134 Christmas 9.051265
City 9.126911 ity 0.126083 City 9.125734
Football 9.119702 Football 0.103697 Football 0.035144
Guinness 9.152036 Guinness 0.117623 Guinness 9.165301
Irish whiskey 4.114448 Irish whiskey 0.147238 Irish whiskey 9.101134
Jobs 9.074316 Jobs 9.065545 Jobs 0.876339
Marketing 9.152155 Merketing 0.101842 Marketing 9.192960
New year 8.875823 New_year 0.647901 New_year 9.882843
Party 2.108749 Party 0.038654 Party 9.117541
Travel 9.868532 Travel 0.680978 Travel 0.064872
Weather 0.166184 Weather 0.672784 Weather 0.076887

Name: sentinent score, dtype: floates  Neme: sentiment_score, dtype: float64 Name: sentiment score, dtype: floated
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year topic

2015 Accomodation 0.110985 year topic .

Beach 0.087082 2816 Accomodation 9.092492
Business_environment 9.896184 Bea-._‘.h . @.121487
Castle - 8.135335 Business_environment 8.126670
. Castle 9.122464
Christmas 2.034763 Christmas 9.045462
City 8.159984 city 8.116594
Football 0.143018 Football 0.094698
Guinness 8.113907 Guinness ©.148729
Irish_whiskey 9.878979 Irish_whiskey 0.135620
Jobs 9.856798 Jobs ©.110687
Marketing 9.128027 Marketing 8.131685
New_year 8.,023103 New_year 0.1e3870
Party 0.112738 Party 8.135216
Travel 8.056944 Travel @.878834
Weather 8.091246 Weather 9.885697
Name: sentiment_score, dtype: floate4

Name: sentiment_score, dtype: float64

Figure 17: Mean sentiment score of the topics extracted
9 Tourist demand forecasting using machine learning models

The tourist arrival numbers column contains data taken from the Ireland tourism website
https://www.tourismireland.com/ and the data visualisations are shown below.

Sentiment Scores of the Topics extracted

Q20

Sentiment Score

005

000

2012 2013 2014 2015 2016
Yeaar

Figure 18: Mean sentiment score of the topics extracted for five years

Towrist arrival numbers

10000

@500

Tourist numbers

500
a2z 2013 2014 2015 2016
Year

Figure 19: Tourist arrival numbers for five years
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The code assigns a subset of columns from the "data’ DataFrame to "X', representing the
features, while setting the 'Tourist arrival numbers' column as the target variable 'y for
potential modeling or analysis.

. g me g

# Separate the feotures (X)) and the torget wvariable (y)

= data[['Year', "Jobs', "Weather', 'Travel', 'City', 'Irish_whiskey', 'Christmas', 'Fo
"Beach’', 'New_year', "Marketing']]

y = data[ "Tourist arrival numbers"]

-

In [17]:

loo = Leavelns0ut( ]}

Figure 20: Dependent and Independent variable

Four supervised machine learning models linear regression, random forest, SVR and
XGboost were built to forecast the tourist numbers coming to Ireland. The performance
metrics used for the evaluation of this models are MAE and MAPE. The results and the plots
of the different models are shown below.

Performance of the forecasting models

Model MAF (mean) MAPE (mean)
Linear regression 59 0.6 %
Random forest 818 8.1 %

SVR 1554 15 %
XGboost 315 3.1%

Comparison of MAPE (mean] for Different Models

Comparison of MAE {mean) for Different Models

or (MAE)

Maan Absalute Err
Maan Absolute Error Percentage Ermor (MAPE)

Figure 21: Comparison of MAE and MAPE of different models
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