"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Ashok Saravanan Sundarrajan
Student ID: x21204764

School of Computing
National College of Ireland

Supervisor:  Prashanth Nayak

~

College
Ireland




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ashok Saravanan Sundarrajan
Student ID: x21204764
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Prashanth Nayak
Submission Due Date: 14/07/2023
Project Title: Configuration Manual
Word Count: 657
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ashok Saravanan Sundarrajan

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Il
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Ashok Saravanan Sundarrajan
x21204764

1 Introduction

The rising demand for food, especially in developing countries, has necessitated the ad-
vancement of agricultural techniques. Accurate wheat yield prediction has emerged as a
vital requirement to ensure food security and economic stability. This manual provides
guidelines on setting up the system to run an ensemble machine learning approach for
wheat yield prediction in India. The approach combines the strengths of Random Forest,
Support Vector Machine, and Decision Tree models.

2 System Specification

The System specification for this research work includes the following machine con figu-
ration.

2.1 Hardware Specifications

e Processor: 2.3 GHz Dual-Core Intel Core i5.

e RAM Memory: 8 GB 2133 MHz LPDDRS3.

Storage: 256GB SSD.

Graphics: Intel Iris Plus Graphics 640 1536 MB.

Operating System: Mac OS Ventura 13.4.1

2.2 Software Specifications

IDE Google Colab, Jupyter Notebook
Programming Language Python v3.9.1
Modules Matplotlib, Pandas, Numpy, Scikit-learn
Computation GPU
Number of GPU 1
GPU Type Tesla K80 GPU-12GB

Table 1: Software Specification



3 Importing Required Libraries

This research includes, importing of libraries in the colab which uses python environment.
the major advantage of using colab is that the python modules like pandas, numpy etc
are preloaded into it.

the Figure (1] shows the Libraries and Dependencies that needs to be imported into
this project.

Importing Required Libraries and Read Dataset

© import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
from math import sqrt
from sklearn.model_selection import train_test_split, KFold, TimeSeriesSplit, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import VotingRegressor, StackingRegressor

Figure 1: Libraries and Dependencies

4 Loading Data

The data has been uploaded to the colab inbuilt storage and the data has been loaded
into data frame using pandas for further processing E| Fig [2| shows the data frame after
data loading into colab for data pre-processing.

[ 1 df = pd.read_csv('data.csv')

° df

‘ State District Crop Crop_Year Season Area Production Yield
Andaman and Nicobar Island NICOBARS Arecanut 2007 Kharif 2439.6 3415.0 1.40
Andaman and Nicobar Island NICOBARS Arecanut 2007 Rabi 1626.4 2277.0 1.40
Andaman and Nicobar Island NICOBARS Arecanut 2008 Autumn 4147.0 3060.0 0.74
Andaman and Nicobar Island NICOBARS Arecanut 2008 Summer 4147.0 2660.0 0.64

Andaman and Nicobar Island NICOBARS Arecanut 2009 Autumn 4153.0 3120.0 0.75

345331 West Bengal PURULIA
345332 West Bengal PURULIA
345333 West Bengal PURULIA
345334 West Bengal PURULIA
345335 West Bengal PURULIA

345336 rows x 8 columns

Column names have white spaces so we can trim it.

Figure 2: Data Loading

'https://data.world/thatzprem/agriculture-india


https://data.world/thatzprem/agriculture-india

5 Data Pre-Processing and Data Cleaning

In Data Pre-processing the column names were not properly formatted so we format using
the strip method in python and then we check for NA values present in the dataset and
it includes 4948 NA values in the Production Column. it is shown in Figure [3]

[ 1 df.columns = df.columns.str.strip()
print(df.columns)

Index(['State', 'District', 'Crop', 'Crop_Year', 'Season', 'Area',
'Production', 'Yield'],
dtype='object"')

Figure 3: Data Column Trimming
finally NA values are cleaned which is shown in in Figure [4]

© df.isna().sum()

State (/]
District (*]
Crop 9
Crop_Year (*]
Season (/]
Area (/]
Production 4948
Yield (/]
dtype: int64

there are 4948 na values in 4948 which are not required. so lets drop it.

[ 1 df = df.dropna()

Figure 4: Dropping NA Values

we consider only Wheat for our analysis and we filter out it from different crops. the
Data frame for wheat consist of 11208 rows and 8 columns.

© df_wheat

. State District Crop Crop_Year Season Area Production Yield
16914 Andhra Pradesh ADILABAD Wheat 1997 Rabi 3600.0 2000.0 0.56
204766 Meghalaya WEST GARO HILLS Wheat 1997 Rabi 4215.0 6811.0 1.62
204726 Meghalaya EAST GARO HILLS Wheat 1997 Rabi 72.0 83.0 1.15
39246 Assam DIMAHASAO Wheat 1997 Rabi 56.0 73.0
197366 Maharashtra YAVATMAL Wheat 1997 Rabi  18600.0 8700.0

332550 Uttarakhand CHAMPAWAT 4657.0 7358.0

332718 Uttarakhand UDAM SINGH NAGAR 105961.0 471000.0
332571 Uttarakhand DEHRADUN 14271.0 42482.0
332739 Uttarakhand UTTAR KASHI 9082.0 15203.0
332508 Uttarakhand BAGESHWAR 13858.0 23715.0

11208 rows x 8 columns

Figure 5: Data Frame for Wheat

We have Detected outliers using IQR method and its represented in the following
Figure [0]



© # select numerical columns
num_cols = ["Area", "Production", "Yield"]

sns.set_style("whitegrid")

fig, axs = plt.subplots(ncols=3, figsize=(20, 8))

for i, col in enumerate(num_cols):
sns.boxplot(y=df_wheat[col], ax=axs[i])
axs[il.set_title('{}'.format(col), fontsize=15)
axs[i]l.set_xlabel('"')

plt.tight_layout()
plt.show()

Figure 6: Detecting Outliers in Data

6 Exploratory Data Analysis

Exploratory Data Analysis was implemented in this to understand the data better. the
various plots and visualizations give us better insights about the crop varieties which
helps us to build the model better. we have visualized several plots which has been
shown in the following Figure

© vheat_data = df[df
ple. show() wheat_c nean().plot()
plt.title(
Pt show()

plt. figure(

sns. heatmay
ple.title(
plt. show()

*1.sun() . sort_values(ascending=False). head(10)

sns. set_palette('PRGn')
crop = df.g| *)['Area’]. sun().sort_values(ascending=False). head(20)

crop.plot(k ear*) ['Production"].sum()

uction_trend.values, marker='o')
)

map using viridi

%', colors=colors) ion', data=df_wheat.sample(1000))

“tit
plt. show()

Figure 7: Exploratory Data Analysis

7 Model Building

7.1 Label Encoding

In this research, the dataset encompass categorical features such as the state, district,
Crop type and Season where the wheat is grown. These categorisations, being non-
numeric, need to be transformed into a machine-readable format. this is shown in figure

<k

[ 1 le = LabelEncoder()

° df_wheat_cleaned['State'] = le.fit_transform(df_wheat_cleaned['State'])

df_wheat_cleaned['District'] = le.fit_transform(df_wheat_cleaned['District'])
df_wheat_cleaned['Season'] = le.fit_transform(df_wheat_cleaned['Season'])
df_wheat_cleaned['Crop'] = le.fit_transform(df_wheat_cleaned['Crop'])

Figure 8: Label Encoding



7.2 Data Sampling

We have to divide the crop dataset and based in this has to be done before we train the
model during the model building process. The training set is used to train the model,
whereas the testing set is used to evaluate the model’s performance on unseen data.The
provided code segment is useful for temporally separating the cleaned data frame into
training and testing data based on the crop year. In particular, data up to the year 2015
is used for training, with X train including the feature columns (excluding ’Yield’) and Y
train containing the corresponding 'Yield” values. Conversely, data from the years after
2015 serves as the testing set, with X test capturing the features and Y test catching the
"Yield’ vales.

Here we choose Crop Year from 1997 to 2015 for the training data and 2015 to 2020 for test data for training the different models.

[ ] X_train, y_train = df_wheat_cleaned [df_wheat_cleaned["' r'] <= 2015].drop('Yield', axis=1), df_wheat_cleaned[df_wheat_cleaned rop_Year'] <= 2015]['Yield']
X_test, y_test = df_wheat_cleaned [df_wheat_cleaned['Cr 1 > 2015].drop('Yield', axis=1), df_wheat_cleaned[df_wheat_cleaned['C ar'] > 2015] ['Yield']

Figure 9: Data Splitting for Test and Train

7.3 Implementation of Random Forest vs SVM vs Decision Tree

[ 1 rf_model = RandomForestRegressor(n_estimators=10, random_state=42,max_depth=5)
svm_model = SVR()
model_dt = DecisionTreeRegressor(random_state=42)

rf_model.fit(X_train, y_train)
svm_model.fit(X_train, y_train)
model_dt.fit(X_train, y_train)

DecisionTreeRegressor(random_state=42)
predictions_rf = rf_model.predict(X_test)

predictions_svm = svm_model.predict(X_test)
predictions_dt = model_dt.predict{(X_test|)

Figure 10: Implementation of RF, SVM and Decision Tree

7.4 Implementation Time Series Cross Validation

Figure 11: Time Series Cross Validation



7.5 Hyper Parameter Tuning

[ 1 def hyperparameter_tuning(model, params, X, y, o G = s (10 Ry TR Gae
gs = GridSearchCV(model, params, cv=cv, scoring='neg_roc uare o 5, 10, 201,
gs. fit(X, y) 1 2, 5, 10,
print(f' p: {gs.best_params_}") ‘min_ g 3
print(f' s gs.best_score_}") best_dt = hyperparaneter_tuning(DecisionTreeRegressor(), dt_parans, X _train, y_train)
return gs.best_estimator_ Best parameters: {'criterion’: ‘squared_error’, 'max_depth': None, ‘min_samples_leaf': 2, ‘min_samples_split's 2}
Best score: -8.1933948377275966
[ ] rf_params = {'n_estimators': [50, 100,200],'max_depth': [None,5, 101}
best_rf = hyperparameter_tuning (RandonForestRegressor(), rf_params, X_train, y_train) o ams = {'kernel': ['rbf'],'C': [1, 10, 100,1e3]}
R(), svm_parans, X_train, y_train)

Best parameters: {'max_depth': None, 'n_estimators': 200} -
Best score: -0.13769895079757735 Best parameters: {'C': 1000.0,
Best score: -0.3414279268318744

‘kernel's 'rbf'}

° svm_model2 = SVR(kern 'rbf', C=1e3)
svm_model2. fit(X_train, y_train)
predictions_svm2 = svm_model2.predict(X_test)
rmse_svm2 = np.sqrt(mean_squared_error(y_test, predictions_svm2))

model_dt2 = DecisionTreeRegressor(criterion='po , max_depth= 20, min_samples_leaf= 5, min_samples_split= 5, random_state=42)
model_dt2.fit(X_train, y_train)

predictions_dt2 = model_dt2.predict(X_test)

rmse_dt2 np.sqrt(mean_squared_error(y_test, predictions_dt2))

Figure 12: Hyper Parameter tuning

7.6 Ensemble Models - Voting Average

~ Voting Average

., ens_rf = RandomForestRegressor(n_estimators=100, max_depth= , min_samples_split=2)
ens_svm = SVR(C=10, kernel='rbf")
ens_dt = DecisionTreeRegressor(max_depth= , min_samples_split=2)

estimators = [
(‘rf', ens_rf),
(*svm', ens_svm),
('dt', ens_dt)

voting_reg = VotingRegressor(estimators)

voting_reg. fit(X_train, y_train)
voting_preds = voting_reg.predict(X_test)

Figure 13: Ensemble - Voting Average

7.7 Ensemble Models - Stacked Generalization

Stacked Generalization

final_estimator = LinearRegression()

stacking_reg = StackingRegressor(estimators=estimators, final_estimator=final_estimato
stacking_reg. fit(X_train, y_train)
stacking_preds = stacking_reg.predict(X_test)

stacking_rmse = sqrt(mean_squared_error(y_test, stacking_preds))

Figure 14: Ensemble - Stacked Generalization



8 Evaluation of Results

The key goal of this study is to predict the wheat yield in India using an ensemble machine
learning model and compare it with the performance of the standalone machine learning
models like Random Forest(RF),Support Vector Machine(SVM), Decision Tree(DT). The
data spanned from 1997 to 2020 and was categorized by state, district, and season. The
models were trained using data up to 2015, and their performance was tested on data
from 2016 to 2020.

8.1 Results of Models with Default Parameters

Random Forest:
Train Range (Year):1997-2015 Test Range (Year):2016-2020
RMSE - 0.5771581285332895

VM:

SWM:
Train Range (Year):1997-2015 Test Range (Year):2016-2020

RMSE - 0.5146458443444355
rmse_rf = np.sqrt(mean_squared_error(y_test, predictions_rf)) Decision Tree:
rmse_svm = np.sqrt(mean_squared_error(y_test, predictions_svm)) Train Range (Year):1997-2015 Test Range (Year):2016-2020
rmse_dt = np.sqrt(mean_squared_error(y_test, predictions_dt)) RMSE — 0.32414085244720553

12 score rf = r2_scorefly_test, predictions_rf]] Rg SRS ;‘" 2 . BF";e;t’g 6;39;13630208“
r2_score_svm = r2_score(y_test, predictions_svm) R2 score for SVM: @.785317977576297
r2_score_dt = r2_score(y_test, predictions_dt) R2 score for D 4837916650425

t MAE for Random Fore: 0.41855886474523546
mae_rf = mean_absolute_error(y_test, predictions_rf) MAE score for SVM: 0.3094958190912449

mae_svm = mean_absolute_error(y_test, predictions_svm) MAE score for Decision Tree: 0.17173726541554957
mae_dt = mean_absolute_error(y_test, predictions_dt)

Figure 15: Results of Model with
Default parameters

8.2 Results of Time Series Cross Validation

Model RMSE at Each Split

0.550

Random Forest
—— svM
0.525 | —e— Decision Tree

0.500

0.475

0.450

RMSE

0.425

0.400

0.375

1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0
Split

Figure 16: Results of Time series cross validation

@ Randon Forest: Train Range (Year):1997-2015 Test Range (Year):2016-2020
RUSE - 0.20470619209206006
rain Range (Year):1997-2015 Test Range (Year):2016-2020

M:

e: Train Range (Year):1997-2015 Test Range (Year):2016-2020
19

7-2015 Test Range (Year):2016-2020

(Year):1997-2015 Test Range (Year:

Random Forest: Train Range (Year):1997-2015 Test Range (Year

R2 SCORE - 0.9662073320096174

SVM: Train Range (Year):1997-2015 Test Range (Year):2016-2020

R2 SCORE - 0.8414405577509063

Decision Tree: Train Range (Year):1997-2015 Test Range (Year):2016-2020
R2 SCORE - 0.3251872206990335

Figure 17: RMSE, MAE, R2 for Time Series Cross Validation



8.3 Results of Models After Hyper Parameter Tuning

@ Random Forest: Train Range (Year):1997-2015 Test Range (Year):2016-2020
RMSE - 0.20470619209206006
SWM: Train Range (Year):1997-2015 Test Range (Year):2016-2020

rmse_rf = np.sqrt(mean_squared_error(y_test, predictions_rf)) RMSE - 0.4434205269293046
on Tree: rain Range (Year):1997-2015 Test Range (Year):2016-2020
219

rmse_svm = np.sqrt(mean_squared_error(y_test, predictions_svm))
rmse_dt = np.sqrt(mean_squared_error(y_test, predictions_dt))

r2_score_rf = r2_score(y_test, predictions_rf)
r2_score_svm = r2_score(y_test, predictions_svm)
r2_score_dt = r2_score(y_test, predictions_dt)

MAE
74

mae_rf = mean_absolute_error(y_test, predictions_rf) SWM: Train Range (Year):1997-2015 Test Range (Year):
R2 SCORE - 0.8414405577509063

mae_svm = mean_absolute_error(y_test, predictions_svm) e teary
- i Decision Tree: Train Range (Year):1997-2015 Test Range (Year):2016-2020
mae_dt = mean_absolute_error(y_test, predictions_dt) e W A

Figure 18: Results of Models after Tuning

8.4 Results of Ensemble Models

The Voting Average method produced commendable predictions for wheat yield, achiev-
ing an RMSE of 0.286, an R? score of 0.934, and an MAE of 0.150, indicating its superior-
ity over standalone models used in this research. In contrast, the Stacked Generalization
method showcased even more impressive performance with an RMSE of 0.204, an R?
score of 0.966, and an MAE of 0.101, denoting a notably higher accuracy and capability
in accounting for the variance in wheat yield data.

[ ] voting_rmse = sqrt(mean_squared_error(y_test, voting_preds))
voting_r2_score = r2_score(y_test, voting_preds)
voting_mae = mean_absolute_error(y_test, voting_preds)
print(f"Voting RMSE: {voting_rmse}")
print(f"Voting R2: {voting_r2_score}")
print(f"Voting MAE: {voting_mael}")
Voting RMSE: 0.28565490430937773

Voting R2: ©.9341972730866314
Voting MAE: 0.1479194480569795

Figure 19: Results of Ensemble - Voting Average

stacking_r2_score = r2_score(y_test, stacking_preds)

stacking_mae = mean_absolute_error(y_test, stacking_preds)

print(f"Stacking RMSE: {stacking_rmse}")

print(f"Stacking R2: {stacking_r2_score}")
print(f"Stacking MAE: {stacking_mae}")

Stacking RMSE: 0.20716658376865774
Stacking R2: 0.965390132950514
Stacking MAE: 0.103413899682968

Figure 20: Results of Ensemble - Stacked Generalization



	Introduction
	System Specification
	Hardware Specifications
	Software Specifications

	Importing Required Libraries
	Loading Data
	Data Pre-Processing and Data Cleaning
	Exploratory Data Analysis
	Model Building
	Label Encoding
	Data Sampling
	Implementation of Random Forest vs SVM vs Decision Tree
	Implementation Time Series Cross Validation
	Hyper Parameter Tuning
	Ensemble Models - Voting Average
	Ensemble Models - Stacked Generalization

	Evaluation of Results
	Results of Models with Default Parameters
	Results of Time Series Cross Validation
	Results of Models After Hyper Parameter Tuning
	Results of Ensemble Models


