~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Deepti Deepak Tiwari
Student ID: X21240302

School of Computing
National College of Ireland

SUpervisor: Prashanth Nayak

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Deepti Deepak Tiwari
Student ID: X21240302
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Prashanth Nayak
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 556
Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Deepti Deepak Tiwari

Date: 14/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Deepti Deepak Tiwari
x21240302

1 Overview

This document provides the step to step manual configuration for ”PolyCystic Ovary
Syndrome Detection Using CapsuleNet and Synthetic Data”. This document will help
to setup and install the prerequisites required to execute this research in future.

2 Hardware and software Requirement

2.1 Hardware Requirements

The research used the below-listed hardware in order to execute the code used in this
research.

Operating system used was Windows 10 Pro Language version 22H2.

Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz

storage: RAM 8.00 GB

System type: 64-bit operating system, x64-based processor

2.2 Software Requirements

The below are software used to complete the research proposed
e Google Colab and Jupyter Notebook
e Python 3.7 Scripting Language
e Google Drive for Storage

e Notepad++. Word, Excel, Overleaf

3 Setting Environment

3.1 Google Colab

Firstly to start with the research project Google Colab was set up. In order to set up
the Colab we need a Gmail account. The purpose to use Google Colab was as it provides
free and high GPU for processing. Select the GPU before execution.

1

c Welcome To Colaboratory
File Edit View Insert Runtime Tools Help

+ Code + Text 4 Copy to Drive

= Table of contents O X
Q Getting started

Welcome to Colab!
o) Data science

Magchine learning If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command
(] palette.
More Resources

Featured examples

Section

What is Colab?
Colab, or "Colaboratory”, allows you te write and execute Python in your browser, with

= Zero configuration required
s Access to GPUs free of charge

s Easy sharing

Figure 1: Google Colab

Notebook settings
Runtime type

Python 3

Hardware accelerator (7)

O cru @ TaeRU () O wviwery (O TRU

Want access to premium GPUs? Purchase additional compute units

|:| Automatically run the first cell or section
D Omit code cell output when saving this notebook

Cancel Save

Figure 2: Selecting GPU

4

Data Selection

The data used in this research work was retrieved from the Kaggle data repository. The
dataset consists of 3856 image files which were about 132 MB.

5

= Q_ search
-

T @9 ANAGHA CHOUDHARI AND 1 COLLABORATOR - UPDATED A YEAR AGO - 15 New Notebook
®

e PCOS detection using ultrasound images
@ | Dataset for machine learning project
M

<>

DataCard Code (1) Discussion (3)

=l
© About Dataset

v

Data folder consist of ‘train’ and 'test’ subfolders containing 2 categories of data ‘infected' and 'notinfected'
infected : Images of ovaries having PCOS

notinfected : Images of healthy ovaries

Figure 3: dataset

PCOS detection using ultrasound images

DataCard Code (1) Discussion (3) - " New Notebook

data (2 directories) H

About this directory

Data folder consist of train and test that are split for machine learning algorithm

B B

test train

2 directories 2 directories

Figure 4: dataset files

Data Storing and Model Building 5

5.1 Storing the data into Google Drive

& Download (132 MB) :

Usability ©
563

License

Unknown

Expected update frequency
Not specified

& Download (132 MB)

Data Explorer
Version 1(136.3 MB)
- 0O data

» [test
» O train

Summary
» [3856 files

The data fetched from google drive was uploaded to the drive in order to read and use
the data easily while model building and compilation.

5.2 Prerequisite installation and library importing

This research used the below-mentioned libraries for model building, evaluation and data
cleaning.

e numpy
e tensorflow.keras.utils
e PIL

e matplotlib

e torch

e random

e sklearn

e itertools

e keras

e google.colab

e ImageDataGenerator
e seaborn

e sklearn.metrics

from google.colab import drive

import os

import numpy as np

from PIL import Image

from tensorflow.keras.utils import to categorical

from PIL import UnidentifiedImageError

import tensorflow as tf

from tensorflow.keras import layers

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curwve, auc

from sklearn.preprocessing import label_binarize
from itertools import cycle

import tensorflow as tf

from sklearn.metrics import confusion matrix, accuracy_score, precision_score, recall_score, fl_score

Figure 5: Library Used

5.3 Connecting Google Drive and Colab

Google Colab was linked to Drive in order to retrieve and use the data as shown below
[6l This piece of code was executed to mount the Google Colab and Drive

from poogle.colab import drive
drive.mount("'/content/drive")

Mounted at fcontent/drive

Figure 6: Mounting Google Drive

5.4 Data loading, Pre-processing and splitting of data
5.4.1 Data Loading and reading

After mounting the drive data was read as shown below

[1 def load_images(directory):
X =11
y =11
classes = os.listdir(directory)
c_indices = {name_of_class: idx for idx, name_of class in enumerate(classes)}

for name_of_class in classes:
class_directory = os.path.join{directory, name_of_class)
if os.path.isdir(class_directory}:
for image_name in os.listdir{class_directory):
image_path = os.path.join(class_directory, image_name)
if os.path.isfile{image_path):
try:
image = Image.cpen(image_path).convert('RGB")
image = image.resize((128, 128))
image = np.array{image) / 255.8
X.append{image)
y.append{c_indices[name_of_class])
except (IOError, OSError, UnidentifiedImageError) as e:
print(f"Error opening image: {image_path} - {e}")

X = np.array(X)

y = np.array(y}
return X, ¥

Figure 7: Data Reading

5.4.2 Data Pre-proceesing

After reading the data the data is in image format. It was mandatory to transfer the
image in greyscale and should be of the same size before using it with the model. The
image processing was done as shown below

image = Image.openiimage_path).convert{'RGE")

image = image.resize((128, 128))
image = np.array({image) [255.8
¥.append(image)

B - - - ERY

.

Figure 8: Pre-Processing

5.4.3 Setting the path for train and test

The path for train data and test data was set as shown below [9]

[1 # Set the paths to the train and test directories
train_directory ='/content/drive/MyDrive/rldata/train’
test_directory = '/content/drive/MyDrive/rldata,/test"

Figure 9: Setting path for Train and Test

6 Model building

6.0.1 Capsule Network

The Figure Below depicts a Capsule Network with 3 layers, primary and digital capsule
layers with 256 convolution layers, 9x9 filters and routing agreement.

@ cef Copshiet(input_shape, num_classes):
model = tf.keras.Sequential()

First layer: Convolutional layer with 9x9 filter and stride of 1
model.add{1layers.ConvaD(256, kernel_size=(9, 9), strides=(1, 1), activation='relu', input_shape=input_shape))

Capsule Network formed by 9x9 conwvolutions and stride of 2
256, kernel_size=(9, 9), strides=(2, 2), activation='relu'})

Second layer: Primary
model.add(1layers . Conv

Third layer: Routing by Agreement process
model.add(layers. Flatten())
model.add{layers.Dense (512, activation="relu’))
model.add{layers . Dense (256, activation='relu’))

Last layer: Fully connected layer with softmax activation
model.add{1layers.Dense (num_classes, activation='softmax'}))

return model

Figure 10: Base Model Building

The model was compiled and used along with test data for evaluation purposes. 3

[1 # Define and compile the CapsuleNet model
model = CapsNet(input_shape=(128, 128, 3), num_classes=num_classes)

[1 model.compile(optimizer='adam', loss='categorical_crossentropy’, metrics=['accuracy'])

Figure 11: compile model

6.0.2 Data Augmentation

To generate synthetic data. Traditional Augmentation was implemented as shown below.

° # Preprocess the training and testing sets using an image data generator

datagen = ImageDataGenerator(
rotation_range=18,
width_shift_range=8.1,
height_shift_range=8.1,
horizontal_flip=True

datagen.fit{¥_train)

Figure 12: Data augmentation

6.0.3 Fine tune the model

Model tuning was performed in this research to enhance the results. The code and design

of the model were defined as shown in fig

def Capslietwork(input_shape, number_of_classes)
tF.keras. Sequential()

tune_base_mode!

e of 1
trides=(1, 1), activation="relu’, input_shape=input_shape))

First layer: Convolutional layer with 9x9 filter an
‘tune_base_model.add(layers.ConvaD(256, kernel size=(9,

Second layer: Primary Capsule Network formed by 9x3 convolutions and stride of 2

‘tune_base_model.add(layers.ConvaD(256, kernel_size=(9, 9), strides=(2, 2), activation="relu'))

Third layer: Routing by Agreement process
‘tune_base_model. add(1:

tune_base_model. a activations"

‘tune_base_model. ad: 56, activations're

Last layer: Fully connected layer with softmax activation
‘tune_base_model.add (layers.Dense(number_of_classes, activation='seftmax’))

return tune_base_model

Load the pretrained model
tune_base_model = Capslietwork (input_shape=(128, 128, 3), number_of_classes=number_of_classes

Stage 1: Train only the last layer
for layer in tune_base_model.layers[:-1]
layer.trainable = False

tune_base_model.compile(optimizer="adan’, loss='categorical crossentropy”, metrics=['accuracy’])

Train the last layer on the rotsted data
tune_base_model.fit(X_train_rotated image, y_train rotated image, batch_size=32, epochs=5, validation data=(Xtest, ytest))

Stage 2: Train t
for layer in tune_t
layer.trainabl

a lower learning rate

tune_base_model.compi le(optimizer=tf.keras.optimizers.Adam(1r-0.8081), loss='categorical crossentropy”, metrics=['accuracy'])

Figure 13: Tune Model

7 Evaluation

This research consists of different experiments to evaluate the
evaluated on the base of accuracy, precision, recall, sensitivity,
comparing train and test accuracy.

model. The model is
and specificity and by

predictions for the test set
y_prediction = base model.predict(Xtest)
y_prediction_labels = np.argmax(y_prediction, axis=1)

Convert one-hot encoded test labels back to original class labels
y_test_labels = np.argmax(ytest, axis=1)

Calculate confusion matrix
conf_matrix = confusion_matrix(y_test_labels, y prediction_labels)

Calculate specificity
specificity base_model = conf_matrix[@, @] / (conf_matrix[®, @] + conf_matrix[e, 1])

Calculate sensitivity (recall)
sensitivity base_model = recall score(y_test labels, y prediction_labels, average='weighted")

Calculate F1 score
f1 = f1_score(y_test labels, y prediction labels, average='weighted')

print(f"specificity: {specificity_base_model:.af}")
print(f"sensitivity (Recall): {sensitivity base model:.4f}")
print(f"F1 Score: {f1:.4f}")

Figure 14: Accuracy of Experiment 1

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
print confusion matrix as a heatmap

name_of_class = ['infected’, 'non-infected']

confusion_df = pd.DataFrame(conf_matrix, index=name_of_class, columns=name_of class)
plt.figure(figsize=(10, 8))

sns.heatmap(confusion_df, annot=True, fmt="d", cmap='Blues')

plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.title('confusion Matrix')

plt.show()

Figure 15: Confusion for Experiment 1

Plot loss graph

plt.figure(figsize=(8, 6))

plt.plot(base_model_history.history["loss'], label="Training Loss’)
plt.plot(base_model_history.history['val_loss'], label='validation Loss")
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.legend()

plt.title('Training and validation Loss')

plt.show()

Plot accuracy graph

plt.figure(figsize=(8, 6))

plt.plot(base_model history.history["accuracy'], label='Training Accuracy')
plt.plot(base model history.history['val accuracy'], label='validation Accuracy')
plt.xlabel('Epoch")

plt.ylabel('Accuracy")

plt.legend()

plt.title('Training and validation Accuracy')

plt.show()

Figure 16: Graph for Experiment 1

Accuracy values for each dataset
accuracy_values = [accuracy_1 to_1, accuracy 1 to_2, accuracy_1 to 3]

Dataset labels
dataset_labels = ['accuracy 1:1', ‘accuracy 1:2', ‘accuracy 1:3']

Create line graph
plt.plot(dataset_labels, accuracy_values, marker='o', linestyle='-', color="b")

Set axis labels and title

plt.xlabel('Dataset"’)

plt.ylabel('Accuracy (%)')

plt.title('Model Accuracy on Different Datasets')

Show gridlines
plt.grid(True)

Show the line graph
plt.show()

Figure 17: Experiment 2 Graph

Assuming yvou have already trained the model and have predictions for the test set
y_predictions_synthetic_datal = tune_base_model.predict(¥_test_rotated_image)
y_pred_labels_synthetic_datal = np.argmax(y_predictions_synthetic_datal, axis=1}

Convert one-hot encoded test labels back to original class labels
y_test_labels_syntheticl = np.argmax(y_test_rotated_image, axis=1)

Calculate confusion matrix
conf_matrix = confusion_matrix{y_test_labels_syntheticl, y_pred_labels_synthetic_datal)

Calculate specificity
specificity = conf_matrix[@, 8] / (conf_matrix[®, @] + conf matrix[@, 1])

Calculate sensitivity (recall)
sensitivity = recall_score(y_test_labels_syntheticl, y_pred_labels_synthetic_datal, average='weighted")

Calculate F1 score
1 = f1_score(y_test_labels_syntheticl, y_pred_labels_synthetic_datal, average='weighted')

[specificity:.4fF}")
) nthetic_data: {sensitivity:.4f}")
print(f"F1 Score_synthetic_data: {f1:.4f}")

9/9 [1 - 1s 189ms/step
Specificity_synthetic_data: 1.0900

Sensitivity (Recall)_synthetic_data: @.%674

Fl Score_synthetic_data: 8.9675

Figure 18: Accuracy of Experiment 3

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score
Print confusion matrix as a heatmap

class_names = ['infected', 'non-infected']

conf_df = pd.DataFrame(conf_matrix, index=class_names, columns=class_names)
plt.figure(figsize=(10, 8))

sns.heatmap(conf_df, annot=True, fmt="d", cmap='Blues')
plt.xlabel('Predicted Labels')

plt.ylabel('True Labels")

plt.title('Confusion Matrix original data')

plt.show()

[~

Figure 19: Confusion for Experiment 3

Plotting the graphs
import matplotlib.pyplot as plt

Plot loss graph

plt.figure(figsize=(8, 6))

plt.plot(original_data_tune model.history['loss'], label='Training Loss"')
plt.plot(original_data_tune_model.history['val_loss'], label='validation Loss")
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.legend()

plt.title('Training and validation Loss')

plt.show()

Plot accuracy graph

plt.figure(figsize=(8, 6))

plt.plot(original_data_tune_model.history["accuracy'], label="Training Accuracy’)
plt.plot(original_data_tune_model.history['val_accuracy'], label='validation Accuracy')
plt.xlabel(Epoch")

plt.ylabel('Accuracy")

plt.legend()

plt.title('Training and validation Accuracy')

plt.show()|

Figure 20: Graph for Experiment 3

10

	Overview
	Hardware and software Requirement
	Hardware Requirements
	Software Requirements

	Setting Environment
	Google Colab

	Data Selection
	Data Storing and Model Building 5
	Storing the data into Google Drive
	Prerequisite installation and library importing
	Connecting Google Drive and Colab
	Data loading, Pre-processing and splitting of data
	Data Loading and reading
	Data Pre-proceesing
	Setting the path for train and test

	Model building
	Capsule Network
	Data Augmentation
	Fine tune the model

	Evaluation

