~

N\ National
College
Ireland

Prediction of ABP and ECG signal from

PPG signal using deep learning
Configuration Manual

MSc Research Project
Data Analytics

Sarthak Sinha
Student ID: x21178321

School of Computing
National College of Ireland

Supervisor: Teerath Kumar Menghwar

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sarthak Sinha
Student ID: x21178321
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Teerath Kumar Menghwar
Submission Due Date: 18/09/2023
Project Title: Prediction of ABP and ECG signal from PPG signal using
deep learning
Word Count: 782
Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sarthak Sinha

Date: 17th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Prediction of ABP and ECG signal from PPG signal
using deep learning

Sarthak Sinha
21178321

1 Introduction

The Configuration Manual offers a step-by-step guide outlining the essential hardware and
software prerequisites for conducting modelling and running code, covering the entire
implementation process from the preparation of data through its execution. This report acts as a
thorough reference to aid in the replication of the study titled "Prediction of ABP and ECG
signal from PPG signal using deep learning."

2 System Configuration

2.1 Hardware Configuration

Cloud-based hardware and local-based hardware components and specifications will be
addressed in this section.

Local-Based System: A MacBook machine is used to conduct the initial stages of the research
which involved data exploration and data preprocessing. The Macbook machine had a RAM of
16 GB and Apple M1 as CPU with a total of 8 cores.

MacBook Air

Hardware Overview:

Model Name: MacBook Air

Model Identifier: MacBookAir10,1

Chip: Apple M1

Total Number of Cores: 8 (4 performance and 4 efficiency)
Memory: 16 GB

Figure-1 Local Machine Specification (MacBook)

Cloud-Based System: To carry out the data-intensive task of the research such as deep learning
model training, Amazon Web Services (AWS) with cloud-based EC2 service have been used
which was provided by the National College of Ireland'. AWS EC2 services provide virtual
machines or instances with user-preferred operating systems. The instances have various instance
types which can be found in this link. For the purpose of this research Memory Optimized based
AWS EC2 instance type had been configured due to the volume of the dataset.

v Application and OS Images (Amazon Machine Image) info

An AMI is a template that contains the software configuration (operating system, application server, and
applications) required to launch your instance. Search or Browse for AMIs if you don‘t see what you are looking for
below

Q, Search our full catalog including 1000s of application and OS images

Recents My AMIs Quick Start
Amazon macOs Ubuntu Windows Red Hat SUSE Li Q
Linux

> Browse more AMIs

aws ubuntu® =I Microsoft ‘ Red Hat @ Including AMIs from
SuUs AWS, Marketplace and

the Community

Amazon Machine Image (AMI)

Ubuntu Server 22.04 LTS (HVM), S5D Volume Type Free tier eligible
ami-01dd271720c1ba44f (64-bit (x86)) / ami-020b049bea47800017 (64-bit (Arm)) v
Wirtualization: hwmn ENA enabled: true Root device type: ebs

Description
Canonical, Ubuntu, 22.04 LTS, amd64 jammy image build on 2023-05-16

Architecture AMI ID
64-bit (x86) v ami-01dd271720c1badaf

¥ Instance type info

Instance type

r5.4xlarge
Family: r5 16 vCPU 128 GIiE Memory Current generation: true @D All generations
On-Demand Linux pricing: 1.128 USD per Hour -

On-Demand SUSE pricing: 1.253 USD per Hour
On-Demand RHEL pricing: 1.258 USD per Hour
On-Demand Windows pricing: 1.864 USD per Hour

Compare instance types

Figure-2 AWS EC?2 Instance

' https://cloud.ncirl.ie/

An EC2 instance with instance type of family r5.4xlarge has been chosen for this research. It had
16 CPUs and 128 GB RAM. Ubuntu OS with SSD volume type had been used. The pricing can
be referred to in the above screenshot.

2.2 Software Configuration

In this section, we will go through the tools, frameworks and libraries used as software
components in this research. The code for this research has been developed in Python 3.11.4 with
MacOS Command Line Interface (CLI). Jupyter Notebooks” has been used which is a web-based
interactive development environment for conducting data science workflows. The jupyter
notebook is installed using “pip” which is a package installer in Python using the following
command “pip3 install notebook™.

Setting Up of Virtual Environment: A virtual environment was created using the venv® module.

Using the following command.

o python3 -m venv <name of virtualenv>

e source <name of virtualenv>/bin/activate, the following command is used to activate the
virtual environment.

Python Packages/ libraries had been installed which can be found in the “requirements.txt” file
along with their specific versions. These packages can be installed in the system using the
following command “pip3 install -r requirements.txt”.

In order to set up the Jupyter Notebook kernel with the virtual environment following command
have been used “python -m ipykernel install --user --name=<name_of virtualenv>"

3 Project Development

Once the previous steps are executed, create a new Jupyter Notebook file for the project. Using
the "jupyter notebook" command in the CLI will open the interface of the notebook. Next, create
a new notebook with the preferred kernel and import all the necessary libraries into the notebook.

2 https://jupyter.org/
3 https://docs.python.org/3/library/venv.html

Importing Libraries

[S

from
from
from
from
from
from
14 from
from

MO W=,

w

o n

import scipy.io as sio

import matplotlib.pyplot as plt
import numpy as np

import torch

import os

import warnings

import tensorflow as tf

keras import layers

keras import backend as K

keras import optimizers

scipy import signal

sklearn.model selection import KFold, train test split

sklearn.metrics import mean squared error

tensorflow.keras.models import Model

tensorflow.keras.layers import Input,Reshape, ConvlD, MaxPoolinglD, Flatten, Dense, Bidirectional, LSTM, Dropc

warnings.filterwarnings('ignore')

Figure-3 Importing Libraries

3.1 Reading the Dataset

There are 8 “.mat” files available on the Kaggle* website and need to be stored in the project
directory. Mention the dataset folder name in the ‘datapath’ variable name, in this research, the
dataset folder name was “archivel”. A function is created to load all the “.mat” files from the

dataset folder and combined using os® and SciPy® module python.

Defining Functions to load full and partial list of mat files

def load data partial(filename):
mat_contents = sio.loadmat(filename)
return mat_contents

(S

w

def load data(fileDir, exercise):
word = exercise.lower()
file path list = []
valid file extensions
valid file extensions

(S

-

[".mat"]
[item.lower () for item in valid file extensions]

6
8 for file in os.listdir(fileDir):
9

extension = os.path.splitext(file)[1]
10 if extension.lower() not in valid file extensions:
11 continue
12 file path list.append(os.path.join(fileDir, file))
13
14 Data = []

15 for path in file path list:
16 base=os.path.basename(path)
17 base = os.path.splitext(base)[0]

18 if word in base:

19 print(fileDir+'/%s'%(base))

20 mat_contents = sio.loadmat(fileDir+'/%s'%(base))
21 val = mat contents['p']

22 total array = val([0,:] #assigning an array

23 Data.append(total array)

5 return Data

Figure-4 Load Dataset

4

https://www.kaggle.com/datasets/mkachuee/BloodPressureDataset
3 https://docs.python.org/3/library/os.html

¢ https://scipy.org/

3.2 Feature Extraction

Features like PPG, ECG and ABP signals are extracted from the combined dataset and

represented as a numpy’ array as shown below in Figure-5.
Feature Extraction: Extracting PPG ,ECG and ABP values from total_data

PPG
ABP
ECG
for

Ry

1
1
1
n range((len(total_data))):
j in range(len(total data[i])):
k = len(total data[i][j]1[0,:1)
for n in range(k//1000):
PPg (total data[i][j][0,(n*1000):(n*1000)+1000]) # Extracting PPG values
abp (total data[i][j][1l,(n*1000):(n*1000)+1000]) #Extracting ABP values
ecg (total_data[i][j][2,(n*1000):(n*1000)+1000]) #Extracting ECG values
PPG.append(ppg)
ABP.append(abp)
ECG.append(ecg)

[
[
[
i
r

R
L B A}
o

W N D

5 # Converting list of PPG,ECG and ABP as array
16 PPG = np.asarray(PPG)
17 ABP = np.asarray(ABP)
18 ECG = np.asarray(ECG)

Figure-5 Feature Extraction

3.3 Data Visualization

Plotting graphs for PPG,ECG and ABP signals

plotting sample ppg., ecg and bp signals
fig, ax = plt.subplots(3,1, figsize=(6.,6), sharex—=True)

¥ = 1000

ax[0].set_title(Photoplethysmography (PPG) graph', fontsize=12)
ax[0].set_ylabel{ Signal Walue')

ax[0] .plot(PPG[¥.,:]1, c = 'dodgerblue’)

WN R

ax[1l].set_title(Electrocardiogram (ECG) graph', fontsize=12)
ax[1l].set_vylabel{ Signal Walue')
ax[1].plot(BCG[¥.,=z], c='darkorange')

WNHOVO-SOUN A

ax[2].set_title(Arterial Blood Pressure (ABP) graph', fontsize=12)
ax[2].set_ylabel (" Signal WValue')

ax[2].set_xlabel (" Sample size’)

15 ax[2].plot(ABP[y,z]1, © = 'red')

[<matplotlib.lines.Line2D at 0x298411db0>]

Photoplethysmography (PPG) graph

Signal Value
e 0
A [+}

Il Il

Electrocardiogram (ECG) graph

Signal Value
e 0
E]
Il Il

Q
N
I

Arterial Blood Pressure (ABP) graph

"
Q
e}

1

Signal Value
w
o
Il

o
]
I

o 200 <400 500 800 1000
Sample size

Figure-6 Dataset Visualization

To perform the data visualization matplotlib® package was used to infer the signals.

7 https://numpy.org/doc/stable/reference/generated/numpy.array.html
8 https:/matplotlib.org/

3.4 Data Preprocessing

Defining Function to Normalize the PPG and ABP values

def normalise(x):

% I

normalised = (x-min(x))/(max(x)-min(x))
3 return normalised
5 def scale abp(x):
A normalised = x/200
T return normalised

(= u]

9 def normalise abp(abp, % max, x min):
10 normalised = (abp-x min)/(x max-x min)
11 return normalised

et
% I

13 def abp maxmin value(x):

14 max X = []

15 min x = []

16 for i in range(len(x)):

17 for j in range(len{x[i]}):

18 max x.append(max(x[1][J][1,:]))
19 min x.append{min(x[i][J][1,:])}
20 X max = max(max x|

21 X min = min{min x)

22 return X max, X min

Figure-7 Dataset Normalization

To keep the range between 0 and 1 the dataset normalization is performed using a min-max
scaler function.

3.5 Data Preparation

Splitting the normalized data into 70% train and 30% test
Input : Normalized PPG values

Output: Normalized ABF and ECG values

1 ¥ train PPG N, X test PPG N, y train ABP N, y test ABP N, y train ECG N, y test ECG N = train test split(
2 PPG N, ABP N, ECG N, test size=0.30)

1 X train PPG N reshape = np.reshape(X train PPG N, (X _train PPG N.shape[(0], X train PPG N.shape[l], 1))

1 X test PPG N reshape =np.reshape(X test PPG N, (X test PPG N.shape[(0] ,X test PPG N.shape[l],1})

Figure-8 Dataset Preparation

The dataset is split into train and test split with a ratio of 70 to 30 using the scikit-learn’ package
and the split signal is reshaped as per the deep learning model required dimensional shape which

is 3 dimensions using the numpy module.

3.6 Model Building

Using the deep learning framework TensorFlow'® the models were built using TensorFlow
functional APT".

w

WO -3 oL

21
22
23
24
il

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, ConvlD, MaxPoolinglD, Flatten, Dense

input shape = (¥ train PPG reshape.shape[1l],1)
inputs = Input(shape=input shape)

Add the first convolutional layer
X = ConvlD(filters=256, kernel size=3, activation='relu')(inputs)
¥ = MaxPoolinglD(pool_size=2)(x)

Add additional convolutional layers as needed

x = ConvlD(filters=128, kernel size=3, activation='relu')(x)
MaxPoolinglD(pool size=2)(x)

£

Add additional convolutional layers as needed
ConvlD(filters=64, kernel size=3, activation='relu'}(x)

#
X
¥ = MaxPoolinglD(pool size=2)(x)

Flatten the output for further processing
x = Flatten()(x)

Branch 1 for output 1
bp output = Dense{units=1000, activation='linear' name='bp out'}(x)

Branch 2 for output 2
ecg_output = Dense(units=1000, activation='linear', name='ecg out')(x)

model = Model(inputs=inputs, outputs=[bp output, ecg output])

Metal device set to: Apple M1

Figure-9 Model Building

3.7 Model Evaluation

The model is evaluated using two metrics Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) using the TensorFlow library as shown below in Figure-10.

9

https:/scikit-learn.org/stable/

10 https://www.tensorflow.org/

" https://www.tensorflow.org/guide/keras/functional api

Evaluating CNN model with Normalized ABP values

#Predicting on the test set using the LSTH model

CHN predictions N = model.predict(¥ test PPG N reshape)

rmse = tf.keras.metrics.RootMeanSquaredError()

rmse.update state(y_test ABP N, CNN predictions N[0])

print(f'CHN Model RMSE for Normalized ABP: {rmse.result().numpy()}')

L B3

MAE for LSTM Model

MAE= tf.keras.metrics.MeanAbsoluteError()

MAE.update state(y_test ABP N, CNN predictions N[0])

print(f'CNN Model MAE for Normalized ABP: {MAE.result().numpy()}')

S W 80 =] Oh LN

[

T N R SN SR A RN R e] - ETA: 3s

2023-08-09 10:01:26.399143: I tensorflow/core/grappler/optimizers/custom graph opti
mizer for device type GPU is enabled.

N1 l," 301 l' Emmmmmmmmmmsmmsm= === === =====] - 48 12ms Jl"step
CNN Model RMSE for Normalized ABP: 0.11169151216745377
CNN Model MAE for Normalized ABP: 0.08471555262804031

Figure-10 Model Evaluation

NOTE: There will be three different files which are created based on three deep learning
models: Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and Hybrid
CNN-LSTM model.

