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Configuration Manual

Sathish Omega Suresh
X21228388

1 Introduction

The configuration manual outlines the orderly, step-by-step instructions for executing the
research project's related sections and the procedures for evaluating them. The instructions
include a number of requirements, ranging from the installation of applications to the creation
of a model. Identifying the emotions for the questionText using the conversational dataset
and using the defined BERT model, which is utilized for text classification coupled with the
similarity algorithm, are two different stages of this project. In the parts that follow, specific
code snippets for carrying out the same task are provided.

2 System Configuration

2.1 System Configuration
The study project was created utilizing Google Colab, an open-source platform for AI/ML
projects in the Google ecosystem, as well as the free IDE Jupyter Notebook. This setting is

powered by a Python module. Installing each of these packages is necessary before the
project can be built.

2.2 Hardware specifications

System Name: LAPTOP-CMO08LV4S

Processor: AMD Ryzen 7 4800H with Radeon Graphics - 2.90 GHz
Installed RAM: 16.00 GB

Storage Size: 1TB SSD (109,951,162,7776 bytes)

OS type: 64-bit operating system, x64-based processor

3 Installation and Environment Setup

e Python

This project made use of a Python package. Since the majority of Deep Learning and
Machine Learning Projects are supported by its numerous built-in libraries. With a variety of
plots, it makes developing and analysing models easier. Installing the most recent version of
Python on the machine is the first prerequisite. The package installer is capable of being
downloaded through a web browser  from the  website reference
https://www.python.org/downloads depending on the operating system. Type 'python -
version' in the command prompt to confirm Python has been successfully installed from the
website, as shown in figure python below.
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e Anaconda
The anaconda package includes a number of IDE that are helpful for writing code and
analyzing outputs from python packages. As seen in the below figure, this package can be
obtained and installed from the website https://www.anaconda.com/products/individual.
Jupyter notebook and its tasks are launched in browser tabs from the anaconda navigator.
Python notebooks are first created and saved in the.ipynb format.
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e Jupyter Notebook
Using the pip command, the python libraries are installed during the execution of code.
Transformers, Scikit-Learn, nltk, Numpy, Pandas, Tensorflow, Matplotlib, googletrans,
Seaborn, and Plotly are the necessary libraries for this course of action. In this browser, many
different IDEs were available. The model in this project is constructed in Jupyter Notebook.

Command: pip install ’LibraryName’

4 Data Collection

There is one dataset used for this project which was semantically developed with chat
instances based on different scenarios. Following sections where the data sets of a
conversational excel file are being contained into a variable for preprocessing as shown in the
below figure. These are used in the respective image and text processing models, which is
concatenated at the end yield an output used to satisfy the research objectives.

5 Implementation

5.1 Importing Libraries

The implementation part is explained below in detail on how the project was implemented
using Python. Please carry out the instructions step by step. The first step is to preprocess the
provided data before we start the implementation. The libraries required for startup are
displayed in the below picture.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import train test split
from sklearn.metrics.pairwise import cosine similarity
from sklearn.preprocessing import LabelEncoder

from sentence_transformers import SentenceTransformer
import torch

from transformers import BertTokenizer, BertForSequenceClassification, Adamw
from transformers import pipeline

import re

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word tokenize

from nltk.stem import PorterStemmer

nltk.download( "punkt')

nltk.download( ' stopwords")

[nltk data] Downloading package punkt to /root/nltk data...
[nltk data] Unzipping tokenizers/punkt.zip.

[nltk _data] Downloading package stopwords to /root/nltk data...
[nltk_data] Unzipping corpora/stopwords.zip.

True



Import & load the data in a data frame

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

# Load the dataset from Excel
data = pd.read_excel("/content/drive/MyDrive/MasterThesisChatBot/EMP CB/emp burnout.xlsx™)

# Visualize the first few rows of the dataset

print(data.head())
qnID questionText \

2 1 Hey, I've been feeling really overwhelmed and ...
1 2 Well, the workload has been increasing, and th...
2 3 Not yet. I'm afraid they'll see it as a weakne...
3 4 That makes sense. I guess I just need to find ...
4 5 Thank you for the advice. I'll try to have tha...

answerText emotions
® I'm glad you reached out. It's important to ad... Ooverwhelmed
1 I understand how challenging that can be. It s... Anxious
2 It's important to remember that asking for sup... Fearful
3 Absolutely. start by scheduling a meeting with... Seeking guidance
4  Certainly. It's important to prioritize self-c... Seeking advice

5.2 Data Preprocessing and Data augmentation

5.2.1 Data Preprocessing

The preprocessing on the given data containing the excel file is performed as shown in
the figure 5 below,

# Clean and preprocess text data

def preprocess_text(text):
text = text.lower() # Convert to lowercase
text = re.sub(r'\d+"', ', text) # Remove numbers
text = re.sub(r'[~\w\s]', '", text) # Remove punctuation
text = re.sub(r'\s+', ' ", text) # Remove extra whitespaces
return text

data[ "questionText'] = data['questionText'].apply(preprocess_text)

# Lemmatize
def lemmatize(text):
lemmatizer = WordNetLemmatizer()
words = word_tokenize(text) # Tokenize the text
lemmatized words = [lemmatizer.lemmatize(word) for word in words]
return ' ".join(lemmatized words)

data[ "questionText'] = data['questionText'].apply(lemmatize)
# Remove stopwords
stop_words = set(stopwords.words('english’))
def remove_stopwords(text):
filtered words = [word for word in text.split() if word not in stop_words]

return ' '.join(filtered words)

data[ "questionText'] = data['questionText'].apply(remove_stopwords)

4



The pre-processed data is also considered for data augmentation for model fitting. Finally,
saving the augmented data in a file path with an additional labels encoder for mapping the
emotions column from the data frame for further use in the study.

# Synonym Replacement
def synonym replacement(text):
words = word tokenize(text)
new words = []
for word in words:
synonyms = wordnet.synsets(word)
if synonyms:
synonym = synonyms[@].lemmas()[@].name()
new words.append(synonym)
else:
new_words.append(word)
return ' '.join(new words)

def rephrase question(text):
tokens = word tokenize(text)
rephrased tokens = [synonym replacement(token) for token in tokens]
return ' '.join(rephrased tokens)

# Dialogue combination
def dialogue combination(text, num_samples=1):
augmented data = []
for _ 1in range(num_samples):
indexes = random.sample(range(len(data)),
questionl, answerl = data.loc[indexes[@]]
question2, answer2 = data.loc[indexes[1]]
new question = f"{question1} {question2}”
new_answer = f"{answerl} {answer2}"
augmented data.append((new question, new answer))
return augmented data

2)

# Paraphrasing using Google Translate (English to Spanish and back to English)
def paraphrasing(text):
translator = Translator()
translation = translator.translate(text, src='en', dest="es")
paraphrased = translator.translate(translation.text, src='es', dest="en")
return paraphrased.text

# Back-translation using Google Translate (English to French and back to English)
def back translation(text):
translator = Translator()
translation = translator.translate(text, src='en', dest="fr")
back translated = translator.translate(translation.text, src='fr', dest='en')
return back translated.text

# Aaugment the dataframe using data augmentation techniques
augmented data = []



for index, row in data.iterrows():
question = row[ 'questionText']
answer = row['answerText']
emotion = row[ 'emotions']

# Original data

augmented_data.append({ 'questionText': question, 'emotions’: emotion, 'answerText': answer})

# Synonym Replacement
augmented_data.append({ questionText': synonym_replacement(question), 'emotions’: emotion, 'answerText': answer})

# rephrase_question
augmented_data.append({ questionText': rephrase_question(question), 'emotions’: emotion, 'answerText': answer})

# Paraphrasing
augmented_data.append({ 'questionText': paraphrasing(question), 'emotions’: emotion, 'answerText': answer})

# Back-translation
augmented data.append({'questionText': back translation(question), ‘emotions': emoticn, ‘answerText': answer})

# Create augmented dataframe
augmented_df = pd.DataFrame(augmented_data)

# Display augmented dataframe
print(augmented_df)

# Encoding emotions into numerical labels using LabelEncoder

label encoder = LabelEncoder()

preprocessed_data[ 'emotions encoded'] = label encoder.fit transform(preprocessed data['emotions'])
print (preprocessed data)

questionText emotions \
9 hey ive feeling really overwhelmed stressed la... Overwhelmed
1 hey ive feeling truly overwhelm stress recentl... overwhelmed
2 hey ive feeling truly overwhelm stress recentl... overwhelmed
3 Hey, I feel very overwhelmed stressed lately, ... overwhelmed
4 Hey, I feel really overwhelmed in recent times... overwhelmed

1475 thank suggestion ill make effort implement fin... Appreciative
1476 thank suggestion ailment brand attempt impleme... Appreciative
1477 thank suggestion ailment brand attempt impleme... Appreciative
1478 Appreciate suggestion.I will make the effort i... Appreciative
1479 thank you suggestion badly making efforts to i... Appreciative

answerText emotions_encoded

] I'm glad you reached out. It's important to ad... 338
1 I'm glad you reached out. It's important to ad... 38
2 I'm glad you reached out. Tt's important to ad... 338
3 I'm glad you reached out. It's important to ad... 38
4 I'm glad you reached out. Tt's important to ad... 338

1475 You're welcome. Remember, seeking support is
1476 You're welcome. Remember, seeking support is
1477 You're welcome. Remember, seeking support is
1478 You're welcome. Remember, seeking support is
1479 You're welcome. Remember, seeking support is

AT« VR N (NI 1)
(S IV RV W, RV B

[148@ rows x 4 columns]



6 Model Building

6.1 Implementing BERT Model

The below code gives the overview of model building, setting hyper tuning parameters of the
BERT model for text classification. Load the predefined BERT model, and define the
constants and parameters.

# Define constants

HUM_EMOTIONS = 78

MODEL_NAME = "bert-base-uncased”

BATCH_SIZE = 16

MAX_LEN = 512

DEVICE = torch.device("cuda™ if torch.cuda.is_available() else "cpu™)

# Load the pre-trained BERT model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained(MODEL_NAME)
model = BertForSequenceClassification.from pretrained(MODEL_MAME, num_labels=NUM EMOTIONS).to(DEVICE)

class EmotionDataset(Dataset):
def _ init (self, encodings, labels):
self.encodings = encodings
self.labels = labels

def _ len_ (self):
return len(self.labels)

def  pgetitem (self, idx):
return {
"input_ids': torch.tensor(self.encodings.input_ids[idx]),
"attention_mask': torch.tensor(self.encodings.attention_mask[idx]),
"labels': torch.tensor(self.labels[idx])

S

6.2 Splitting of Train and Test Data

The given data set comprises of conversational text data , which is considered for modelling
now , let us split the dataset into training and testing sets and convert them to BERT format
as shown in the Figure below,

# Split the dataset into training and testing sets

train_text, test_text, train_labels, test_labels = train_test_split(preprocessed_data[ ' 'questionText'].tolist(),
preprocessed_data[ ‘emotions_encoded’].tolist(),
test_size=0.2, random_state=42)

# Convert the text to BERT format

train_encodings = tokenizer(train_text, truncation=True, padding=True, max_length=MAX_LEN)
test_encodings = tokenizer(test_text, truncation=True, padding=True, max_length=MAX_LEN)

then create dataset objects and also create data loaders for both train and test datasets.



# Create Dataset objects
train_dataset = EmotionDataset(train_encodings, train_labels)
test_dataset = EmotionDataset(test_encodings, test_labels)

# Create Dataloaders
train_loader = Dataloader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = Dataloader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)

also, import the the necessary libraries for BERT optimized modelling.

import torch.optim as optim

import torch.nn as nn

from torch.utils.data import DatalLoader

from sklearn.metrics import accuracy_score

from transformers import get_linear_schedule_with_warmup

optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossentropylLoss()

# Lists to store losses and accuracies
train_losses = []
train_accuracies = []

NUM_EPOCHS = 18

# Define the optimizer and learning rate scheduler
optimizer = AdamW({model.parameters(), lr=2e-5, correct_bias=False)
scheduler = get_linear_schedule_with_warmup(

optimizer,

num_warmup_steps=8,

num_training_steps=len(train_loader) * NUM_EPOCHS

# Training loop
for epoch in range(NUM_EPOCHS):
model.train()
running_loss = 8.8
correct_predictions = @
total_predictions = @
for batch in train_loader:
input_ids = batch[ 'input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch["labels’].to(DEVICE)
optimizer.zero_grad()
outputs = model{input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
scheduler.step()

running_loss += loss.item()

_» predicted = torch.max(outputs.logits.data, 1)
total_predictions += labels.size(®)

correct_predictions += (predicted == labels).sum{).item()

epoch_loss = running_loss / len(train_loader)
epoch_accuracy = correct_predictions / total predictions

train_losses.append{epoch_loss)
train_accuracies.append(epoch_accuracy)

print(f"Epoch [{epoch+1}/{NUM_EPOCHS}] - Loss: {epoch_loss:.4f} - Accuracy: {epoch_accuracy:.4f}")



# Save the model

model_path = "/content/drive/MyDrive/MasterThesisChatBot/EMP_CB"
model.save pretrained(model path)
tokenizer.save_pretrained({model_path)

# Plot the accuracy and loss graphs
plt.figure(figsize=(18, 4))

plt.subplot(1, 2, 1)

plt.plot(train_losses, label="Training Loss')
plt.xlabel( 'Epoch’)

plt.ylabel( Loss")

plt.title( ' Training Loss')

plt.legend()

plt.subplot(l, 2, 2)

plt.plot(train_accuracies, label="Training Accuracy', color='orange')
plt.xlabel{ Epoch')

plt.ylabel( Accuracy”)

plt.title( Training Accuracy')

plt.legend()

plt.tight layout()
plt.show()

fusr/local/lib/python3.18/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of Adam is deprecated and
warnings.warn(

Epoch [1/18] - Loss: 3.5529 - Accuracy: 8.1873
Epoch [2/18] - Loss: 3.5162 - Accuracy: 8.1830
Epoch [3/18] - Loss: 3.5@53 - Accuracy: ©.1831
Epoch [4/18] - Loss: 3.5833 - Accuracy: 8.1856
Epoch [5/18] - Loss: 3.5837 - Accuracy: ©.1@@5
Epoch [6/18] - Loss: 3.4882 - Accuracy: ©.8997
Epoch [7/18] - Loss: 3.5838 - Accuracy: 8.1898
Epoch [8/18] - Loss: 3.4978 - Accuracy: 8.1890
Epoch [9/18] - Loss: 3.4922 - Accuracy: 8.1890

Epoch [18/18] - Loss: 3.4988 - Accuracy: ©.1166

Training Loss Training Accuracy
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0.110 -
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# Set the model to evaluation mode
model.eval()

correct_predictions = @

total_predictions = 8

with torch.no_grad()
for batch in test_loader:
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask’].to(DEVICE)
labels = batch['labels'].to(DEVICE)

outputs = model(input_ids=input_ids, attention_mask=attenticon_mask)
_» predicted = torch.max(outputs.logits.data, 1)

total predictions += labels.size(@)
correct_predictions += (predicted == labels).sum{).item()

accuracy = correct_predictions / total_predictions
accuracy_percentage = accuracy * 188

print({f"Test Accuracy: {accuracy_percentage:.2f}%")

Test Accuracy: 11.82%
6.3 Fine Tuning the BERT Algorithm

#Additional Preprocess
from transformers import BertTokenizer

# Load the BERT tokenizer
tokenizer = BertTokenizer.from pretrained('bert-base-uncased")

# Replace this with your actual DataFrame loading code
prepdata = pd.read_excel('/content/drive/MyDrive/MasterThesisChatBot/EMP CB/augmented data.xlsx')

# Preprocess and tokenize the 'questionText' column
def tokenize text(text):
tokens = tokenizer.encode plus(

text,
add_special tokens=True, # Add [CLS] and [SEP] tokens
max_length=128, # Adjust this based on your sequence length

pad_to max_length=True,
return_attention mask=True,
return_tensors="pt’ # Return PyTorch tensors

)

return tokens

# Apply the tokenizer function to the 'questionText' column
prepdata[ 'tokenized question'] = prepdata[ 'questionText'].apply(tokenize text)

print(prepdata)
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questionText emotions %

a hey ive feeling really overwhelmed stressed la... Overwhelmed
1 hey ive feeling truly overwhelm stress recentl... Overwhelmed
2 hey ive feeling truly overwhelm stress recentl... Overwhelmed
3 Hey, I feel very overwhelmed stressed lately, ... Overwhelmed
4 Hey, I feel really overwhelmed in recent times... Overwhelmed
1475 thank suggestion ill make effort implement fin... Appreciative
1476 thank suggestion ailment brand attempt impleme... Appreciative
1477 thank suggestion ailment brand attempt impleme... Appreciative
1478 Appreciate suggestion.I will make the effort i... Appreciative
1472 thank you suggestion badly making efforts te i... Appreciative
answerText \

@ I'm glad you reached out. It's important to ad...

1 I'm glad you reached out. It's important to ad...

2 I'm glad you reached out. It's important to ad...

3 I'm glad you reached out. It's important to ad...

4 I'm glad you reached out. It's important to ad...

1475 You're welcome. Remember, seeking support is
1476 You're welcome. Remember, seeking support is
1477 You're welcome. Remember, seeking support is
1478 You're welcome. Remember, seeking support is
1479 You're welcome. Remember, seeking support is

[T TR T )

tokenized_gquestion
[input_ids, token_type_ids, attention_mask]
[input_ids, token_type_ids, attention_mask]
[input_ids, token_type_ids, attention_mask]
[input_ids, token_type_ids, attention_mask]
[input_ids, token_type_ids, attention_mask]

B e @

1475 [input_ids, token_type ids, attention_mask]
1476 [input_ids, token_type_ids, attention_mask]
1477 [input_ids, token_type_ids, attention_mask]
1478 [input_ids, token_type_ids, attention_mask]
147% [input_ids, token_type_ids, attention_mask]

[1480 rows x 4 columns]

# Encoding emotions into numerical labels using LabelEncoder

label encoder = LabelEncoder()

prepdata[ ‘emotions_encoded’] = label_encoder.fit_transform{prepdata[ emotions’])
print (prepdata)

questionText emotions \
2] hey ive feeling really overwhelmed stressed la... Overwhelmed
1 hey ive feeling truly overwhelm stress recentl... Overwhelmed
2 hey ive feeling truly overwhelm stress recentl... Overwhelmed
3 Hey, I feel very overwhelmed stressed lately, ... Overwhelmed
4 Hey, I feel really overwhelmed in recent times... Overwhelmed
1475 thank suggestion ill make effort implement fin... Appreciative
1476 thank suggestion ailment brand attempt impleme... Appreciative
1477 thank suggestion ailment brand attempt impleme... Appreciative
1478 Appreciate suggestion.I will make the effort i... Appreciative
147% thank you suggestion badly making efforts to i... Appreciative

answerText \
I'm glad you reached out. It's important to ad...
I'm glad you reached out. It's important to ad...
I'm glad you reached out. It's important to ad...
I'm glad you reached out. It's important to ad...
I'm glad you reached out. It's important to ad...

oL R )

1475 You're welcome. Remember, seeking support is a...
1476 You're welcome. Remember, seeking support is a
1477 You're welcome. Remember, seeking support is a...
1478 You're welcome. Remember, seeking support is a
1479 You're welcome. Remember, seeking support is a

tokenized_question emotions_encoded

2] [input_ids, token_type_ids, attention_mask] 38
1 [input_ids, token_type_ids, attention_mask] 38
2 [input_ids, token_type_ids, attention_mask] 38
3 [input_ids, token_type_ids, attention_mask] 38
4 [input_ids, token_type_ids, attention_mask] 38

1475 [input_ids, token_type_ids, attention_mask]
1476 [input_ids, token_type_ids, attention_mask]
1477 [input_ids, token_type_ids, attention_mask]
1478 [input_ids, token_type_ids, attention_mask]
1479 [input_ids, token_type_ids, attention_mask]

[N Y I T

[148@ rows x 5 columns]
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# Define constants

NUM_EMOTIONS = 78

MODEL_MAME = "bert-base-uncased”

BATCH_SIZE 16

MAX LEN = 512

DEVICE = torch.device("cuda™ if torch.cuda.is_available() else "cpu™)

# Load the pre-trained BERT model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained(MODEL_MAME )}
finetune_model = BertForSequenceClassification.from pretrained(MODEL_NAME, num_labels=NMUM_EMOTIONS).to(DEVICE)

# Define your dataset class
class CustomDataset(Dataset):
def _ init  (self, prepdata, tokenizer, max_length):
self.prepdata = prepdata
self.tokenizer = tokenizer
self.max_length = max_length

def _ len_ (self):
return len(self.prepdata)

def _ getitem_ (self, idx):
item = self.prepdata.iloc[idx]
question = str{item[ questionText'])
emotions = int(item[ 'emotions_encoded']) # Assuming you have an ‘emotions’® column in your DataFrame

inputs = self.tokenizer.encode_plus(
question,
add_special_tokens=True,
max_length=self.max_length,
padding="max_length",
return_tensors='pt’,
truncation=True

)

return {
"input_ids': imputs['input_ids'].flatten(),
‘attention_mask': inputs['attention_mask'].flatten(),
"labels': torch.tensor(emotions, dtype=torch.long)

¥

# Create the dataset and data loader

MAX_LENGTH = 128 # Set your desired maximum sequence length

train_dataset = CustomDataset(prepdata, tokenizer, max_length=MAX_LENGTH)
train_loader = Dataloader(train_dataset, batch_size=BATCH SIZE, shuffle=True)

) # Define other necessary variables
NUM_EPOCHS = 1@

# Define the optimizer and learning rate scheduler
optimizer = Adamll(finetune_model.parameters(), lr=2e-5, correct_bias=False)
scheduler = get_linear_schedule with_warmup(

optimizer,

num_warmup_steps=a,

num_training_steps=len(train_loader) * NUM_EPOCHS

train_losses = []
train_accuracies = []

12



# Training loop

for epoch in range(NUM_EPOCHS):
finetune_model.train()
running_loss = 2.8
correct_predictions = @

total predictions = @

for batch in train_loader:
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch[ 'attention_mask"].to(DEVICE)
labels = batch["labels’].to({DEVICE)

optimizer.zero_grad()

outputs = finetune_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss

loss.backward()

optimizer.step()

scheduler.step()

running_loss 4= loss.item()

_s predicted = torch.max(outputs.logits.data, 1)
total_predictions += labels.size(@)
correct_predictions += (predicted == labels).sum()}.item()

epoch_loss = running_loss / len(train_locader)
epoch_accuracy = correct_predictions / total_predictions

train_losses.append(epoch_loss)
train_accuracies.append(epoch_accuracy)

print{f"Epoch [{epoch+1}/{NUM_EPOCHS}] - Loss: {epoch_loss:.4f} - Accuracy: {epoch_accuracy:.4f}")

# Save the fine-tuned model

finemodel_path = "/content/drive/MyDrive/MasterThesisChatBot/EMP_CB_finetune”
finetune_model.save pretrained(finemodel path)

tokenizer.save pretrained(finemodel path)

# Save the fine-tuned model
finemodel path = "/content/drive/MyDrive/MasterThesisChatBot/EMP_CB_finetune™

finetune_model.save_pretrained(finemodel_path)
tokenizer.save_pretrained(finemodel path)

# Plot the accuracy and loss graphs
plt.figure(figsize=(12, 4))

plt.subplot(l, 2, 1)

plt.plot(train_losses, label="Training Loss")
plt.xlabel( Epoch®)

plt.ylabel( Loss")

plt.title( "Training Loss')

plt.legend()

plt.subplot(l, 2, 2)

plt.plot(train_accuracies, label='Training Accuracy', coleor='orange')
plt.xlabel( Epoch")
plt.ylabel( Accuracy")
plt.title( "Training Accuracy')
plt.legend()

plt.tight_layout()
plt.show()
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fusr/local/lib/python3.1@/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of Adaml is deprecated
warnings.warn(

Epoch [1/1@] - Loss: 3.2823 - Accuracy: @.1838
Epoch [2/1@] - Loss: 2.4485 - Accuracy: @.3277
Epoch [3/18] - Loss: 1.828% - Accuracy: ©.5581
Epoch [4/1@] - Loss: 1.3624 - Accuracy: ©8.7115
Epoch [5/1@] - Loss: 1.@691 - Accuracy: ©.7892
Epoch [6/1@] - Loss: @.83@1 - Accuracy: @.8378
Epoch [7/1@] - Loss: @.7727 - Accuracy: 0.8743
Epoch [8/18] - Loss: @.6956 - Accuracy: ©.8946
Epoch [9/1@] - Loss: @.6525 - Accuracy: @.9268

Epoch [1@/12] - Loss: ©.626@ - Accuracy: ©.914%9

Training Loss Training Accuracy
—— Training Loss 0.9 4 Training Accuracy
3.0
0.8 |
2.5 0.7 1
3 0.6
2 2.0 E
| 2 ]
% 0.5
151 0.4 1
1.0 4 0.3 A
0.2 4
0.5 T T T T T T T T T T
] 2 4 6 8 ] 2 4 6 8
Epoch Epoch

# Set the model to evaluation mode
finetune_model.eval()

L[}
[ex]

correct_predictions
total_predictions = @

with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch['labels’ ].to(DEVICE)

outputs = finetune_model(input_ids=input_ids, attention_mask=attention_mask)
_s predicted = torch.max(outputs.logits.data, 1)

total_predictions 4= labels.size(@)
correct_predictions += (predicted == labels).sum(}.item{)

accuracy = correct_predictions / total predictions
accuracy_percentage = accuracy * 188

print(f"Test Accuracy: {accuracy_percentage:.2f}%")

Test Accuracy: 92.57%

7 Implementing Cosine Similarity
The Cosine Similarity algorithm is implemented to retrieve the counselling responses based

on similarity scores. Initially the algorithm is implemented by utilizing the fine-tuned BERT
Algorithm. So, the Model is loaded as shown below,
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#Implementing Cosine Similarity Algorithm

# Load the fine-tuned model and tokenizer

finetune_model = BertForSequenceClassification.from_pretrained("/content/drive/MyDrive/MasterThesisChatBot/EMP_CB_finetune")
tokenizer = BertTokenizer.from_pretrained("/content/drive/MyDrive/MasterThesisChatBot/EMP_CB_finetune™)

prepdata = pd.read_excel("/content/drive/MyDrive/MasterThesisChatBot/EMP_CB/prepdata.xlsx™)

# Define a reverse mapping of encoded emotions to labels
encoded_to_emotions = {

38: "Overwhelmead”,

2: "Anxious",

26: "Fearful”,

45: "Seeking guidance”,

44: "Seeking advice”,

4: "Appreciative”,

22: "Down”,

27: "Frustrated”,

7: "Apprehensive”,

38: "Grateful",

59: "Worried”,

48: "Pressured”,

58: "Valued"”,

47: "Stressed”,

32: "Hesitant",

21: "Dissatisfied”,

8: "Bored",
53: "Unfulfilled”,
8: "Afraid",

108: "Comforted”,
51: "Unappreciated”,
57: "Unsatisfied”,
12: "Concerned”,
41: "Proactive”

33: “"Hopeful”,

42: "Reassured”,
36: "Overloaded”,
15: "Demotivated”,
49: "Struggling”,
18: "Disappointed”,
19: "Disheartened”,
58: “"Suspicious”,
11: "Concern”,

31: "Gratitude"

29: "Frustration”,

def get_response(input_text):
# Tokenize input text
input_ids = tokenizer.encode(input_text, add_special_tokens=True, return_tensors="pt")

# Get model's prediction
with torch.no_grad():
logits = model(input_ids).logits
predicted_label = torch.argmax(logits, dim=1).item()

# Check if the predicted label is valid
if predicted_label in encoded_to_emotions:
predicted_emotion = encoded_to_emotions[predicted_label]

# Calculate cosine similarity for unique responses and find the most similar emotion response
most_similar_response = MNone
max_similarity = -1

for index, row in prepdata.iterrows():
if row[ emotions_encoded’] == predicted_label:
response = row[ ‘answerText']

response_ids = tokenizer.encode(response, add_special_tokens=True, return_tensors="pt")
similarity = cosine_similarity(logits.detach().numpy(), model(response_ids).logits.detach().numpy()).item()

if similarity » max_similarity:
max_similarity = similarity
most_similar_response = response

return most_similar_response

else:
return "I'm not sure how to respond.”
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def chatbot_main():
print("Chatbot: Hello! How can I help you?")
while True:
user_input = input(“You: ")
if user_input.lower() in ["exit", "quit", "bye"]:
print("Chatbot: Goodbye!™)
break

response = get response(user_input)

if response:
print(f"Chatbot: {response}")
else:
print("Chatbot: I'm not sure how to respond to that.™)

if __name__ == "__main__":

chatbot_main()

Chatbot: Hello! How can I help you?

You: i am feeling overwhelmed

Chatbot: Seeking support is a positive step. Counseling can provide you with tools to navigate the challenges of deal
You: thank you for the advice. so what should i do?

Chatbot: I appreciate you reaching out. Absenteeism can have various underlying causes, and it's important to explore
You: exit

Chatbot: Goodbye!

8 SVM for Model Evaluation

Support Vector Machine (SVM) is used for classifying the texts and to compare the results
with the developed research study. So, initially the libraries are installed as below,

pip install numpy pandas

Requirement already satisfied: numpy in fusr/local/lib/python3.18/dist-packages (1.23.5)

Requirement already satisfied: pandas in fusr/local/lib/pythen3.1e/dist-packages (1.5.3)

Requirement already satisfied: python-dateutil»>=2.8.1 in /usr/local/lib/python3.1@/dist-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz»>=2@28.1 in /fusr/local/lib/python3.18/dist-packages (from pandas) (2023.3)

Requirement already satisfied: six»>=1.5 in /usr/local/lib/python3.18/dist-packages (from python-dateutil»=2.8.1-»pandas) (1.16.8)

import numpy as np # linear algebra
import pandas as pd

pip install nltk

Requirement already satisfied: nltk in /usr/local/lib/python3.18/dist-packages (3.8.1)

Requirement already satisfied: click in /usr/local/lib/python3.18/dist-packages (from nltk} {8.1.6)

Requirement already satisfied: joblib in /usr/local/lib/python3.1@/dist-packages (from nltk) (1.3.2)
Requirement already satisfied: regex»=2821.8.3 in /usr/local/lib/python3.18/dist-packages (from nltk) (2623.6.3)
Requirement already satisfied: tgdm in /usr/local/lib/python3.1@/dist-packages (from nltk) (4.66.8)

from google.colab import drive
drive.mount('/content/drive")
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive"”, force_remount=True}.

# Load the dataset from Excel
data = pd.read_excel("/content/drive/MyDrive/MasterThesisChatBot/EMP_CB/emp_burnout.xlsx™)

data

qnID questionText answerText emotions

0 1 Hey, I've been feeling really overwhelmed and ... I'm glad you reached out. It's important to ad.. Overwhelmed
1 2 Well, the workload has been increasing, and th... | understand how challenging that can be. Its.. Anxious
2 3 Not yet. I'm afraid they'll see it as a weakne . It's imporiant to remember that asking for sup. . Fearful
3 4 That makes sense. | guess | just need to find .. Absolutely. Start by scheduling a meeting with...  Seeking guidance
4 5 Thank you for the advice. I'll try fo have tha . Certainly. It's important to prioritize self-c_. Seeking advice
291 292  I've been feeling incredibly stressed and over..  Thank you for sharing your concerns. Dealing w... Stressed
292 293 | have multiple projects with deadlines thats__. I'm sorry to hear that you're going through th._. Anxious
293 294 | haven't talked to anyone at work about it. ... Seeking support is a positive step. Counseling. .. Worried
294 295  Thank you for the suggestion. I'l consider co... Certainly. While considering counseling, there... Appreciative
295 296 Thank you for those suggestions. Il make an .. You're welcome. Remember, seeking supportis a... Appreciative

296 rows x 4 columns
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Data preprocessing and augmentation steps are carried out to implement the model as shown
below,

from nltk.stem import WordNetlemmatizer
nltk.download{ 'wordnet")

# Clean and preprocess text data

def preprocess_text(text):
text = text.lower() # Convert to lowercase
text = re.sub(r'\d+", "', text) # Remove numbers
text = re.sub(r'[~\whs]', "', text) # Remove punctuation
text = re.sub(r'\s+", ' ', text) # Remove extra whitespaces
return text

data[ 'questionText'] = data['questionText'].apply(preprocess_text)

# Lemmatize
def lemmatize(text):
lemmatizer = WordNetlLemmatizer()
words = word_tokenize(text) # Tokenize the text
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
return ' ".join{lemmatized words)
data[ 'questionText'] = data[ 'questionText'].apply(lemmatize)

# Remove stopwords

stop_words = set(stopwords.words( 'english'))

def remove stopwords(text):
filtered words = [word for word in text.split() if word mot in stop words]
return ' ".join(filtered_words)

data[ 'questionText'] = data['questionText'].apply(remove_stopwords)
# Train Word2Vec model on your preprocessed data

sentences = [word_tokenize(text) for text in data[ ‘questionText']]
word2vec_model = Word2Vec(sentences, vector_size=188, window=5, min_count=1, sg=8)
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# Save the preprocessed dataset
data.to_excel('/content/drive/MyDrive/MasterThesisChatBot/EMP CB/prepnewnostem.xlsx’, index=False)
print(data)

[nltk_data] Downloading package wordnet to /root/nltk_data...
[nltk_data] Package wordnet is already up-to-date!

qnID questionText
hey ive feeling really overwhelmed stressed la...
well workload ha increasing tight deadline mee...
yet im afraid theyll see weakness think cant h...
make sense guess need find right way approach
thank advice ill try conversation soon aside a...

o o e @
(W T T N

291 292 ive feeling incredibly stressed overwhelmed im...
292 293 multiple project deadline seem almost impossib...
263 294 havent talked anyone work im concerned admitti...
294 295 thank suggestion ill consider counseling explo...
295 296 thank suggestion ill make effort implement fin...

answerText emotions
8 I'm glad you reached out. It's important to ad... Overwhelmed
1 I understand how challenging that can be. It s... Anxious
2 It's important to remember that asking for sup... Fearful
3 Absolutely. Start by scheduling a meeting with... Sesking guidance
4 Certainly. It's important to prioritize self-c... Seeking advice
291 Thank you for sharing your concerns. Dealing w... Stressed
292 I'm sorry to hear that you're going through th... Anxious
293 Seeking support is a positive step. Counseling... Worried
284 Certainly. While considering counseling, there... Appreciative
285 You're welcome. Remember, seeking support is a... Lppreciative

[296 rows x 4 columns]

pip install googletrans==4.8.8-rcl

Collecting googletrans==4.8.28-rcl

Downloading googletrans-4.@.@rcl.tar.gz (20 kB)

Preparing metadata (setup.py) ... done
Collecting httpx==0.13.3 (from googletrans==4.0.@-rcl)

Downloading httpx-0.13.3-py3-none-any.whl (55 kB)
55.1/55.1 kB 1.7 MB/s eta @:08:0@
Requirement already satisfied: certifi in fusr/local/lib/python3.18/dist-packages (from httpx==8.13.3->googletrans==4.8.8-rcl) (2823.7.22)
Collecting hstspreload (from httpx==0.13.3->googletrans==4.8.2-rcl)

Downloading hstspreload-2023.1.1-py3-none-any.whl (1.5 MB)
1.5/1.5 MB 7.6 MB/s eta ©:08:80
Requirement already satisfied: sniffic in /usr/local/lib/python3.18/dist-packages (from httpx=-2.13.3-rgoogletrans==4.@.08-rcl) (1.3.8)
Collecting chardet==3.* (from httpx==8.13.3->googletrans==4.8.8-rcl)

Downloading chardet-3.8.4-py2.py3-none-any.whl (133 kB)
133.4/133.4 kB 18.8 MB/s eta 0:06:88
Ceollecting idna==2.% (from httpx==8.13.3->googletrans==4.8.8-rcl)

Downloading idna-2.1@-py2.py3-none-any.whl (58 kB)
58.8/58.8 kB 6.6 MB/s eta 0:88:0@
Collecting rfc3986<2,»=1.3 (from httpx==0.13.3->googletrans==4.8.8-rcl)

Downloading rfc3986-1.5.8-py2.py3-none-any.whl (31 kB)
Collecting httpcore==0.9.% (from httpx==0.13.3->googletrans==4.8.8-rcl)

Downloading httpcore-8.9.1-py3-none-any.whl (42 kB)
42.6/42.6 kB 4.9 MB/s eta 0:00:6@
Collecting hli<e.1e,»>=0.8 (from httpcore==0.9.%->httpx==0.13.3->googletrans==4.8.@-rcl)

Downloading hll-6.9.8-py2.py3-nona-any.whl (53 kB)
53.6/53.6 kB 6.2 MB/s eta @:08:0@
Collecting h2==3.* (from httpcore==8.9.*->httpx==0.13.3->googletrans==4.8.8-rcl)
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from nltk.corpus import wordnet
from googletrans import Translator

# Synonym Replacement
def synonym_replacement(text):
words = word_tokenize(text)
new_words = []
for word in words:
synonyms = wordnet.synsets (word)
if synonyms:
synonym = synonyms[8].lemmas()[8].name()
new_words . append{ synonym)
else:
new_words . append{word)
'.join(new_words)

return

def rephrase_question(text):
tokens = word_tokenize(text)
rephrased_tokens = [synonym_replacement(token) for token in tokens]
return ' ".join(rephrased_tokens)

# Dialogue combination
def dialogue combination(text, num_samples=1):
augmented data = []
for _ in range(num_samples):
indexes = random.sample(range(len(data)), 2)
questionl, answerl = data.loc[indexes[8]]
question2?, answer2 = data.loc[indexes[1]]
new_guestion = f"{questionl} {question2}"
new_answer = f"{answerl} {answsr2}”
augmented_data.append((new_question, new_answer))
return augmented data

# Paraphrasing using Google Translate (English to Spanish and back to English)
def paraphrasing(text):
translator = Translator()
translation = translator.translate(text, src="en’', dest="es"}
paraphrased = translator.translate(translation.text, src="es', dest="en')
return paraphrased.text

# Back-translation using Google Translate (English to French and back to English)
def back_translation(text):
translator = Translator()
translation = translator.translate(text, src="en', dest="fr")
back translated = translator.translate(translation.text, src="fr', dest="en")
return back_translated.text

# Augment the dataframe using data augmentation techniques
augmented data = []
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for index, row in data.iterrows():
question = row['guestionText’]
answer = row['answerText']
emotion = row[ 'emotions’]

# Original data

augmented_data.append({ 'questionText': question, ‘emotions’: emotion,

# Synonym Replacement

"answerText': answer})

augmented_data.append({ 'questionText': synonym_replacement(guestion), 'emotions’': emotion, 'answerText': answer})
# rephrase_question

augmented_data.append({ 'questionText': rephrase_question(question), 'emotions': emotion, ‘answerText': answer})

# Paraphrasing

augmented_data.append({'questionText': paraphrasing(question), 'emotions': emotion, 'answerText': answerl})

# Back-translation
augmented_data.append({'questionText': back_translation(question),
# Create augmented dataframe

augmented_df = pd.DataFrame(augmented_data)

‘emotions’: emotion,

‘answerText': answer})

# Paraphrasing using Google Translate (English to Spanish and back to English)

def paraphrasing(text):
translator = Translator()
translation = translator.translate(text, src="en', dest="2s")

paraphrased = translator.translate(translation.text, src="es', dest="en’")

return paraphrased.text

# Back-translation using Google Translate (English to French and back to English)

def back_translation(text):
translator = Translator()
translation = translator.translate(text, src="en', dest="fr')

back_translated = translator.translate(translation.text, src="fr', dest="en")

return back_translated.text

# Augment the dataframe using data augmentation techniques
augmented_data = []

for index, row in data.iterrows():
question = row[ 'questionText']
answer = row[ ' answerText']
emotion = row[ 'emotions’]

# Original data

augmented_data.append({"questionText': question, ‘"emotions’: emotion,
# Synonym Replacement
augmented_data.append({ questionText': synonym_replacement(question),
# rephrase_question
augmented_data.append({ "questionText': rephrase_question{question),

# Paraphrasing

‘answerText': answer})

‘emotions’: emotion, 'answerText': answer})

"emotions': emotion, "answerText': answer})

augmanted_data.append({'questionText’': paraphrasing(question), 'emotions': emotion, 'answerText': answer})
# Back-translation
augmanted_data.append({ 'questionText': back_translation(question), 'emotions': emotion, 'answerText': answer})
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# Display augmented dataframe
print{augmented_df)

questionText emotions \

8 hey ive feeling really overwhelmed stressed la... Overwhelmed
1 hey ive feeling truly overwhelm stress recentl... Overwhelmed
2 hey ive feeling truly overwhelm stress recentl... Overwhelmed
3 Hey, I feel very overwhelmed stressed lately, ... Overwhelmad
4 Hey, I feel really overwhelmed in recent times... Overwhelmed
1475 thank suggestion ill make effort implement fin... Appreciative
1476 thank suggestion ailment brand attempt impleme... Appreciative
1477 thank suggestion ailment brand attempt impleme... Appreciative
1478 Appreciate suggestion.I will make the effort i... Appreciative
1479 thank you suggestion badly making efforts to i... Appreciative

answerText
8 I'm glad you reached out. It's important to ad...
1 I'm glad you reached out. It's important to ad...
2 I'm glad you reached out. It's important to ad...
3 I'm glad you reached out. It's important to ad...
4 I'm glad you reached out. It's important to ad...

1475 You're welcome. Remembar, seeking support is
1476 You're welcome. Remembar, seeking support is
1477 You're welcome. Remembar, seeking support is
1478 You're welcome. Remembar, seeking support is
1479 You're welcome. Remember, seeking support is

I ER - E RV 1)

[148@ rows x 3 columns]

Intent Prediction Model

import joblib

from sklearn.model_selection import train_test split

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC

from sklearn.metrics import classification_report

import plotly.graph_objs as go

from sklearn.metrics import accuracy_score

# 5plit the dataset into training and testing sets

X = augmented_df['questionText']

y = augmented df[ emotions’]

X_train, ¥_test, y_train, y_test = train_test split(X, y, test_size=0.2, random_state=42)

# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer()

X_train_vec = vectorizer.fit_transform({¥_train)
X_test_vec = vectorizer.transform(¥_test)

# Train a Support Vector Machine (SwM) classifier
medel = SVC()
model.fit(X_train_vec, y_train)

# Save the trained model and vectorizer to specified paths
model_path = '/content/drive/MyDrive/MasterThesisChatBot/EMP_CB/trained model.pkl’
vectorizer path = "/content/drive/MyDrive/MasterThesisChatBot/EMP_CB/vectorizer.pkl®

joblib.dump(model, model_path)
jeblib.dump(vectorizer, wvectorizer_path)

# Predict intents for the testing set
y_pred = model.predict(X_test_vec)

# Calculate model accuracy
accuracy = accuracy_score(y_test, y_pred)

print({"Model Accuracy:", accuracy)
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# Evaluate the model's performance
report = classification_report(y_test, y_pred, output_dict=True, zero_division=8)

# Convert float values in the report to dictionaries

report = {label: {metric: report[label][metric] for metric in report[label]} for label in report if isinstance(report[label], dict)}

# Extract evaluation metrics

labels = list({report.keys())

evaluation_metrics = ['precision’, 'recall’, 'fi-score']

metric_scores = {metric: [report[label][metric] for label in labels if label in report] for metric in evaluation_metrics}

# visualize the model's performance using a Plotly bar plot
fig = go.Figure()
for metric in evaluation_metrics:
fig.add_trace(go.Bar(name=metric, x=labels, y=metric_scores[metric]))
fig.update_layout(title="Intent Prediction Model Performance’,
xaxis_title="Intent',

yaxis_title="Score’,
barmode="group"')

fig.show()

Model Accuracy: 8.7263513513513513

Intent Prediction Model Performance

1
0.8
0.6
0.4
0.2
4
Fi
a

Score

B
] e
e

ey —
|
] e
e
|
O U e ey
sumprt Surrees (N
P51 | ——
—
ouioenas
o
el
o E—
o ———

o i
20000 I EE 'Y

P rErErEoocopgRgoRonI Z EEE g§558 i

- 3 0 a = 2 3
T r s ot ElddriesFiisga S 2283 S8 agd 8328 ¢ dg
dhsEaggadijazedeie g g 8§333c283 F58 8~ o
“%g a8z IdgRiESgRS 7o T gi3adgsgqs E24 5 s &
%g!‘ﬂﬁu 5 H]%%ug a a 2 333 g NG Q9 o
2
33 a2t a2 & 3

Intent
from sklearn.metrics import classification report

all labels = sorted(np.unique(np.concatenate((y_test, y pred))))
print(classification_report(y_test, y pred, labels=all labels, target_names=all labels))

precision recall fil-score  support

Afraid 1.80 9.50 0.67 2
Anxiety 1.0 @.11 .20 9
Anxious 0.00 0.00 0.0 1
Anxious 1.0 0.67 0.80 3
Appreciative 0.76 @.91 2.83 35
Appreciative 1.00 0.67 0.80 12
Apprehension 0.00 0.00 0.00 2
Apprehensive 1.00 .88 2.93 8
Burned-out 0.00 0.00 0.0 1
Comforted 0.00 0.00 0.0 4
Concern 9.64 1.0 8.78 9
Concerned 1.60 9.33 9.50 3
Confused 1.0 1.e0 1.9 1
Demotivated 0.00 9.00 0.9 1
Desolation 1.00 .30 9.46 le
Disappointed 0.00 0.00 0.6 1
Disheartenad 1.0 9.50 @.67 2
Dismissed 0.00 .00 0.08 2
Dissatisfied 1.0 1.0 1.6 4
Down 1.680 9.33 8.50 3
Exhausted 1.00 0.33 9.50 3
Fatigued 1.80 1.0 1.00 1
Fear 1.680 1.80 1.00 1

Fearful 1.0 1.08 1.00 3
Frustrated 0.30 1.0 9.46 21
Frustrated 1.0 0.50 0.67 2
Frustration 1.00 1.00 1.00 3
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accuracy 0.73 296
macro avg 8.65 8.54 9.56 296
weighted avg 0.77 8.73 B.70 296
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