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Configuration Manual

Deepti Deepak Tiwari
x21240302

1 Overview

This document provides the step to step manual configuration for ”PolyCystic Ovary
Syndrome Detection Using CapsuleNet and Synthetic Data”. This document will help
to setup and install the prerequisites required to execute this research in future.

2 Hardware and software Requirement

2.1 Hardware Requirements

The research used the below-listed hardware in order to execute the code used in this
research.

Operating system used was Windows 10 Pro Language version 22H2.

Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz

storage: RAM 8.00 GB

System type: 64-bit operating system, x64-based processor

2.2 Software Requirements

The below are software used to complete the research proposed
e Google Colab and Jupyter Notebook
e Python 3.7 Scripting Language
e Google Drive for Storage

e Notepad++. Word, Excel, Overleaf

3 Setting Environment

3.1 Google Colab

Firstly to start with the research project Google Colab was set up. In order to set up
the Colab we need a Gmail account. The purpose to use Google Colab was as it provides
free and high GPU for processing. Select the GPU before execution.
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Figure 1: Google Colab
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Figure 2: Selecting GPU
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Data Selection

The data used in this research work was retrieved from the Kaggle data repository. The
dataset consists of 3856 image files which were about 132 MB.
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e PCOS detection using ultrasound images
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Data folder consist of ‘train’ and 'test’ subfolders containing 2 categories of data ‘infected' and 'notinfected'
infected : Images of ovaries having PCOS

notinfected : Images of healthy ovaries

Figure 3: dataset
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Figure 4: dataset files

Data Storing and Model Building 5

5.1 Storing the data into Google Drive

& Download (132 MB) :

Usability ©
563

License

Unknown

Expected update frequency
Not specified

& Download (132 MB)

Data Explorer
Version 1(136.3 MB)
- 0O data

» [ test
» O train

Summary
» [ 3856 files

The data fetched from google drive was uploaded to the drive in order to read and use
the data easily while model building and compilation.

5.2 Prerequisite installation and library importing

This research used the below-mentioned libraries for model building, evaluation and data
cleaning.



e numpy
e tensorflow.keras.utils
e PIL

e matplotlib

e torch

e random

e sklearn

e itertools

e keras

e google.colab

e ImageDataGenerator
e seaborn

e sklearn.metrics

from google.colab import drive

import os

import numpy as np

from PIL import Image

from tensorflow.keras.utils import to categorical

from PIL import UnidentifiedImageError

import tensorflow as tf

from tensorflow.keras import layers

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curwve, auc

from sklearn.preprocessing import label_binarize
from itertools import cycle

import tensorflow as tf

from sklearn.metrics import confusion matrix, accuracy_score, precision_score, recall_score, fl_score

Figure 5: Library Used

5.3 Connecting Google Drive and Colab

Google Colab was linked to Drive in order to retrieve and use the data as shown below
[6l This piece of code was executed to mount the Google Colab and Drive



from poogle.colab import drive
drive.mount("'/content/drive")

Mounted at fcontent/drive

Figure 6: Mounting Google Drive

5.4 Data loading, Pre-processing and splitting of data
5.4.1 Data Loading and reading

After mounting the drive data was read as shown below

[ 1 def load_images(directory):
X =11
y =11
classes = os.listdir(directory)
c_indices = {name_of_class: idx for idx, name_of class in enumerate(classes)}

for name_of_class in classes:
class_directory = os.path.join{directory, name_of_class)
if os.path.isdir(class_directory}:
for image_name in os.listdir{class_directory):
image_path = os.path.join(class_directory, image_name)
if os.path.isfile{image_path):
try:
image = Image.cpen(image_path).convert('RGB")
image = image.resize( (128, 128))
image = np.array{image) / 255.8
X.append{image)
y.append{c_indices[name_of_class])
except (IOError, OSError, UnidentifiedImageError) as e:
print(f"Error opening image: {image_path} - {e}")

X = np.array(X)

y = np.array(y}
return X, ¥

Figure 7: Data Reading

5.4.2 Data Pre-proceesing

After reading the data the data is in image format. It was mandatory to transfer the
image in greyscale and should be of the same size before using it with the model. The
image processing was done as shown below

image = Image.openiimage_path).convert{'RGE" )

image = image.resize((128, 128))
image = np.array({image) [ 255.8
¥.append(image)

B - - - ERY

.

Figure 8: Pre-Processing

5.4.3 Setting the path for train and test

The path for train data and test data was set as shown below [9]



[ 1 # Set the paths to the train and test directories
train_directory ='/content/drive/MyDrive/rldata/train’
test_directory = '/content/drive/MyDrive/rldata,/test"

Figure 9: Setting path for Train and Test

6 Model building

6.0.1 Capsule Network

The Figure Below depicts a Capsule Network with 3 layers, primary and digital capsule
layers with 256 convolution layers, 9x9 filters and routing agreement.

@ cef Copshiet(input_shape, num_classes):
model = tf.keras.Sequential()

# First layer: Convolutional layer with 9x9 filter and stride of 1
model.add{1layers.ConvaD(256, kernel_size=(9, 9), strides=(1, 1), activation='relu', input_shape=input_shape))

Capsule Network formed by 9x9 conwvolutions and stride of 2
256, kernel_size=(9, 9), strides=(2, 2), activation='relu'})

# Second layer: Primary
model.add(1layers . Conv

# Third layer: Routing by Agreement process
model.add(layers. Flatten())
model.add{layers.Dense (512, activation="relu’))
model.add{layers . Dense (256, activation='relu’))

# Last layer: Fully connected layer with softmax activation
model.add{1layers.Dense (num_classes, activation='softmax'}))

return model

Figure 10: Base Model Building

The model was compiled and used along with test data for evaluation purposes. 3

[ 1 # Define and compile the CapsuleNet model
model = CapsNet(input_shape=(128, 128, 3), num_classes=num_classes)

[ 1 model.compile(optimizer='adam', loss='categorical_crossentropy’, metrics=['accuracy'])

Figure 11: compile model

6.0.2 Data Augmentation

To generate synthetic data. Traditional Augmentation was implemented as shown below.



° # Preprocess the training and testing sets using an image data generator

datagen = ImageDataGenerator(
rotation_range=18,
width_shift_range=8.1,
height_shift_range=8.1,
horizontal_flip=True

datagen.fit{¥_train)

Figure 12: Data augmentation

6.0.3 Fine tune the model

Model tuning was performed in this research to enhance the results. The code and design

of the model were defined as shown in fig

def Capslietwork(input_shape, number_of_classes)
tF.keras. Sequential()

tune_base_mode!

e of 1
trides=(1, 1), activation="relu’, input_shape=input_shape))

# First layer: Convolutional layer with 9x9 filter an
‘tune_base_model.add(layers.ConvaD(256, kernel size=(9,

# Second layer: Primary Capsule Network formed by 9x3 convolutions and stride of 2

‘tune_base_model.add(layers.ConvaD(256, kernel_size=(9, 9), strides=(2, 2), activation="relu'))

# Third layer: Routing by Agreement process
‘tune_base_model. add(1:

tune_base_model. a activations"

‘tune_base_model. ad: 56, activations're

# Last layer: Fully connected layer with softmax activation
‘tune_base_model.add (layers.Dense(number_of_classes, activation='seftmax’))

return tune_base_model

# Load the pretrained model
tune_base_model = Capslietwork (input_shape=(128, 128, 3), number_of_classes=number_of_classes

# Stage 1: Train only the last layer
for layer in tune_base_model.layers[:-1]
layer.trainable = False

tune_base_model.compile(optimizer="adan’, loss='categorical crossentropy”, metrics=['accuracy’])

# Train the last layer on the rotsted data
tune_base_model.fit(X_train_rotated image, y_train rotated image, batch_size=32, epochs=5, validation data=(Xtest, ytest))

# Stage 2: Train t
for layer in tune_t
layer.trainabl

a lower learning rate

tune_base_model.compi le(optimizer=tf.keras.optimizers.Adam(1r-0.8081), loss='categorical crossentropy”, metrics=['accuracy'])

Figure 13: Tune Model

7 Evaluation

This research consists of different experiments to evaluate the
evaluated on the base of accuracy, precision, recall, sensitivity,
comparing train and test accuracy.

model. The model is
and specificity and by



# predictions for the test set
y_prediction = base model.predict(Xtest)
y_prediction_labels = np.argmax(y_prediction, axis=1)

# Convert one-hot encoded test labels back to original class labels
y_test_labels = np.argmax(ytest, axis=1)

# Calculate confusion matrix
conf_matrix = confusion_matrix(y_test_labels, y prediction_labels)

# Calculate specificity
specificity base_model = conf_matrix[@, @] / (conf_matrix[®, @] + conf_matrix[e, 1])

# Calculate sensitivity (recall)
sensitivity base_model = recall score(y_test labels, y prediction_labels, average='weighted")

# Calculate F1 score
f1 = f1_score(y_test labels, y prediction labels, average='weighted')

print(f"specificity: {specificity_base_model:.af}")
print(f"sensitivity (Recall): {sensitivity base model:.4f}")
print(f"F1 Score: {f1:.4f}")

Figure 14: Accuracy of Experiment 1

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
# print confusion matrix as a heatmap

name_of_class = ['infected’, 'non-infected']

confusion_df = pd.DataFrame(conf_matrix, index=name_of_class, columns=name_of class)
plt.figure(figsize=(10, 8))

sns.heatmap(confusion_df, annot=True, fmt="d", cmap='Blues')

plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.title('confusion Matrix')

plt.show()

Figure 15: Confusion for Experiment 1

# Plot loss graph

plt.figure(figsize=(8, 6))

plt.plot(base_model_history.history["loss'], label="Training Loss’)
plt.plot(base_model_history.history['val_loss'], label='validation Loss")
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.legend()

plt.title( 'Training and validation Loss')

plt.show()

# Plot accuracy graph

plt.figure(figsize=(8, 6))

plt.plot(base_model history.history["accuracy'], label='Training Accuracy')
plt.plot(base model history.history['val accuracy'], label='validation Accuracy')
plt.xlabel('Epoch")

plt.ylabel('Accuracy")

plt.legend()

plt.title('Training and validation Accuracy')

plt.show()

Figure 16: Graph for Experiment 1



# Accuracy values for each dataset
accuracy_values = [accuracy_1 to_1, accuracy 1 to_2, accuracy_1 to 3]

# Dataset labels
dataset_labels = ['accuracy 1:1', ‘accuracy 1:2', ‘accuracy 1:3']

# Create line graph
plt.plot(dataset_labels, accuracy_values, marker='o', linestyle='-', color="b")

# Set axis labels and title

plt.xlabel('Dataset"’)

plt.ylabel('Accuracy (%)')

plt.title('Model Accuracy on Different Datasets')

# Show gridlines
plt.grid(True)

# Show the line graph
plt.show()

Figure 17: Experiment 2 Graph

# Assuming yvou have already trained the model and have predictions for the test set
y_predictions_synthetic_datal = tune_base_model.predict(¥_test_rotated_image)
y_pred_labels_synthetic_datal = np.argmax(y_predictions_synthetic_datal, axis=1}

# Convert one-hot encoded test labels back to original class labels
y_test_labels_syntheticl = np.argmax(y_test_rotated_image, axis=1)

# Calculate confusion matrix
conf_matrix = confusion_matrix{y_test_labels_syntheticl, y_pred_labels_synthetic_datal)

# Calculate specificity
specificity = conf_matrix[@, 8] / (conf_matrix[®, @] + conf matrix[@, 1])

# Calculate sensitivity (recall)
sensitivity = recall_score(y_test_labels_syntheticl, y_pred_labels_synthetic_datal, average='weighted")

# Calculate F1 score
1 = f1_score(y_test_labels_syntheticl, y_pred_labels_synthetic_datal, average='weighted')

[specificity:.4fF}")
) nthetic_data: {sensitivity:.4f}")
print(f"F1 Score_synthetic_data: {f1:.4f}")

9/9 [ 1 - 1s 189ms/step
Specificity_synthetic_data: 1.0900

Sensitivity (Recall)_synthetic_data: @.%674

Fl Score_synthetic_data: 8.9675

Figure 18: Accuracy of Experiment 3

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score
# Print confusion matrix as a heatmap

class_names = ['infected', 'non-infected']

conf_df = pd.DataFrame(conf_matrix, index=class_names, columns=class_names)
plt.figure(figsize=(10, 8))

sns.heatmap(conf_df, annot=True, fmt="d", cmap='Blues')
plt.xlabel('Predicted Labels')

plt.ylabel('True Labels")

plt.title('Confusion Matrix original data')

plt.show()

[~

Figure 19: Confusion for Experiment 3



# Plotting the graphs
import matplotlib.pyplot as plt

# Plot loss graph

plt.figure(figsize=(8, 6))

plt.plot(original_data_tune model.history['loss'], label='Training Loss"')
plt.plot(original_data_tune_model.history['val_loss'], label='validation Loss")
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.legend()

plt.title('Training and validation Loss')

plt.show()

# Plot accuracy graph

plt.figure(figsize=(8, 6))

plt.plot(original_data_tune_model.history["accuracy'], label="Training Accuracy’)
plt.plot(original_data_tune_model.history[ 'val_accuracy'], label='validation Accuracy')
plt.xlabel( Epoch")

plt.ylabel('Accuracy")

plt.legend()

plt.title('Training and validation Accuracy')

plt.show()|

Figure 20: Graph for Experiment 3
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