
Prep
rin

t

 

Training Policy for Privacy-Preserving Logistic 
Regression in Federated Learning Environments 

Jorge M. Cortés-Mendoza 
Cloud Competency Centre 
National College of Ireland 

Dublin, Ireland 
JorgeMario.CortesMendoza@ncirl.ie, 

ORCID: 0000-0001-7209-8324 

Andrei Tchernykh 
Computer Science Department, CICESE 

Research Center, Ensenada, Mexico 
Institute for System Programming, RAS, 

Moscow, Russia, 
chernykh@cicese.mx, 

 ORCID: 0000-0001-5029-5212 

Horacio González-Vélez 
Cloud Competency Centre 
National College of Ireland 

Dublin, Ireland 
horacio@ncirl.ie, 

ORCID: 0000-0003-0241-6053

Abstract— Logistic Regression (LR) is a widely used 
statistical model for classification problems. However, its 
training and evaluation in a shared environment increase the 
possibility of information leaking. A federated LR reduces 
security issues by using only locally available data for training. 
In a Federated Learning (FL) environment, LR receives the 
coefficients of local models to create the federated LR model, 
which is then distributed to update the local models. The 
exchange process does not leak confidential information when 
LR coefficients are encrypted. Homomorphic Encryption (HE) 
allows the merging of local LR models with privacy preservation 
(HE-LR). This work presents a novel training policy to reduce 
the training time with only slightly decreased quality in an FL 
environment with HE. We analyze the accuracy and time of FL 
policies with HE-LR that progressively reduce the amount of 
training data and exchange the LR coefficients in a privacy-
preserving manner. The results show that the proposed policy 
can speed up the training time between 12% and 69%, 
compared to the traditional FL approach, with an average 
decrease in accuracy of 1.79% and 1.95%. 

Keywords— Federated Learning, Homomorphic Encryption, 
Logistic Regression, Privacy-Preserving, Training policy. 

I. INTRODUCTION 
Federated Learning (FL) and Homomorphic Encryption 

(HE) are two main directions to provide security and privacy 
preservation by addressing vulnerabilities in data processing. 
Both approaches pursue the processing of information 
securely and privately. Several Machine Learning (ML) 
approaches have been implemented to protect the information 
of the dataset using HE and FL, for instance, Logistic 
Regression (LR) and Artificial Neural Networks (NN), among 
other ML techniques [1]. 

LR is a common supervised ML approach widely 
applicable to binary classification problems (see Section III). 
A critical limitation of LR with HE is the polynomial 
approximation that defines the homomorphic versions of the 
logistic/sigmoid function [2]. FL environment eliminates this 
limitation because the FL approach does not compute the 
homomorphic version of the logistic/sigmoid function. FL is 
widely applied in real-world scenarios, not only for privacy-
preserving but also to reduce training time. 

In this paper, we present a new training policy for FL that 
progressively reduces the amount of training data for each 
iteration. This reduction allows us to perform the learning 
process faster, effectively reducing the training time without 
significant precision degradation. 

Relevant experiments on six datasets from medicine 
(diabetes, cancer, drugs, etc.) and genomics show that our 
proposed method reduces the training time compared with 
recent state-of-the-art approaches while maintaining the 
model's accuracy. 

Our main contributions are multifold. We 

 present recent advances in privacy-preserving logistic 
regression with federated learning and homomorphic 
encryption; 

 propose a policy to reduce the training time of logistic 
regression in a vertical federated learning environment 
with homomorphic encryption; 

 analyze the accuracy and time of the proposed policy; 
and, 

 show that the policy reduces the training time of the 
logistic regression in a federated learning environment. 

The content of the paper is structured as follows. The next 
section introduces information about gradient descent, LR, 
FL, and HE approaches. Section III describes the latest 
advances in privacy-preserving LR. Section IV outlines the 
proposed training policy. Section V presents the configuration 
and performance evaluation of HE-LR with FL. Finally, 
Section VI summarizes the main contributions of our research. 

II. BACKGROUND 

A. Logistic Regression and Gradient Descent 
LR models the probability of a discrete outcome given an 

input variable. It is a classification method where the inference 
determines the category of a new sample based on the sigmoid 
function. LR is a standard technique for image recognition [3], 
[4], genomics [5], and disease detection [6]–[8], among 
others. 

The inference of the LR considers the information of the 
instance = (1, , , … , )  with  features, the 
coefficients = ( , , … , )  of the LR equation to 
estimate the probability of a category and the logistic/sigmoid 
function ( ) = 1/+ ( ) . ( ) = ( )  produces a 
value in the interval (0, 1) with a real input of the linear 
combination = + + + + . A 
binary category is defined by a threshold 0 < < 1 and the 
function 

 =    1     ( )  0     ( ) <   
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where  is typically equal to 0.5. 

The efficient inference of logistic regression LR depends 
on the likelihood function expressed in the parameter . The 
LR training phase finds  that maximizes the correct 
classification of the elements in the dataset  according to 
their corresponding labels . Gradient Descent (GD) is the 
most used method to find , which minimizes the cost 
function error ( ) defined as follows: 

( ) = 1 ( ) log ( )
+ 1 ( ) log 1 ( )  

(2) 

where ( )  is the -th instance of  and its 
corresponding label ( ) {0,1} in  for = 1,2, … , . ( ) expresses the efficiency of the model, the smaller the 
value, the more accurate the classification is. The optimization 
process to find consists of updating  according to the 
opposite direction of the slope, considering the partial 
derivative of ( ) , defined by ( ) . The search for  
defines a learning rate  that establishes the length of a 
movement in the search space (step), the performance of GD 
depends on the  value [9]. Because minimizes ( ), it can 
be used as a binary classifier for new data using (1). 

In recent years, the main direction in LR has focused on 
protecting the information of the dataset used to train the 
model. The search for more efficient versions of privacy-
preserving LR follows two main directions: FL and HE. 

B. Federated Learning 
As a distributed system with decentralized learning 

operations to ensure data privacy, the main purpose of FL is 
to eliminate the necessity of pooling the data into a single 
location [10]. It allows the training of ML models using the 
local data of distributed nodes. Each node in the system trains 
a model that is shared with a centralized server. A global 
model is created by aggregating locally trained models in the 
central server. Then, all the local nodes receive the global 
model to enhance their independent models, see Figure 1. 

The iterative exchange of information generates 
collaborative learning that improves general and local 
models. FL can introduce encrypted parameters to exchange 
the models and avoid the leak of the models, in addition to 
limiting access to the raw data, which protects data at a low 
level. 

The training process over the FL system consists of four 
steps [11]: The training of local models, the aggregation of 

local models on the central server, the sharing of the central 
model with local nodes, and the updating of the local model 
with the information of the central model. 

 
Fig. 1. Example of an FL system with a central node in a cloud environment 
and three nodes with their local data and ML models. 

C. Homomorphic Encryption 
HE produces ciphertexts in such a way that an untrusted 

party cannot know the content of the ciphertexts, but it can 
process them [12]. The three main categories of HE are 
Partially (PHE), Somewhat (SHE), and Fully Homomorphic 
Encryption (FHE) [2]. 

PHE supports only homomorphic addition or 
multiplication (but not both), SHE allows a limited number 
of both operations, and FHE enables an unlimited number of 
homomorphic addition and multiplication at the expense of 
significant overhead by introducing a sophisticated and 
compute-intensive component named bootstrapping [13]. 

A relevant limitation of the HE field is the number of 
homomorphic operations, which restricts its use to specific 
domains. Number comparison, absolute value, and 
determining the sign of a number, among others, are 
straightforward operations outside of the homomorphic 
space, but they are computationally expensive in the 
homomorphic domain because they must be approximated 
using polynomials. 

Despite the current limitations, HE is an alternative to 
creating secure ML models, its limited applicability can be 
used in the prediction or classification of confidential 
information [1]. Figure 2 shows data protection in a secure 
cloud environment with HE. 

 

 
Fig. 2. An example of a Cloud environment with HE that protects the entire data lifecycle (transmission, storage, and processing). 
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TABLE I.  MAIN CHARACTERISTICS OF FL AND HE APPROACHES FOR PRIVACY-PRESERVING LOGISTIC REGRESSION IN THE LITERATURE. 

HE FL Name Metric Dataset Ref 
- * VFLR Accuracy (A), Area under the ROC Curve (AUC) Pima, BCWD, BDM [16] 
- * SecureLR Time MNIST [17] 
- * VANE Mean Absolute Error (MAE) BCD, Diabetes dataset (DD), UCID [18] 
- * VPPLR Precision (P), Recall (R) DD, WIBC, DD, ACAD [19] 
* - - A MNIST, notMNIST, CIFAR-10 [3] 
* - - AUC iDASH (Genomic), financial [20] 
* - Modified GWAS p-values, F1-score (F1) iDASH [21] 
* - - A, AUC, K-S values Korea Credit Bureau (KCB), MNIST [22] 
* - - A, AUC iDASH, Lbw, Mi, Nhanes3, Pcs, Uis [23] 
* - N-LHAE Overhead Not described [24] 
* - P2OLR, P2VCLR, CECLLR A, AUC, F1, P, R Mi, Nhanes3, Uis [25],[26],[27] 
* - - A Digits (scikit-learn library) [28] 

III. RELATED WORK 
Several studies have proposed innovations and new 

approaches to overcome the disadvantages of LR with HE 
and FL. This section presents the most relevant advances in 
the privacy-preserving LR field with HE and FL. Table I 
summarizes the main characteristics of the related work. 

Yang et al. [14] compare outsourcing schemes with 
several secure computation methods, e.g., secure multi-party 
computation, pseudorandom functions, software guard 
extensions, and perturbation approaches. The authors 
describe the basis, evolution, and applicability of HE and the 
security threats and requirements of secure outsourcing 
computation. 

Shaheen et al. [15] provide an overview of the FL 
technique and its applicability in different domains, where the 
systematic literature review of recent studies shows the wide 
adoption of FL. The authors describe the algorithms, models, 
and frameworks of FL and its scope of application in different 
domains. 

A. Logistic Regression with Federated Learning 
Zhao et al. [16] propose an efficient, privacy-preserving 

Vertical FL Framework for LR (VFLR). It uses participants' 
data to create a global high-quality LR model. VFLR 
provides secure training and queries over private information 
among participants. The results show the efficiency of VFLR 
in terms of accuracy, computational cost, and communication 
overhead. 

He et al. [17] present a distributed Secure LR algorithm 
for vertical FL, which uses HE to avoid information leaks. 
Secure LR removes the need for a third-party coordinator and 
guarantees security at the expense of efficiency. The results 
demonstrate that the system's security for a two-party FL can 
be extended for different datasets and several participants. 

Wang et al. [18] introduce a noninteractive privacy-
preserving FL scheme for ML models with data protection. 
VANE uses cloud assistance over multiple private local data 
to train a global Linear Regression (LiR), Ridge Regression 
(RR), or LR models. The results show that VANE can 
securely aggregate local training data faster than existing 
schemes. 

Zhang and Tang [19] develop a noninteractive Vertically 
Privacy-Preserving LR (VPPLR) for FL. It trains an LR 
model by reformulating the gradient update rules and 
introducing a vectorization approach. The results present a 

reduction in communication and computational overhead and 
a decrease in training time with respect to the two schemes. 

B. Logistic Regression with Homomorphic Encryption 
Edemacu and Kim [3] propose a multi-party LR with 

privacy-preserving of poor data quality in a system with IoT 
contributors. The framework filters out poor-quality data 
through a gradient similarity metric and prevents information 
leaking by an HE scheme. The results show the approach's 
security, effectiveness, and robustness with noisy data. 

Bonte and Vercauteren [20] introduce an LR with lower 
multiplicative complexity. It uses a simplified fixed Hessian 
method that produces accurate results considering the 
standard LR on plaintext data. Time complexity is an 
advantage of the approach because it grows linearly with 
respect to the number of covariates and training input 
instances. 

Kim et al. [21] develop a privacy-preserving modified 
semi-parallel GWAS algorithm using Fisher Scoring and 
FHE. It evaluates data efficiently using an encrypted state. 
The proposed approach decreases the computational cost by 
reducing matrix multiplications and provides high accuracy 
compared to the result obtained in an unencrypted state. 

Han et al. [22] present an LR algorithm with HE and an 
approximate bootstrapping. The authors propose the HE-
specific Single-Instruction-Multiple-Data (SIMD) operations 
that parallelize the bootstrapping process and vectorize the 
LR algorithm. The results demonstrate the practical 
feasibility of LR training on large encrypted data. 

Chiang [23] studies a privacy-preserving LR with a fast 
gradient variant for the model's training. The quadratic 
gradient extends the simplified fixed Hessian, and is 
enhanced using a Nesterov gradient and Adagrad. The results 
show that the proposed methods have a state-of-the-art 
convergence speed performance compared to the first-order 
gradient methods. 

Zhou et al. [24] propose the Novel Linear Homomorphic 
Authenticated Encryption (N-LHAE) algorithm. It provides a 
privacy-preserving online diagnosis service that can protect 
the model's integrity (parameters), the results, and the data. A 
relevant advantage of N-LHAE is the absence of a trusted 
cloud and its reduced computational cost (overhead). 

Yu et al. [25] design the Privacy-Preserving Outsourced 
LR (P2OLR) algorithm. It uses cloud resources to train and 
deploy an LR model without exposing data privacy. 
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Afterward, Yu et al. [26] present the Privacy-Preserving 
Vertical Collaborative LR (P2VCLR) system that reduces 
complexity. P2VCLR enables training a shared model with a 
secure joining of two parties’ data and works without a 
Trusted Third-Party (TTP) coordinator. Later, Yu et al. [27] 
introduce the Cloud-Edge Collaborative Learning LR 
(CECLLR) algorithm. It can train a shared model over 
vertically partitioned data and combine the data from edge 
nodes and cloud data centers without a TTP. 

Liu et al. [28] present a privacy-preserving LR where 
trusted hardware assists a cloud server during the training 
phase. The trusted hardware (Raspberry Pi) decrypts and re-
encrypts the cyphertext during the bootstrapping process and 
the evaluation of the activation function. 

IV. TRAINING POLICY 
We implement a standard version of the  model as a 

baseline to compare the efficiency of the FL policies. In a 
basic horizontal FL ( )  approach, we assume that the 
datasets are evenly distributed among the system nodes, and 
each local node uses all available local data to train the model 
in each iteration. 

As an alternative to traditional , we develop a 
training reduction policy for  ( ) where local nodes 
use a reduced number of instances to train local models. 

 decreases the number of training instances according 
to 1/  ratio, where  defines the iteration number. For 
instance, 100% of the local dataset is used for the first 
iteration, 50% for the second, 33% for the third iteration, and 
so on. The subset of training instances is chosen randomly for 
each iteration according to a normal distribution. 

The central server calculates a Federated Averaging 
( ) of the  values of  ( , , … , ), where  
defines the model of the node . It allows local nodes to 
perform several updates with their local data and exchange 
their coefficients of the LR model. For example, for  nodes 
in the FL system, the coefficients of the LR equation for the 
central server are updated as follows 

 = ( + + + )/
Then,  is sent to the  nodes to update the local  

for = 1,2, … , . At the end of the process, we obtain , , … ,  from the nodes to generate  according to (3). 
Therefore,  can be used with (1) to predict the class of 
new instances. 

We also develop an FL ensemble LR ( ) in the 
central server using the local model of all the nodes. The 
nodes use their data to train local LR models, and then these 
models are sent to the central server to obtain a better 
predictive model, better than any of the individual local 
nodes.  

In this model, different to  and , nodes in the 
FL system do not receive information from the central server. 
At the end of the process, the central server receives  values 
of  from the nodes ( , , … , ) that can be used with (1) 
to predict the class of new instances as follows 

=    1     ( ( ) + ( ) + + ( ))/  0    ( ( ) + ( ) + + ( ))/ <  
In order to update the central server model with a 

proportional number of instances from the local models, we 
develop the weighted version of  ( ) where the 
update rule of  for the  nodes follows 

 = ( )  (5) 

Then, reducing the number of instances on the training 
dataset implies a reduced update on . 

Finally, the training dataset of each local model in  
can be reduced according to 1/  ratio policy,  defines 
a  approach with a reduction in the training dataset with 1/  ratio where  defines the iteration number. 

The processing of the proposed model can be done in a 
privacy-preserving manner if the , , … ,  are encrypted 
using HE. 

V. EXPERIMENTAL EVALUATION 
We compare the performance of  and , a novel 

FL with a new training policy that progressively reduces the 
instances of the training datasets of local nodes. The  
exchange mechanism uses FHE to ensure data privacy. The 
implementation based on Python 3.10.12, sklearn 1.4.1 
library, and the open-source Simple Encrypted Arithmetic 
Library (SEAL) v3.14 [29] is performed on a computer with 
64-bit Windows 11 Pro, Intel(R) Core (TM) i9-10980XE 
CPU at 3.00 GHz, 64 GB of memory, and 2 TB SSD. 

The standard security setting of the FHE scheme 
considers a CKKS scheme with a security level of 128 bits, a 
polynomial modulo degree at most 213 1, and a moduli chain 
equal to {31, 26, 26, 26, 26, 26, 26, 31}[30]. The security 
level of the scheme guarantees that an adversary can only 
break the scheme with probability one after performing 2128 
elementary operations. 

Our implementation considers a vertical FL system where 
the nodes contain the same number of features (same feature 
space) with different instances. The number of nodes is 
constant during the training process, the nodes do not leave 
or join the system or consider new instances in the local 
training data. 

A. Datasets 
The evaluation of the strategies with real data is 

fundamental to measuring their performance. We consider 
six standard datasets widely used in the literature: Low Birth 
Weight (Lbw), Myocardial Infarction (Mi), Third National 
Health and Nutrition Examination Survey (Nhanes3), Indian 
diabetes (Pima), Prostate Cancer Study (Pcs), Umaru Impact 
Study (Uis) [31]. They contain a series of continuous input 
variables and two output classes. The values of the features 
were normalized in the range [0, 1] using the known min-max 
normalization method: =  ( ) ( )  ( )  
where  is the original value, and  is the normalized value. 
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The Simple Split technique provides a methodology to 

compare the performance of the algorithms. A dataset is 
randomly divided into two subsets with a number of instances 
n-Training and n-Testing. One is used to train the 
classification model, and the other one is used to validate the 
training process. Table II summarizes the characteristics of 
datasets and the size of training and testing sets according to 
the Simple Split. 

TABLE II.  CHARACTERISTICS AND SIZE OF THE DATASETS. 

Dataset Features 
Instances 

Total (N) n-Training n-Testing 
Low Birth Weight Study 
(Lbw) 9 189 151 38 

Myocardial Infarction (Mi) 9 1,253 1,002 251 
National Health and Nutrition 
Examination (Nhanes3) 15 15,649 12,519 3,130 

Prostate Cancer Study (Pcs) 9 379 303 76 
Indian’s diabetes (Pima) 8 768 614 154 
Umaru Impact Study (Uis) 8 575 460 115 

B. Evaluation Method 
The number of correct and incorrect predictions of each 

class defines the efficiency of a classifier. A Confusion 
Matrix ( ) is a manner to display the difference between 
the true and predicted classes for a set of examples. More 
meaningful measures can be extracted from the structure of 
the , for instance: Accuracy ( ) expresses the systematic 
error in estimating a value by 

 =   (7) 

where  and  define the number of elements classified 
correctly,  for positives and  for negatives, and the 
number of elements classified incorrectly is defined by  for 
positives and  for negatives. 

C. Experimental analysis 
The initial configuration of the  based on the Batch GD 

algorithm considers 10 learning rates  3.5, 3, 2.5, 2, 1.5, 
1, 0.5, 0.1, 0.5, 0.1, 0.05, 0.01}, 10 values of iterations  

{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and 30 initial 
solutions for . In every experiment, the training and testing 
subsets of instances are chosen randomly from the dataset 
according to the Simple Split of 80–20% and a seed based on 
the number of experiments. 

Table III presents the best configurations for  and all 
datasets after 30 executions. In the case of Lbw, a learning 
rate higher than 0.1 and any number of iterations produce the 
highest accurate value. Similarly, for Uis, any learning rate 
and number of iterations generate the best accuracy value. For 
the Nhanes3 dataset, three configurations provide the best 
value of . The value of accuracy provides a baseline to set 
and measure the efficiency of , , , , 
and . 

Table IV shows the average  for 30 executions with all 
the strategies and nodes = {2, 3, 4, 5, 6}. The results show 
that  and  provide the same  for Lbw and Uis 
datasets.  has a better performance than  on Nhanes3, 
Pcs, and Pima. Finally,  outperforms  with respect to 
the Mi dataset. 

TABLE III.  THE BEST CONFIGURATION FOR LR. 

Dataset    
Lbw 0.6965 > 0.1 Any 
Mi 0.9053 3.5 50 

Nhanes3 0.7916 {3.0, 0.5, 0.1} {30, 10, 45} 
Pcs 0.6667 3.5 50 

Pima 0.6543 0.5 10 
Uis 0.7365 Any Any 

The average difference of  ( ) for , , 
, and  with respect to  considering the five 

datasets are 1.79%, 7.8%, 0.04%, and 1.95%, with a 
maximum of 9.25%, 30.76%, 0.35%, and 10.35% for Pcs, 
Pima, Mi, and Pcs datasets, respectively. Also, , , 
and  can improve  with respect to  about 
0.11%, 0.04%, and 0.09% for Pima, Pcs, and Pima datasets. ( ) = ( ) ( ) 100 

 and  have the worse performance with the 
Pcs dataset, their average decrease of  considering  
and the five configurations of nodes are 6.736% and 7.236%, 
respectively, with a maximum of 9.25% and 10.35%. In the 
case of Lbw, the  decreases by 2.84% and 3.15% on 
average, with a maximum of 4.74% and 7.58%, respectively. 
Finally, for Mi, Nhanes3, and Uis datasets, the average 
reductions on  are 0.37%, and 0.41%, respectively, with a 
maximum of 1.49%, and 1.39%, respectively. 

 has the worst performance of all the FL models, 
with an average decrease of 30.52%, 12.07%, and 4.29% for 
Mi, Pima, and Pcs, respectively. The average difference of  
with respect to the Lbw, Nhanes3, and Uis is about 0.002%. 

Table V shows the speedup of , , , 
, and  with respect to . The measures 

consider the worst time of all nodes in the FL environment 
per iteration. , , , , and  are 
faster than  44%, 63%, 64%, 93%, and 150% on average. 
The speedup for small datasets (Lbw, Pcs, Pima, and Uis) is 
negative or low. 

The advantages of the rate reduction policy are perceived 
in the biggest datasets, Mi and Nhanes3.  and  
speed up the execution of  between 146% and 242%, and 
124% and 656%. Both models with the reduction policy keep 
a similar  than . 

The average speedup of , , , and 
 with respect to  and all the datasets are 12%, 

13%, 34%, and 69%, respectively. Table VI presents the 
speedup of the models with respect to  for Mi and 
Nhanes3 datasets. In the case of the Mi dataset, the speedup 
is from -10% to 59%, but  decreases the efficiency 
between 11.99% and 12.18%. For , , and ,  
changes within 0.11% and 1.49%. In the case of the Nhanes3 
dataset, all strategies vary  between -0.01 and 0.01%, but 
the speedup is between 36% and 378%. 

 



Prep
rin

t
TABLE IV.  AVERAGE ACCURACY AFTER 30 EXECUTIONS WITH THE BEST LR CONFIGURATION FOR DIFFERENT FL ENVIRONMENT CONFIGURATIONS. 

Dataset       ( ) ( ) ( ) ( ) Nodes 

L
bw

 

0.6965 0.6965 

0.6833 0.6965 0.6965 0.6842 1.32 0.0 0.0 1.23 2 
0.6877 0.6965 0.6965 0.6965 0.88 0.0 0.0 0.0 3 
0.6491 0.6965 0.6965 0.6684 4.74 0.0 0.0 2.81 4 
0.6518 0.6965 0.6965 0.6211 4.47 0.0 0.0 7.54 5 
0.6684 0.6965 0.6965 0.6544 2.81 0.0 0.0 4.21 6 

M
i 

0.9053 0.9057 

0.8965 0.7849 0.9046 0.8954 0.92 12.08 0.11 1.04 2 
0.8938 0.7851 0.9042 0.8918 1.20 12.06 0.15 1.39 3 
0.8960 0.7858 0.9042 0.8926 0.97 11.99 0.15 1.31 4 
0.8908 0.7839 0.9028 0.8956 1.49 12.18 0.29 1.01 5 
0.8963 0.7851 0.9023 0.8919 0.94 12.06 0.35 1.38 6 

N
ha

ne
s3

 

0.7916 0.7915 

0.7915 0.7914 0.7915 0.7915 0.0 0.01 0.0 0.0 2 
0.7914 0.7915 0.7915 0.7914 0.01 0.0 0.0 0.01 3 
0.7915 0.7915 0.7915 0.7915 0.0 0.0 0.0 0.0 4 
0.7916 0.7915 0.7915 0.7916 0.0 0.01 0.0 -0.01 5 
0.7915 0.7915 0.7915 0.7915 0.0 0.01 0.0 0.0 6 

Pc
s 

0.6667 

0.6658 0.6246 0.6237 0.6654 0.6211 4.12 4.21 0.04 4.47 2 
0.5908 0.6263 0.6654 0.5829 7.50 3.95 0.04 8.29 3 

0.6654 0.5728 0.6232 0.6636 0.5776 9.25 4.21 0.18 8.77 4 
0.5917 0.6189 0.6658 0.5618 7.37 4.65 -0.04 10.35 5 

0.6658 0.6114 0.6215 0.6654 0.6228 5.44 4.43 0.04 4.30 6 

Pi
m

a 

0.6543 0.6537 

0.6476 0.3463 0.6537 0.6474 0.61 30.74 0.0 0.63 2 
0.6543 0.3506 0.6537 0.6543 -0.06 30.30 0.0 -0.06 3 
0.6548 0.3500 0.6537 0.6545 -0.11 30.37 0.0 -0.09 4 
0.6535 0.3461 0.6537 0.6535 0.02 30.76 0.0 0.02 5 
0.6545 0.3496 0.6537 0.6543 -0.09 30.41 0.0 -0.06 6 

U
is

 

0.7365 0.7365 

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 2 
0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 3 
0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 4 
0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 5 
0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 6 

TABLE V.  SPEEDUP OF FL ENVIRONMENTS WITH RESPECT TO LR  FOR ALL THE DATASETS. 

Dataset      Nodes  Dataset      Nodes 

Lbw 

0.91 0.91 0.92 1.20 0.99 2  

Pcs 

1.00 1.05 1.08 1.13 1.14 2 
0.94 0.93 0.94 1.24 1.01 3  1.09 1.09 1.10 1.38 1.16 3 
0.96 0.93 0.94 1.28 1.00 4  1.13 1.08 1.10 1.43 1.16 4 
0.96 0.94 0.96 1.28 1.01 5  1.14 1.09 1.11 1.47 1.20 5 
0.98 0.95 0.96 1.31 1.01 6  1.15 1.10 1.12 1.46 1.21 6 

Mi 

2.04 2.46 2.45 2.44 3.24 2  

Pima 

1.04 1.07 1.08 1.32 1.44 2 
2.40 2.56 2.58 2.85 3.36 3  1.22 1.13 1.11 1.49 1.44 3 
2.54 2.61 2.62 3.15 3.50 4  1.28 1.14 1.14 1.59 1.50 4 
2.83 2.63 2.66 3.50 3.55 5  1.38 1.14 1.13 1.77 1.52 5 
2.95 2.66 2.66 3.60 3.54 6  1.41 1.16 1.14 1.83 1.53 6 

Nhanes3 

1.28 2.51 2.54 1.74 4.87 2  

Uis 

1.08 1.00 1.00 1.33 1.32 2 
1.25 2.85 2.91 2.31 5.97 3  1.17 1.01 1.02 1.45 1.36 3 
1.48 3.09 3.14 2.83 6.69 4  1.29 1.03 1.04 1.63 1.37 4 
1.69 3.29 3.30 3.12 7.15 5  1.32 1.03 1.03 1.67 1.38 5 
1.87 3.42 3.45 3.40 7.56 6  1.34 1.04 1.04 1.72 1.38 6 

TABLE VI.  SPEEDUP OF FL ENVIRONMENT WITH RESPECT TO TRADITIONAL FL MODEL FOR MI AND NHANES3 DATASETS. 

Dataset      Dataset      Nodes 

Mi 

1.21 1.20 1.20 1.59  

Nhanes3 

1.96 1.99 1.36 3.81  2 
1.06 1.07 1.19 1.40  2.28 2.33 1.85 4.78  3 
1.03 1.03 1.24 1.38  2.09 2.13 1.92 4.53  4 
0.93 0.94 1.24 1.25  1.95 1.95 1.84 4.23  5 
0.90 0.90 1.22 1.20  1.82 1.84 1.81 4.03  6 

Figure 3 shows the normalized values of accuracy and 
time for , , , , and  with all 
the configurations and datasets.  provides the maximum 

execution time and no reduction in accuracy, on average 
(baseline).  is faster than  but with a reduction of 

.  and  are faster than  and ,  
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reduces the accuracy very little with respect to the worst 
strategy and provides an acceleration of 50% with respect to 
the maximum time reduction.  has the lowest 
execution time and an accuracy reduction of about 25%. 

 provides a reduction of time of about 20% and the 
worst accuracy reduction. The behavior of the strategies 
shows the tradeoff between time and accuracy.  
guarantees the maximum accuracy with higher processing 
time,  ensures the minimum processing time and 
reduces accuracy.  can provide a balance between 
processing time and accuracy. 

Fig. 3. Normalized accuracy and time for all the FL models, datasets, and 
node configuration. 

D. HE time
We also present the time to encrypt, decrypt, and calculate 

the aggregation of the ciphertexts with the values  and 
that the nodes and the central server exchange. Our 

implementation is based on [32]. Table VII shows the average 
time of the HE operations for environments in seconds
(sec.). The most complex operation, according to the time, is 
the encryption of the values. All the FL models perform
homomorphic operations to process the federated privacy-
preserving LR model.

TABLE VII.  AVERAGE TIME OF HE OPERATIONS (SEC). 

Encrypt Average Decrypt 
Lbw 0.02409 0.00845 0.00916 
Mi 0.02415 0.00838 0.00930 

Nhanes3 0.03171 0.01085 0.01230 
Pcs 0.02415 0.00796 0.00959 

Pima 0.02469 0.00839 0.00937 
Uis 0.02612 0.00906 0.00986 

HE is a solution to keep data processing confidential 
because data are processed using ciphertexts [33]. However, 
HE addition and multiplication operations perform efficiently 
on ciphertexts, increasing impracticality due to the large 
computational overhead. The main challenge for adopting 
HE is its performance. 

VI. CONCLUSIONS

Data processing in an environment with shared resources 
can provoke security issues because data must be decrypted 
for processing. Federated learning and homomorphic 
encryption are two alternative solutions to solve privacy-
preserving problems. Some limitations on both approaches 
reduce their applicability to specific domains. 

In this paper, we analyze the latest advances in privacy-
preserving logistic regression solutions for processing 

confidential data using federated learning and homomorphic 
encryption. We present the characteristics of the most recent 
approaches in the field: algorithms, evaluation metrics, used 
datasets, implementation characteristics, etc. 

Also, we proposed one policy to reduce the training time 
of the federated model and conduct a comprehensive 
simulation analysis on the six datasets from medicine 
(diabetes, cancer, drugs, etc.) and genomics. 

The results show that the proposed policies can reduce the 
training time with a slight reduction in the final accuracy of 
the model. However, further study is required to assess their 
actual performance and effectiveness. This will be the subject 
of future work. 
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