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Abstract— Logistic Regression (LR) is a widely used
statistical model for classification problems. However, its
training and evaluation in a shared environment increase the
possibility of information leaking. A federated LR reduces
security issues by using only locally available data for training.
In a Federated Learning (FL) environment, LR receives the
coefficients of local models to create the federated LR model,
which is then distributed to update the local models. The
exchange process does not leak confidential information when
LR coefficients are encrypted. Homomorphic Encryption (HE)
allows the merging of local LR models with privacy preservation
(HE-LR). This work presents a novel training policy to reduce
the training time with only slightly decreased quality in an FL
environment with HE. We analyze the accuracy and time of FL
policies with HE-LR that progressively reduce the amount of
training data and exchange the LR coefficients in a privacy-
preserving manner. The results show that the proposed policy
can speed up the training time between 12% and 69%,
compared to the traditional FL approach, with an avetrage
decrease in accuracy of 1.79% and 1.95%.

Keywords— Federated Learning, HomomorphicdEneryption,
Logistic Regression, Privacy-Preserving, Training policy.

I INTRODUCTION

Federated Learning (FL) and HemomorphiefEncryption
(HE) are two main directions to provide security and privacy
preservation by addressing vulngrabilities in data processing.
Both approaches qpursuénthe processing of information
securely and privately. “Several Machine Learning (ML)
approaches have been implemented to protect the information
of the dataset using HE /and FL, for“imstance, Logistic
Regression (LR) and Artificial Neural Networks (NN), among
other ML techniques [ 14.

LR is a common supervised ML approach widely
applicable to binary-¢lassification problems (see Section III).
A critical limitation “of LR with HE is the polynomial
approximation that defines the homomorphic versions of the
logistic/sigmoid function [2]. FL environment eliminates this
limitation because the FL approach does not compute the
homomorphic version of the logistic/sigmoid function. FL is
widely applied in real-world scenarios, not only for privacy-
preserving but also to reduce training time.

In this paper, we present a new training policy for FL that
progressively reduces the amount of training data for each
iteration. This reduction allows us to perform the learning
process faster, effectively reducing the training time without
significant precision degradation.

Relevant experiments on ‘sixhdatasets from medicine
(diabetes, cancer, drugs, etc.) and genomics show that our
proposed method reduces the training time compared with
recent state-of-the-art approaches whileymaintaining the
model's accuracy.

Our main contributions are multifold. We

e present recent advances in privacy*preserving logistic
regression with federated learning and homomorphic
encryption;

e propose a policy, to reduce the training time of logistic
regression in awertical federated learning environment
with homomorphig encryption;

o analyzeithe accuracy and time of the proposed policy;
and,

e show that the policy reduces the training time of the
logistic regression in a federated learning environment.

The content of the paper is structured as follows. The next
section introduces information about gradient descent, LR,
FL, and HE approaches. Section III describes the latest
advances in privacy-preserving LR. Section IV outlines the
proposed training policy. Section V presents the configuration
and performance evaluation of HE-LR with FL. Finally,
Section VI summarizes the main contributions of our research.

II.  BACKGROUND

A. Logistic Regression and Gradient Descent

LR models the probability of a discrete outcome given an
input variable. It is a classification method where the inference
determines the category of a new sample based on the sigmoid
function. LR is a standard technique for image recognition [3],
[4], genomics [5], and disease detection [6]-[8], among
others.

The inference of the LR considers the information of the
instance x = (1,xq, X3, ...,xq) with d features, the
coefficients 8T = (8,04, ...,0;) of the LR equation to
estimate the probability of a category and the logistic/sigmoid
function g(z) = 1/4+eC? . hy(x) = g(67x) produces a
value in the interval (0, 1) with a real input of the linear
combination 8Tx =0, + 01x; + O,x, + -+ 04x5 . A
binary category is defined by a threshold 0 < 7 < 1 and the
function

_{1ifh9(x)2‘t 1
L0 if hy(x) <t )



where 7 is typically equal to 0.5.

The efficient inference of logistic regression LR depends
on the likelihood function expressed in the parameter 8. The
LR training phase finds 6" that maximizes the correct
classification of the elements in the dataset X according to
their corresponding labels Y. Gradient Descent (GD) is the
most used method to find 6*, which minimizes the cost
function error J(6) defined as follows:

N
J6) = Y yO 10 (e(x))
i=1

+(1-y9D)log (1 - he(x(i)))

where x® € R? is the i -th instance of X and its
corresponding label y® € {0,1}inY fori = 1,2,...,N.

(2)

J(0) expresses the efficiency of the model, the smaller the
value, the more accurate the classification is. The optimization
process to find 68" consists of updating 8 according to the
opposite direction of the slope, considering the partial
derivative of J(6), defined by V4/(8). The search for 8*
defines a learning rate o that establishes the length of a
movement in the search space (step), the performance of GD
depends on the « value [9]. Because 6 minimizes J(8), it can
be used as a binary classifier for new data using (1).

In recent years, the main direction in LR has focused on
protecting the information of the dataset used to train the
model. The search for more efficient versions of privacy-
preserving LR follows two main directions: FL and HE.

B. Federated Learning

As a distributed system with decentralized lea
operations to ensure data privacy, the main purpose of F
to eliminate the necessity of pooling the data_in
location [10]. It allows the training of ML m
local data of distributed nodes. Each node in

ation generates
eral and local

limiting acce
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local models on the central server, the sharing of the central
model with local nodes, and the updating of the local model
with the information of the central model.
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Despite the current limitations, HE is an alternative to
creating secure ML models, its limited applicability can be
used in the prediction or classification of confidential
information [1]. Figure 2 shows data protection in a secure
cloud environment with HE.
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Fig. 2. An example of a Cloud environment with HE that protects the entire data lifecycle (transmission, storage, and processing).



TABLE L.

MAIN CHARACTERISTICS OF FL AND HE APPROACHES FOR PRIVACY-PRESERVING LOGISTIC REGRESSION IN THE LITERATURE.

HE FL Name Metric Dataset Ref
- * VFLR Accuracy (A), Area under the ROC Curve (AUC) Pima, BCWD, BDM [16]
- * SecureLR Time MNIST [17]
- * VANE Mean Absolute Error (MAE) BCD, Diabetes dataset (DD), UCID [18]
- * VPPLR Precision (P), Recall (R) DD, WIBC, DD, ACAD [19]
* - - A MNIST, notMNIST, CIFAR-10 [3]
* - - AUC iDASH (Genomic), financial [20]
* - Modified GWAS p-values, F1-score (F1) iDASH [21]
* - - A, AUC, K-S values Korea Credit Bureau (KCB), MNIST [22]
N - - A, AUC iDASH, Lbw, Mi, Nhanes3, Pcs, Uis [23]
* - N-LHAE Overhead Not described [24]
* - P20LR, P2VCLR, CECLLR A, AUC,F1,P,R Mi, Nhanes3, Uis [25],[26],[27]
* - - A Digits (scikit-learn library) [28]

III.  RELATED WORK

Several studies have proposed innovations and new
approaches to overcome the disadvantages of LR with HE
and FL. This section presents the most relevant advances in
the privacy-preserving LR field with HE and FL. Table I
summarizes the main characteristics of the related work.

Yang et al. [14] compare outsourcing schemes with
several secure computation methods, e.g., secure multi-party
computation, pseudorandom functions, software guard
extensions, and perturbation approaches. The authors
describe the basis, evolution, and applicability of HE and the
security threats and requirements of secure outsourcing
computation.

Shaheen et al. [15] provide an overview of the FL
technique and its applicability in different domains, where thie
systematic literature review of recent studies shows the svide
adoption of FL. The authors describe the algorithms, models,
and frameworks of FL and its scope of application in different
domains.

A. Logistic Regression with Federated Learning

Zhao et al. [16] propose an efficient, privacy-preserving
Vertical FL Framework for LR (VEER). It'usesfparticipants'
data to create a global high-quality LR “model. VEER
provides secure training and quéries over private information
among participants. The results show the efficiency of VFLR
in terms of accuracy, computational cost, and communication
overhead.

He et'al. [17] presenta distributed Secure LR algorithm
for vertical EL, whichduses HE to avoid information leaks.
Secure LR removes'the need for a third-party coordinator and
guarantees security.at the expense of efficiency. The results
demonstrate that the systém's security for a two-party FL can
be extended for different.datasets and several participants.

Wang et al. [18] introduce a noninteractive privacy-
preserving FL scheme for ML models with data protection.
VANE uses cloud assistance over multiple private local data
to train a global Linear Regression (LiR), Ridge Regression
(RR), or LR models. The results show that VANE can
securely aggregate local training data faster than existing
schemes.

Zhang and Tang [19] develop a noninteractive Vertically
Privacy-Preserving LR (VPPLR) for FL. It trains an LR
model by reformulating the gradient update rules and
introducing a vectorization approach. The results present a

reduction in communication and computational overhead and
a decrease in training time with respect to the two schemes.

B. Logistic Regression with Homomorphic Encryption

Edemacu and Kim [3Jgpropose a multisparty, LR with
privacy-preserving of pgor data quality in a'system with [oT
contributors. The framework filters 'out poor-quality data
through @ gradient similarity metric and prevents information
leaking by an HE scheme The results show the approach's
security, effectiveness, and robustness with noisy data.

Bonte and Vereauteren [20] introduce an LR with lower
multiplicative complexity. It uses a simplified fixed Hessian
method that produces' accurate results considering the
standard “LRy on plaintext data. Time complexity is an
advantage of the approach because it grows linearly with
respect 'to the mamber of covariates and training input
instances.

Kim fet al. [21] develop a privacy-preserving modified
semi-parallel GWAS algorithm using Fisher Scoring and
FHET It evaluates data efficiently using an encrypted state.
The proposed approach decreases the computational cost by
redueing matrix multiplications and provides high accuracy
compared to the result obtained in an unencrypted state.

Han et al. [22] present an LR algorithm with HE and an
approximate bootstrapping. The authors propose the HE-
specific Single-Instruction-Multiple-Data (SIMD) operations
that parallelize the bootstrapping process and vectorize the
LR algorithm. The results demonstrate the practical
feasibility of LR training on large encrypted data.

Chiang [23] studies a privacy-preserving LR with a fast
gradient variant for the model's training. The quadratic
gradient extends the simplified fixed Hessian, and is
enhanced using a Nesterov gradient and Adagrad. The results
show that the proposed methods have a state-of-the-art
convergence speed performance compared to the first-order
gradient methods.

Zhou et al. [24] propose the Novel Linear Homomorphic
Authenticated Encryption (N-LHAE) algorithm. It provides a
privacy-preserving online diagnosis service that can protect
the model's integrity (parameters), the results, and the data. A
relevant advantage of N-LHAE is the absence of a trusted
cloud and its reduced computational cost (overhead).

Yu et al. [25] design the Privacy-Preserving Outsourced
LR (P20OLR) algorithm. It uses cloud resources to train and
deploy an LR model without exposing data privacy.



Afterward, Yu et al. [26] present the Privacy-Preserving
Vertical Collaborative LR (P2VCLR) system that reduces
complexity. P2VCLR enables training a shared model with a
secure joining of two parties’ data and works without a
Trusted Third-Party (TTP) coordinator. Later, Yu et al. [27]
introduce the Cloud-Edge Collaborative Learning LR
(CECLLR) algorithm. It can train a shared model over
vertically partitioned data and combine the data from edge
nodes and cloud data centers without a TTP.

Liu et al. [28] present a privacy-preserving LR where
trusted hardware assists a cloud server during the training
phase. The trusted hardware (Raspberry Pi) decrypts and re-
encrypts the cyphertext during the bootstrapping process and
the evaluation of the activation function.

IV. TRAINING PoLICY

We implement a standard version of the LR model as a
baseline to compare the efficiency of the FL policies. In a
basic horizontal FL (LRy;) approach, we assume that the
datasets are evenly distributed among the system nodes, and
each local node uses all available local data to train the model
in each iteration.

As an alternative to traditional LRp; , we develop a
training reduction policy for LRz, (LRp;,) where local nodes
use a reduced number of instances to train local models.
LRg;, decreases the number of training instances according
to 1/i ratio, where i defines the iteration number. For
instance, 100% of the local dataset is used for the first
iteration, 50% for the second, 33% for the third iteration, and
so on. The subset of training instances is chosen randomly, for
each iteration according to a normal distribution.

The central server calculates a Federated Averaging
(FedAvg) of the k values of 8 (84,0, ...,0; ), Where 0;
defines the model of the node i. It allows local nodes to
perform several updates with their local data and eXchange
their coefficients of the LR model. Fopexample,for k nodes
in the FL system, the coefficients of the LR equation for the
central server are updated as follows

Oerver = (04 % 0, £ 0,)/k (3)

Then, Bseryer 1s sent to the k nodes to update the local 6;
fori = 1,2,...0k. At theend of the process, we obtain 67,
65, ..., 65 from thenodés to generate 6¢,4,. according to (3).
Therefore, O¢prper €an be used with (1) to predict the class of
new instances.

We also develop an FL ensemble LR (LRp;.) in the
central server using the logal model of all the nodes. The
nodes use their data to train local LR models, and then these
models are sent to the central server to obtain a better
predictive model, better than any of the individual local
nodes.

In this model, different to LRp; and LRg;,, nodes in the
FL system do not receive information from the central server.
At the end of the process, the central server receives k values
of 8 from the nodes (07, 85, ..., Oy) that can be used with (1)
to predict the class of new instances as follows

1 if (ho;(x) + hgy(x) + -+ ho: (X)) /k = T
g ={ 0 if (ho: () + hgs () + -+ hg Gk <7 P

In order to update the central server model with a
proportional number of instances from the local models, we
develop the weighted version of LRg;,, (LRp;pn,) Where the
update rule of 8 for the k nodes follows

6 = 0. — V) (0) (5) 5)

Then, reducing the number of instances on the training
dataset implies a reduced update on 6.

Finally, the training dataset of each local model in LRg;,
can be reduced according to 1/i ratio policy, LRy, ., defines
a LRy, approach with a reduction in‘the training dataset with
1/i ratio where i defines the iteration number.

The processing of the proposed modelycan be done in a
privacy-preserving mannerfif the, 07, 0, ..., O aresencrypted
using HE.

V. EXPERIMENTAL EVARUATION

We compare the performance of LRgy and LRy, a novel
FL with a new training policy, that progressively reduces the
instancesdof, the' training datasets of local nodes. The 6
exchange mechanism uses FHE to ensure data privacy. The
implementation based. on, Python 3.10.12, sklearn 1.4.1
library, “and\ the open-souree Simple Encrypted Arithmetic
Library (SEAL) v3.14 [29] is performed on a computer with
64-bit "Windowshl1 Pro, Intel(R) Core (TM) i9-10980XE
CPU at 3.00 GHz, 64 GB of memory, and 2 TB SSD.

The \standard security setting of the FHE scheme
considers @ CKKS scheme with a security level of 128 bits, a
polynefnial modulo degree at most 2'3~1, and a moduli chain
equal to {31, 26, 26, 26, 26, 26, 26, 31}[30]. The security
level of the scheme guarantees that an adversary can only
break theyscheme with probability one after performing 2!2
elementary operations.

Our implementation considers a vertical FL system where
the nodes contain the same number of features (same feature
space) with different instances. The number of nodes is
constant during the training process, the nodes do not leave
or join the system or consider new instances in the local
training data.

A. Datasets

The evaluation of the strategies with real data is
fundamental to measuring their performance. We consider
six standard datasets widely used in the literature: Low Birth
Weight (Lbw), Myocardial Infarction (Mi), Third National
Health and Nutrition Examination Survey (Nhanes3), Indian
diabetes (Pima), Prostate Cancer Study (Pcs), Umaru Impact
Study (Uis) [31]. They contain a series of continuous input
variables and two output classes. The values of the features
were normalized in the range [0, 1] using the known min-max
normalization method:

x—min (x)
T ()-min (x) ®)

where x is the original value, and x;, is the normalized value.



The Simple Split technique provides a methodology to
compare the performance of the algorithms. A dataset is
randomly divided into two subsets with a number of instances
n-Training and n-Testing. One is used to train the
classification model, and the other one is used to validate the
training process. Table II summarizes the characteristics of
datasets and the size of training and testing sets according to
the Simple Split.

TABLE II. CHARACTERISTICS AND SIZE OF THE DATASETS.
Instances
Dataset Features
Total (N) n-Training n-Testing

Low Birth Weight Study 9 189 151 38
(Lbw)

Myocardial Infarction (Mi) 9 1,253 1,002 251
National Health and Nutrition

Examination (Nhanes3) 15 15,649 12,519 3,130
Prostate Cancer Study (Pcs) 9 379 303 76
Indian’s diabetes (Pima) 8 768 614 154
Umaru Impact Study (Uis) 8 575 460 115

B. Evaluation Method

The number of correct and incorrect predictions of each
class defines the efficiency of a classifier. A Confusion
Matrix (CM) is a manner to display the difference between
the true and predicted classes for a set of examples. More
meaningful measures can be extracted from the structure of
the CM, for instance: Accuracy (A) expresses the systematic
error in estimating a value by

Tp+Tp

A= —2n )

Tp+Tn+Fp+Fn

where T, and T, define the number of elements classified
correctly, T,, for positives and T, for negatives, and the
number of elements classified incorrectly is defined,by F, for
positives and F,, for negatives.

C. Experimental analysis

The initial configuration of the L Rdbased on the Batch GD
algorithm considers 10 learning rates a={ 3.5, 3, 2.5, 2, 1.5,
1,0.5,0.1,0.5,0.1, 0.05, 0.01} ,d0values of itcrationsmlter
= {5, 10, 15, 20,425, 30p35, 40, 45, 50}, and 30 initial
solutions for 8.4n every expetiment, théytraining and testing
subsets of inStances are chosen randomly rom the dataset
accordingdo the Simple Split of 80-20% and aseed based on
the number of experiments.

Table IIT presents the best configurations for LR and all
datasets after 30 executions. In the case of Lbw, a learning
rate higher than 0.1 and any number of iterations produce the
highest accurate value. Similarly, for Uis, any learning rate
and number of iterations generate the best accuracy value. For
the Nhanes3 dataset, three configurations provide the best
value of A. The value of accuracy provides a baseline to set
and measure the efficiency of LRg;, LRp > LRrw> LRELe,
and LRgy ey

Table IV shows the average A for 30 executions with all
the strategies and nodes k = {2, 3,4, 5, 6}. The results show
that LR and LRy, provide the same A for Lbw and Uis
datasets. LR has a better performance than LRy; on Nhanes3,
Pcs, and Pima. Finally, LRy; outperforms LR with respect to
the Mi dataset.

TABLE III. THE BEST CONFIGURATION FOR LR.

Dataset A a nite
Lbw 0.6965 >0.1 Any
Mi 0.9053 3.5 50
Nhanes3  0.7916  {3.0,0.5,0.1} {30, 10,45}
Pcs 0.6667 3.5 50
Pima 0.6543 0.5 10
Uis 0.7365 Any Any

The average difference of A (dify) for LRpiyn, LRpinw,
LRp1e, and LRy, With respect to LRy, considering the five
datasets are 1.79%, 7.8%, 0.04%, and 1.95%, with a
maximum of 9.25%, 30.76%, 0.35%, and 10.35% for Pcs,
Pima, Mi, and Pcs datasets, respectively. Also, LRp;,, LRpe,
and LRg;,, can improve A with, reSpect to LRy, about
0.11%, 0.04%, and 0.09% for Pima, Pcs, and Pima datasets.

dify(LRppn) = (A(LRFL) - A(LRFLn)) *100  (8)

LRp;, and LRy, ., have the worse performance with the
Pcs dataset, their average decrease of\A considering LRy,
and the five configurations of nodes are 6.736% and 7.236%,
respectively, with a maximum of 9.25% and 10.35%. In the
case of Lbw, theyA decreases by 2.84% and 3.15% on
average/with a maximum of 4.74% and 7.58%, respectively.
Finally, for Mi, Nhanes3, and Uis datasets, the average
reductionsion A are 0.37%,hand 0.41%, respectively, with a
maximum 0f\1.49%, and 1239%, respectively.

LRg;,,,, has the worst performance of all the FL models,
with an average decrease of 30.52%, 12.07%, and 4.29% for
Mi, Pima, and Pcs, respectively. The average difference of A
with respect to the Lbw, Nhanes3, and Uis is about 0.002%.

Table 'V shows the speedup of LRy, LRpipn, LRrinw
LRgp. , and LRg;,., with respect to LR . The measures
consider the worst time of all nodes in the FL environment
per iteration. LRg;, LRp;pn, LRpipw, LRpe, and LRgp ., are
faster than LR 44%, 63%, 64%, 93%, and 150% on average.
The speedup for small datasets (Lbw, Pcs, Pima, and Uis) is
negative or low.

The advantages of the rate reduction policy are perceived
in the biggest datasets, Mi and Nhanes3. LRp;,, and LRy},
speed up the execution of LR between 146% and 242%, and
124% and 656%. Both models with the reduction policy keep
a similar A than LRg;.

The average speedup of LRgi,, LRrinw,» LRpre, and
LR 0, With respect to LRp; and all the datasets are 12%,
13%, 34%, and 69%, respectively. Table VI presents the
speedup of the models with respect to LRg; for Mi and
Nhanes3 datasets. In the case of the Mi dataset, the speedup
is from -10% to 59%, but LRg;,,, decreases the efficiency
between 11.99% and 12.18%. For LRz, LRpe, and FL,,, A
changes within 0.11% and 1.49%. In the case of the Nhanes3
dataset, all strategies vary A between -0.01 and 0.01%, but
the speedup is between 36% and 378%.



TABLE IV. AVERAGE ACCURACY AFTER 30 EXECUTIONS WITH THE BEST LR CONFIGURATION FOR DIFFERENT FL ENVIRONMENT CONFIGURATIONS.

Dataset LR LRp, LRpyn LRppnyw LRpre LRppen difg(LRppn) dif g(LRppaw) dif s(LRpre) dif 4(LRpren) Nodes

0.6833 0.6965 0.6965 0.6842 1.32 0.0 0.0 1.23 2

" 0.6877 0.6965 0.6965 0.6965 0.88 0.0 0.0 0.0 3
2 0.6965 0.6965 0.6491 0.6965 0.6965 0.6684  4.74 0.0 0.0 2.81 4
0.6518 0.6965 0.6965 0.6211 447 0.0 0.0 7.54 5

0.6684 0.6965 0.6965 0.6544 281 0.0 0.0 421 6

0.8965 0.7849 0.9046 0.8954 0.92 12.08 0.11 1.04 2

0.8938 0.7851 0.9042 0.8918 1.20 12.06 0.15 1.39 3

S 09053 0.9057 0.8960 0.7858 0.9042 0.8926 0.97 11.99 0.15 1.31 4
0.8908 0.7839 0.9028 0.8956 1.49 12.18 0.29 1.01 5

0.8963 0.7851 0.9023 0.8919 0.94 12.06 0.35 1.38 6

0.7915 0.7914 0.7915 0.7915 0.0 0.01 0.0 0.0 2

2 0.7914 0.7915 0.7915 0.7914 0.01 0.0 0.0 0.01 3
S 07916 0.7915 0.7915 0.7915 0.7915 0.7915 0.0 0.0 0.0 0.0 4
z 0.7916 0.7915 0.7915 0.7916 0.0 0.01 0.0 -0.01 5
0.7915 0.7915 0.7915 0.7915 0.0 0.01 0.0 020 6

06653 0-6246 0.6237 0.6654 06211 412 421 0.04 247 2

. : 0.5908 0.6263 0.6654 0.5829 7.50 3.95 0.04 8.29 3
£ 06667 (o, 05728 0.6232 06636 05776 9.25 421 0.18 8.77 4
: 0.5917 0.6189 0.6658 0.5618 7.37 4.65 -0.04 10.35 5

0.6658 0.6114 0.6215 0.6654 0.6228 5.44 443 0.04 430 6

0.6476 03463 0.6537 0.6474 0.61 30.74 0,0 0.63 2

= 0.6543 03506 0.6537 0.6543  -0.06 30.30 0.0 -0.06 3
E 06543 0.6537 0.6548 0.3500 0.6537 0.6545  -0.11 30.37 0.0 -0.09 4
& 0.6535 03461 0.6537 0.6535 0.02 30.76 0.0 0.02 5
0.6545 03496 0.6537 0.6543  -0.09 3041 0.0 -0.06 6

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 2

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 3

£ 0.7365 0.7365 0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 4
0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 5

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 6

TABLE V. SPEEDUP OF FL ENVIRONMENTS WITH RESPECT TO LR FOR ALL THE DATASETS.

Dataset LRFL LRFLTI. LRFLTLW LRFLe LRFLen Nodes Dataset LRFL LRFLn LRFLnW LRFLe LRFLen Nodes

091 091 092 120 0.99 2 1.00 1.05 1.08 1.13 1.14 2

094 093 094 124 1.01 3 109 1.09 1.10 1.38 1.16 3

Lbw 096 093 094 128, 4.00 4 Pes 113 1.08 1.10 1.43 1.16 4
096 094 096 128 1.01 5 1.14 1.09 1.11 1.47 1.20 5

098 0.95 4096 131 1.0k 6 1.15 1.10  1.12 1.46 1.21 6

2004 m2.46 <245 244 324 2 1.04 1.07 1.08 1.32 1.44 2

2407 256 2958 », 285 3.36 3 122 1.13 111 1.49 1.44 3

Mi 254 261 2627 315 3.50 4 Pima 128 1.14 1.14 1.59 1.50 4
283 263 266 350, 3.55 5 138 1.14 1.13 1.77 1.52 5

295 266 266 3.60 3.54 6 141 1.16 1.14 1.83 1.53 6

1.28¢ 251 254 1.74 487 2 1.08 1.00 1.00 1.33 1.32 2

1425 285 291 231 597 3 1.17 1.01 1.02 1.45 1.36 3

Nhanes3* 148 3.09 3.14 283 6.69 4 Uis 129 1.03 1.04 1.63 1.37 4
1.69, 329 330 312 7.5 5 132 1.03 1.03 1.67 1.38 5

1.87. 342 345 340 7.56 6 1.34 1.04 1.04 1.72 1.38 6

TABLE VI. SPEEDUP OF FL ENVIRONMENT WITH RESPECT TO TRADITIONAL FL MODEL FOR MI AND NHANES3 DATASETS.

Dataset LRp;, LRg; ., LR LRp;.,, Dataset LRp;, LRpi,, LRpre LRpien Nodes

.21 1.20  1.20 1.59 1.96 1.99 1.36 3.81 2
1.06 1.07 1.19 140 2.28 233 1.85 4.78 3
Mi 1.03 1.03 124 138 Nhanes3 2.09 2.13 1.92 4.53 4
093 094 124 125 1.95 1.95 1.84 4.23 5
090 090 122 1.20 1.82 1.84 1.81 4.03 6

Figure 3 shows the normalized values of accuracy and execution time and no reduction in accuracy, on average
time for LRy, LRprn, LRpinw, LRpre, and LRgp ., with all (baseline). LRy, is faster than LRy, but with a reduction of
the configurations and datasets. LRy; provides the maximum  A. LRp;, and LRp;,, are faster than LRy, and LRp,, LRy



reduces the accuracy very little with respect to the worst
strategy and provides an acceleration of 50% with respect to
the maximum time reduction. LR, has the lowest
execution time and an accuracy reduction of about 25%.
LRy provides a reduction of time of about 20% and the
worst accuracy reduction. The behavior of the strategies
shows the tradeoff between time and accuracy. LRp;
guarantees the maximum accuracy with higher processing
time, LRppe, ensures the minimum processing time and
reduces accuracy. LRy, can provide a balance between
processing time and accuracy.

1.1
1 e
0.9
0.8 L
0.7
2 06 OFL
e 82 ®FLn
0'3 FLnw
02 FLe
0.1 ®FLen
0 {

0 01 02 03 04 05 06 07 08 09 1 1.1
Accuracy reduction

Fig. 3. Normalized accuracy and time for all the FL models, datasets, and
node configuration.

D. HE time

We also present the time to encrypt, decrypt, and calculate
the aggregation of the ciphertexts with the values 6; and
Oserver that the nodes and the central server exchange. O
implementation is based on [32]. Table VII shows the avera.
time of the HE operations for FL environments in se
(sec.). The most complex operation, according to the time
the encryption of the 6; values. All the FL. models_perfo
homomorphic operations to process the fede
preserving LR model.

TABLE VII.  AVERAGE TIME OF HE OPER

Encrypt
0.02409

0.00839
0.00906

eep data processing confidential
ssed using ciphertexts [33]. However,
tion operations perform efficiently
impracticality due to the large
¢ main challenge for adopting

because data are p
HE addition and mu
on ciphertexts, increa
computational overhead.
HE is its performance.

VI. CONCLUSIONS

Data processing in an environment with shared resources
can provoke security issues because data must be decrypted
for processing. Federated learning and homomorphic
encryption are two alternative solutions to solve privacy-
preserving problems. Some limitations on both approaches
reduce their applicability to specific domains.

In this paper, we analyze the latest advances in privacy-
preserving logistic regression solutions for processing

confidential data using federated learning and homomorphic
encryption. We present the characteristics of the most recent
approaches in the field: algorithms, evaluation metrics, used
datasets, implementation characteristics, etc.

Also, we proposed one policy to reduce the training time
of the federated model and conduct a comprehensive
simulation analysis on the six datasets from medicine
(diabetes, cancer, drugs, etc.) and genomics.

The results show that the proposed policies can reduce the
training time with a slight reduction in the final accuracy of
the model. However, further study is required to assess their
actual performance and effectiveness. This will be the subject
of future work.
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