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 Prediction of ABP and ECG signal from PPG signal 
 using deep learning 

 Sarthak Sinha 
 21178321 

 Abstract 

 Heart  disease  risk  factors  have  long  and  most  commonly  been  associated  with  arterial 
 blood  pressure  (ABP).  Arterial  blood  pressure  measurement  is  one  of  the  most  helpful 
 metrics  for  the  early  diagnosis,  prevention,  and  treatment  of  cardiovascular  diseases. 
 Inconvenient  and  painful  for  users,  cuff-based  systems  for  measuring  blood  pressure 
 remain  the  norm  today.  The  monitoring  of  the  electrocardiogram  (ECG)  has  a  similar 
 related  problem.  Electrodes  are  affixed  to  the  body  as  part  of  the  ECG  measurement 
 process,  which  irritates  the  skin  and  restricts  the  patient's  movement  while  they  are  being 
 continuously  monitored.  Due  to  these  difficulties,  it  is  required  to  provide  a  dependable 
 and practical way to track these essential physiological markers. 

 This  paper  investigates  the  previous  research  carried  out  in  this  field;  however,  the 
 studies  have  not  yet  developed  a  complete  heart  monitoring  system  using  a 
 Photoplethysmography  signal  as  the  only  input.  This  study  aims  to  develop  an  effective 
 deep-learning  model  to  predict  both  ABP  and  ECG  signals  from  PPG  signals  using 
 minimal  patient  data  because  previous  research  has  only  been  done  to  predict  one 
 physiological  parameter  (ABP  or  ECG).  Additionally,  the  estimation  accuracy  for  three 
 different  models  would  be  evaluated  based  on  mean  absolute  error  (MAE)  and  root  mean 
 square error (RMSE). 

 Keywords  :  Arterial  Blood  pressure  (ABP),  Photoplethysmography  (PPG), 
 Electrocardiography  (ECG),  Convolutional  Neural  Network  (CNN),  Long  Short-Term 
 Memory (LSTM), multi-output regression, Transformers, signal processing 

 1  Introduction 

 1.1  Background and Motivation 
 Within  our  body,  the  heart  acts  like  a  generator,  propelling  blood  throughout  to  supply  organs 
 with  vital  nutrients  and  oxygen.  Monitoring  heart  health  is  vital  to  detect  problems  early  and 
 stop  serious  heart  disorders  from  developing.  In  the  usual  approach,  we  rely  on  three 
 measurements—Arterial  Blood  Pressure  (ABP),  Electrocardiogram  (ECG),  and 
 Photoplethysmography  signal  (PPG)—to  keep  track  of  the  heart's  condition.  By  looking  at 
 these, we can understand how effectively the heart is working and spot any potential issues. 

 Fanelli  and  Heldt,  2014  ,  ABP  signifies  the  force  that  the  heart  generates  to  assist  in  pumping 
 blood  throughout  the  body.  Monitoring  of  ABP  is  performed  through  cannulation  wherein  a 
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 thin  intra-arterial  catheter  is  inserted  into  the  patient's  vein.  This  might  be  painful  and 
 uncomfortable for a few patients particularly elderly people. 

 Madona,  Basti  and  Zain,  2021  ,  electrocardiography  (ECG)  record  the  electrical  activity  of  the 
 heart,  providing  insights  into  the  rhythmic  contraction  and  relaxation  of  its  chambers.  This 
 data  helps  assess  potential  blockages  in  arteries.  To  monitor  ECG  signals,  electrodes  are 
 positioned  on  the  patient's  chest.  However,  extended  use  of  these  electrodes  can  result  in  skin 
 irritation for patients and restrict their ability to move comfortably. 

 Almarshad  et  al.,  2022,  PPG  represents  a  simple  optical  technique  utilized  to  detect  variations 
 in  peripheral  blood  volume.  This  budget-friendly  and  non-intrusive  method  assesses 
 parameters on the skin's surface.  

 While  existing  research  predominantly  focuses  on  predicting  ABP  using  PPG  and  ECG 
 signals  separately,  a  notable  gap  exists  in  simultaneously  predicting  both  ECG  and  ABP  from 
 PPG.  The  majority  of  research  has  been  concentrated  on  using  PPG  signals  alone  to  predict 
 ABP,  rather  than  simultaneously  forecasting  ECG,  which  would  result  in  an  all-inclusive, 
 cost-effective,  and  practical  cardiac  monitoring  system.  This  gap  in  research  suggests  an 
 opportunity for additional investigation and advancement in this field. 

 Moreover,  from  the  ethical  point  of  view  as  mentioned  in  Mittelstadt,  B.  2017,  minimizing 
 data  collection  is  an  essential  aspect  of  responsible  AI  design.  Collecting  only  the  minimal 
 data  required  for  the  intended  purpose  helps  reduce  privacy  risks  and  potential  misuse  of 
 information.  It  is  important  to  carefully  assess  the  necessity  of  each  data  point  and  prioritize 
 data  minimisation  to  achieve  the  desired  outcomes  without  compromising  user  privacy.  By 
 adopting  the  principle  of  minimal  data  collection,  AI  systems  can  uphold  ethical  standards 
 and  prioritize  user  interests.  In  order  to  make  a  responsible  AI  model  it  is  worth  exploring 
 different ways to utilize minimum patient data and develop a generalised AI model. 

 1.2  Research Question 
 ●  How  effectively  two  physiological  parameters  (ABP  and  ECG)  can  be  predicted  using 

 only one physiological parameter (PPG) using deep learning? 

 ●  Using minimum patients' data is it possible to achieve stable accuracy? 

 1.3  Research Objective 
 Multioutput  deep  learning  architecture  models  are  excellent  for  tasks  that  require  predicting 
 several  outputs.  Hence,  they  make  it  possible  to  model  complicated  real-world  issues  more 
 effectively  and  efficiently.  These  models  are  used  in  the  proposed  approach  to  predict  ABP 
 and  ECG  signals.  A  recurrent  neural  network  termed  Long  Short-Term  Memory  (LSTM)  is 
 especially  good  at  managing  long-term  dependencies  and  is  designed  to  handle  sequential 
 information,  such  as  time  series  data  from  PPG  signals.  Convolutional  neural  networks 
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 (CNNs)  are  frequently  utilized  in  the  analysis  of  signal  data  as  they  are  proficient  in 
 identifying  regional  patterns  and  dependencies  within  signals.  Trends  in  signal  data  are 
 frequently  visible  within  smaller  data  segments  instead  of  across  the  full  dataset.  The 
 machine-learning  methods  used  for  signal  processing  will  progress  as  a  result  of  this  research. 
 PPG  needs  the  application  of  powerful  machine-learning  algorithms  and  optimization 
 approaches  to  develop  reliable  and  effective  prediction  models  for  ECG  and  ABP  signals. 
 These  techniques  might  be  improved  by  the  findings  of  this  study,  making  them  more  useful 
 and efficient for a variety of signal-processing jobs. 

 1.4  Document Structure 
 The  rest  of  the  document  is  structured  in  the  following  six  sections  which  are  as  follows: 
 Related  Work  which  will  provide  a  summary  of  the  work  done  in  the  field  of  BioSignal 
 processing.  Research  Methodology  will  give  insight  into  the  workflow  of  this  research. 
 Design  Specification  which  will  provide  the  high-level  design  of  the  research 
 implementation.  Implementation  which  will  provide  information  regarding  tools  and 
 architecture  of  the  implemented  deep  learning  models.  The  evaluation  section  is  where  the 
 models  are  evaluated,  and  the  predicted  values  are  compared  with  the  actual  values  and  at  last 
 the conclusion and future work are discussed briefly. 

 1.5  Acknowledgement 
 The  research  is  conducted  under  the  guidance  and  supervision  of  Mr  Teerath  Kumar 
 Menghwar.  I  would  like  to  acknowledge  his  valuable  efforts  in  this  research  and  specifically 
 his contributions to data augmentation of the physiological signals data. 

 2  Related Work 

 2.1  Arterial Blood Pressure (ABP) Estimation Using  Deep Learning 
 Maqsood  et  al.,  2022  conducted  a  survey  which  calibrates  different  approaches  for  predicting 
 blood  pressure  using  machine  learning  algorithms  which  involve  linear  regression,  support 
 vector  machine,  K-Nearest  Neighbour  (KNN),  boosting  algorithms  and  deep  learning  model 
 which  involves  Recurrent  Neural  Networks  (RNN)  with  Long-Short  Term  Memory  (LSTM) 
 Models  and  Bidirectional  LSTM  model  and  Convolutional  Neural  Network  (CNN)  based 
 model  with  Siamese  Network  Architecture  and  Hybrid  CNN-LSTM  model.  While  LSTM 
 models  work  well  with  time-dependent  data,  CNN  models  can  potentially  extract 
 spectro-temporal  features  of  the  PPG  signals.  The  authors  also  confer  about  six  different 
 datasets  that  are  involved  in  the  research  survey  that  hosts  the  vital  sign  information  of 
 patients  who  are  admitted  to  the  critical  care  unit  of  hospitals  and  require  continuous 
 monitoring  of  the  heart  However,  in  this  study,  most  of  the  papers  are  trying  to  predict  the 
 two  features  of  the  ABP  signal  which  are  Systolic  Blood  Pressure  (SBP)  which  represents  the 
 pressure  in  the  arteries  when  the  heart  contracts  and  pumps  blood  out  and  Diastolic  Blood 
 Pressure (DBP) which is the pressure in the arteries when the heart is at rest between beats. 
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 Harfiya,  Chang  and  Li,  2021  discuss  the  importance  of  estimating  continuous  blood  pressure 
 due  to  the  rate  at  which  the  blood  pressure  changes  within  seconds.  The  authors  used  only 
 PPG  signals  to  determine  the  ABP  signal  using  the  LSTM  model  and  LSTM-based 
 autoencoders.  The  author  briefly  discusses  the  flow  of  an  LSTM  model  and  how  it  retains  the 
 memory  using  memory  cells  which  constitute  of  3  gates  input,  output,  forget  gate  and  a  cell 
 state.  The  cell  state  in  LSTM  allows  information  to  flow,  while  the  gates  regulate  interactions 
 between  memory  units  to  decide  whether  to  add  or  remove  information.  The  forget  gate, 
 based  on  the  previous  memory  cell  output  at  the  time  (t-1)  and  the  current  input  at  a  time  (t), 
 determines  what  information  to  detach  from  the  cell  state  using  a  sigmoid  function.  The  input 
 gate,  using  both  sigmoid  and  hyperbolic  tangent  functions,  decides  which  values  to  update 
 and  stores  candidate  values  in  the  cell  state.  The  updated  cell  state  is  determined  by 
 combining  the  results  of  the  forget  gate  and  input  gate  operations.  Finally,  the  output  gate 
 filters  the  cell  state  information  to  produce  the  output,  adjusting  the  values  to  fall  within  the 
 range  of  [−1,  1]  using  sigmoid  and  hyperbolic  tangent  functions.  The  authors  used  two  layers 
 of  the  LSTM  network,  each  layer  with  128  units  of  LSTM  and  to  prevent  overfitting  a 
 dropout layer with a rate of 0.2 was kept. 

 Hamedani,  Sadredini  and  Khodabakhshi,  2021  proposed  a  1-D  CNN  model  to  capture  the 
 spatial  representation  in  the  PPG  signal  which  helps  in  continuous  ABP  estimation  through 
 the  PPG  signal.  CNNs  are  great  at  finding  crucial  patterns  and  features  in  data  using 
 convolutional  layers.  In  signal  processing,  this  helps  them  spot  local  patterns  and  features 
 within signals. 

 In  the  proposed  paper  by  Slapničar,  Mlakar,  and  Luštrek  (2019),  they  used  a  Spectro 
 Temporal  Deep  Neural  Network  to  estimate  ABP  signals  using  PPG  signals.  PPG  signals  are 
 time  series  data  reflecting  blood  volume  changes  due  to  the  heart  pumping.  The  network,  like 
 RNN  or  LSTM,  models  the  temporal  dependencies  in  PPG  to  learn  patterns  associated  with 
 ABP  changes.  The  PPG  signals  were  transformed  into  the  frequency  domain  using  the  Fast 
 Fourier  Transform  (FFT)  to  capture  additional  relevant  information  for  ABP  estimation.  By 
 combining  both  temporal  and  spectral  information  through  a  Spectro  Temporal  Deep  Neural 
 Network,  it  is  possible  that  the  model  could  learn  complex  patterns  and  relationships  that  aid 
 in  estimating  ABP  from  PPG  signals  more  accurately  therefore,  a  hybrid  CNN-LSTM  was 
 developed in the research. 

 Ibtehaz  et  al.,  2022  to  facilitate  deep  learning  model  training,  the  PPG  and  ABP  signals  were 
 segmented  out  and  bandpass  filtering  with  global  min–max  normalization  was  performed. 
 These  segments  were  configured  to  have  1024  data  points  using  Dirichlet  rectangular 
 windowing,  catering  to  the  requirements  of  deep  learning  frameworks.  For  filtering,  a 
 Butterworth  filter  with  cutoff  frequencies  of  0.1  Hz  and  30  Hz  was  employed.  Notably,  both 
 PPG  and  ABP  segments  were  separately  normalized  based  on  the  global  minimum  and 
 maximum  values.  This  normalization  is  vital  for  deep  learning  models,  as  their  sensitivity  to 
 high  amplitude  signals  differs  from  classical  machine  learning  models,  especially  when  the 
 input  PPG  exhibits  lower  amplitudes  compared  to  the  target  ABP  signals.  Training  the  deep 
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 learning  models  with  normalized  ABP  segments  naturally  yields  normalized  ABP  segments 
 during estimation. 

 In  the  study  conducted  by  Baker,  Xiang  and  Atkinson,  2022,  distinct  features  were  derived 
 from  both  PPG  and  ECG  signals.  However,  our  research  will  primarily  concentrate  on  the 
 features  extracted  from  PPG  signals.  These  features  encompass  the  determination  of  median 
 peak  height,  trough  depth,  beat-to-beat  (BTB)  interval  between  consecutive  peaks,  wave 
 height,  and  the  duration  of  upward  signal  trajectory.  Figure-1  shows  the  PPG  Waveform  and 
 Features. 

 Figure-1 PPG Waveform and Features (Baker, Xiang and Atkinson, 2022) 

 Subsequently,  the  derived  features  from  both  the  PPG  and  ECG  signals  are  fed  into  a 
 convolutional  layer,  followed  by  a  forward-fed  LSTM  layer,  culminating  in  the  output  layer. 
 The  model's  efficacy  was  then  assessed  through  two  established  benchmarks:  the 
 Advancement  of  Medical  Instrumentation  (AAMI)  and  the  British  Hypertension  Society 
 (BHS)  protocol.  This  evaluation  involved  the  computation  of  the  mean  absolute  error  and 
 standard  deviation  of  the  model's  predictions.  In  the  forthcoming  section,  we  will  delve  into 
 the process of reconstructing ECG data using PPG signals. 

 2.2  Electrocardiogram (ECG) Estimation Using Deep  Learning 
 Zhu  et  al.,  2019  proposed  a  pilot  study  to  recreate  the  ECG  signal  from  the  PPG  signal,  a 
 transformation  method  is  proposed  using  discrete  cosine  transform  (DCT).  This  study  helps 
 in  establishing  a  relationship  between  the  ECG  signal  and  the  PPG  signal.  The  signals  are 
 segmented  and  DCT  values  are  obtained  to  match  out  the  discrete  components.  Banerjee  et 
 al.,  2014  proposed  an  approach  where  they  predicted  different  components/  intervals  of  the 
 ECG signal. An ECG signal is comprised of 3 intervals which are PR, QRS and QT intervals. 

 Cheng,  Zou  and  Zhao,  2021  used  a  combination  of  CNN  and  the  Bidirectional  LSTM  model 
 to  learn  the  representation  of  ECG  signal  using  the  filtering  process  with  wavelet  transform 
 (WT) and median filter (MT). 
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 2.3  Data Augmentation 
 Data  augmentation  is  a  technique  of  generating  artificial  data  points  from  the  original  set  of 
 data.  Aguirre  et  al.,  2021  in  their  research  performed  data  augmentation  of  ABP  signals  using 
 two  approaches  which  are  the  replacement  of  beats  by  artefacts  and  changes  in  the  ABP 
 baseline.  Beats  by  artefacts  involve  simulating  variations  in  ABP  signals  by  introducing 
 artificial  artefacts  that  mimic  real-world  irregularities  or  noise.  By  replacing  specific  beats 
 with  these  artefacts,  the  augmented  dataset  reflects  scenarios  where  signal  quality  might  be 
 compromised  due  to  measurement  errors,  sensor  imperfections,  or  physiological  anomalies. 
 This  augmentation  technique  can  help  the  model  learn  to  handle  noise  and  outliers 
 effectively,  leading  to  improved  performance  when  applied  to  actual  ABP  signals.  The 
 second  approach  focuses  on  perturbing  the  baseline  of  ABP  signals.  The  baseline  represents 
 the  average  pressure  level  in  the  ABP  waveform  during  periods  of  relative  stability.  The 
 authors  introduced  controlled  variations  to  the  baseline,  effectively  simulating  changes  that 
 could  arise  due  to  shifts  in  body  position,  posture,  or  other  external  factors.  Augmenting  the 
 dataset  with  such  variations  enables  the  model  to  learn  patterns  that  are  relevant  across 
 different physiological contexts and conditions. 

 Tang  et  al.,  2021  used  a  Generative  adversarial  network  to  perform  data  augmentation  in 
 signal  modulation.  It  addresses  the  challenge  of  limited  training  data  in  deep  learning-based 
 radio  signal  classification  by  introducing  the  concept  of  using  generative  adversarial 
 networks  (GANs)  for  data  augmentation.  The  GAN-based  augmentation  process  involves 
 generating  additional  realistic  data  samples  that  enhance  the  diversity  and  quantity  of  the 
 training  dataset.  The  positive  impact  of  this  augmentation  is  demonstrated  through  improved 
 classification  accuracy  in  signal-to-noise  ratio  scenarios,  ultimately  enhancing  the 
 effectiveness of deep learning models in radio applications. 

 Kumar  et  al.,  2023  in  their  research  proposed  a  novel  data  augmentation  method  which  is 
 Random  Slices  Mixing  Data  Augmentation  which  mixes  two  different  data  points  through 
 their  segments.  It  comprises  three  different  variations  which  are  Random  Slices  Mixing 
 Row-Wise  (RSMDA-R)  which  refers  to  horizontal  mixing,  Random  Slices  Mixing 
 Column-Wise  (RSMDA-C)  which  refers  to  vertical  mixing  and  Random  Slices  Mixing 
 Row-Column-Wise (RSMDA-RC) which refers to horizontal and vertical both mixing. 

 3  Research Methodology 
 The  research  methodology  followed  to  carry  out  this  research  KDD  model  was  used  due  to 
 the  iterative  nature  of  this  process,  which  helped  in  continuous  improvement  in  each  iteration 
 of  the  research.  Figure-1  by  Safhi,  Frikh  and  Ouhbi,  2019  shows  the  steps  that  are  followed  to 
 carry out the research. 
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 Figure-2 Knowledge Discovery Process (Safhi, Frikh and Ouhbi, 2019) 

 3.1  Data Selection 
 As  surveyed  by  Maqsood  et  al.,  2022  six  different  datasets  have  been  used  out  of  which 
 MIMIC-III  (Johnson  et  al.,  2016)  have  been  used  in  this  research  due  to  the  volume  of  the 
 data.  The  dataset  includes  the  samples  of  40000  adult  patients  with  their  physiological 
 parameters  of  heart  with  PPG,  ABP  and  ECG  signals.  As  mentioned  in  Brophy  et  al.,  2021 
 two  open-source  datasets  were  gathered  from  two  sources  which  are  Kaggle  and  the 
 University  of  Queensland  where  the  “Cuff-Less  Blood  Pressure  Estimation  dataset”  from 
 Kaggle  1  Kachuee  et  al.  ,  2017  was  used  as  a  training  dataset  and  “The  University  of 
 Queensland  Vital  Signs  Dataset”  from  University  of  Queensland  2  is  used  for  evaluation  to 
 interpret  the  performance  of  the  research.  The  training  dataset  was  divided  into  12  parts  of 
 ‘mat’  files  where  each  signal  was  gathered  at  125  Hz.  The  dataset  contains  an  array  of  cell 
 matrices where each row corresponds to different signals which are PPG, ABP and ECG. 

 3.2  Data Preprocessing 
 Data  preprocessing  is  essential  for  extracting  meaningful  patterns  and  insights  from  PPG, 
 ABP,  and  ECG  signals  and  building  accurate  predictive  models.  It  ensures  data  quality, 
 enhances  feature  extraction,  reduces  noise,  and  aligns  the  data,  leading  to  more  reliable  and 
 interpretable results for predicting cardiovascular signals from PPG data. 

 ●  Few  null  values  have  been  found  in  a  few  of  the  array  cell  matrices  of  the  ECG  signal 
 which  were  replaced  by  the  mode  of  the  array  using  the  ‘SciPy  stats’  module  in  Python. 
 By  using  the  mode  to  replace  null  values,  the  resulting  data  points  are  more  representative 
 of the typical values observed in the ECG signal. 

 ●  The  data  is  scaled  using  a  min-max  scaler  as  stated  by  Ibtehaz  et  al.,  2022  to  avoid  biases 
 and to limit the impact of outliers as it uses the range of the data to scale the features. 

 2  https://outbox.eait.uq.edu.au/uqdliu3/uqvitalsignsdataset/index.html 
 1  https://www.kaggle.com/datasets/mkachuee/BloodPressureDataset 
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 3.3  Data Exploration and Visualization 

 Figure-3 PPG, ECG and ABP signal sampled at 125 Hz 
 The  above  figure  represents  the  Photoplethysmography  (PPG)  signals,  Electrocardiogram 
 (ECG)  signals,  and  Arterial  Blood  Pressure  (ABP)  signals  within  a  1-second  timeframe. 
 Notably,  an  observable  distinction  arises  in  the  signal  ranges  of  PPG,  ABP,  and  ECG.  This 
 variation  in  amplitude  across  these  signals  highlights  the  diversity  in  their  respective  signal 
 magnitudes.  A  pertinent  insight  emerges  from  the  research  of  Singh  and  Singh,  2022, 
 underscoring  the  significance  of  feature  normalization  when  dealing  with  deep  learning 
 models.  This  normalization  process  becomes  imperative  as  it  fosters  several  benefits, 
 including  accelerated  convergence  during  model  training,  the  establishment  of  stable 
 gradients,  and  the  enhancement  of  model  generalization  to  previously  unseen  data  instances. 
 By  acknowledging  and  implementing  feature  normalization,  the  research  seeks  to  optimize 
 the  overall  performance  and  robustness  of  deep  learning  models  in  the  context  of  these 
 diverse signals. 
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 Figure-4 PPG, ECG and ABP Normalized using Min-Max Scaler 

 In  the  above  figure  it  can  be  observed  that  the  signal  values  PPG,  ECG  and  ABP  signal  are 
 normalized using min-max scaler, and the range of the signal values now range from 0 to 1. 

 To  infer  the  relationship  between  the  signals,  the  Pearson  Correlation  test  has  been  performed 
 where the correlation coefficient is as follows: 

 ●  Correlation  between  PPG  and  ECG  signals:  -0.125  This  correlation  is  close  to  0, 
 suggesting  a  weak  negative  correlation  between  ECG  and  PPG  signals.  It  means  that  the 
 two  signals  have  a  slight  tendency  to  move  in  opposite  directions,  but  the  relationship  is 
 not strong. 

 ●  Correlation  between  PPG  and  ABP  signals:  -0.241  The  correlation  between  PPG  and 
 ABP  signals  is  slightly  stronger  than  the  correlations  with  ECG.  It  is  still  negative, 
 indicating a weak inverse relationship between PPG and BP signals. 

 3.4  Feature Extraction 
 The  dataset  is  collected  at  a  sampling  frequency  of  125  Hz,  which  means  that  every  second 
 there  are  125  data  points.  A  signal  size  of  1000  has  been  chosen  to  provide  a  reasonable 
 number  of  training  samples  while  not  overwhelming  the  model's  complexity.  Having  too  few 
 training  samples  might  lead  to  overfitting,  while  too  many  samples  might  make  the  training 
 process  slower  and  more  resource  intensive.  Therefore,  each  series  of  size  1000  values  have 
 been  extracted  which  effectively  captures  data  from  a  span  of  8  seconds.  This  selection  of 
 1000  values  provides  us  with  information  over  a  specific  time  window,  enabling  analysis  or 
 processing of data within that 8-second interval. 
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 3.5  Dataset Preparation 
 The  dataset  was  split  into  training  and  testing  data  using  the  train-test  split  method  used  in  the 
 ‘scikit-learn  3  ’  library  in  Python.  For  the  training  set  70%  of  the  dataset  was  considered  while 
 to evaluate the deep learning models 30% of the dataset was considered. 

 3.6  Data Mining 
 The  considerable  dataset  volume  presents  a  promising  opportunity  to  effectively  deploy  deep 
 learning  models.  This  advantage  was  harnessed  in  a  survey  conducted  by  Maqsood  et  al., 
 2022,  specifically  highlighted  in  Section  –  2.1.  In  this  study,  we  undertook  an  investigation 
 utilizing  three  distinct  deep  learning  models:  Convolutional  Neural  Network  (CNN),  Long 
 Short-Term  Memory  (LSTM),  and  Hybrid  CNN-LSTM.  To  facilitate  the  implementation  of 
 these  models,  the  'TensorFlow'  functional  API  was  leveraged.  This  API  allows  for  the 
 creation  of  complex  neural  network  architectures  with  multiple  outputs,  which  aligns  with  the 
 nature  of  the  study's  goals.  The  models  were  meticulously  designed  to  incorporate  this 
 multi-output  structure,  enabling  them  to  capture  and  predict  various  features  simultaneously. 
 In  the  experimentation  phase,  the  models  were  subjected  to  training  and  evaluation  processes. 
 One  crucial  aspect  of  this  research  was  the  utilization  of  augmented  data  during  the 
 evaluation.  Augmented  data  involves  introducing  artificially  generated  variations  of  the 
 original  dataset  to  fortify  the  model's  ability  to  generalize  across  different  scenarios.  This 
 augmentation  technique  helps  to  assess  the  robustness  and  stability  of  the  models  when  faced 
 with  limited  data  availability.  By  validating  the  models'  performance  using  augmented  data,  it 
 was  aimed  to  ascertain  whether  the  models'  predictive  capabilities  remain  consistent  even  in 
 cases where the dataset is relatively small. 

 4  Design Specification 

 Figure-5 Design Specification  4 

 4  https://whimsical.com/ 
 3  https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html 
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 Data  Layer:  In  the  data  layer  of  the  design  specification,  the  initial  dataset  is  available  in  the 
 form  of  '.mat  files',  which  contain  various  physiological  signal  data  which  includes  PPG, 
 ECG  and  ABP.  The  data  within  these  files  is  the  foundation  for  the  subsequent  analysis.  To 
 make this data usable for analysis, it needs to be processed and loaded into the system. 

 Business  Logic  Layer:  This  layer  is  where  the  real  analysis  and  model  development  takes 
 place.  Once  the  data  is  loaded  into  the  system,  it's  then  explored  and  cleaned.  Exploring  the 
 data  involves  understanding  its  structure,  distribution,  and  potential  issues.  Cleaning  the  data 
 is  essential  to  remove  any  inconsistencies,  missing  values,  or  outliers  that  could  adversely 
 affect  the  subsequent  analysis.  In  this  layer,  deep  learning  models  are  created.  These  models 
 are  designed  with  a  specific  architecture  involving  a  single  input,  in  this  case,  a  PPG  signal 
 and  multiple  outputs  (ABP  and  ECG).  To  build  these  models,  the  'TensorFlow'  5  functional 
 API  is  utilized.  TensorFlow  is  a  popular  framework  for  building  and  training  machine 
 learning  and  deep  learning  models.  The  developed  models  are  then  trained  using  the 
 preprocessed  data.  The  training  process  involves  exposing  the  models  to  the  dataset  and 
 adjusting  their  parameters  to  learn  patterns  and  relationships  within  the  data.  After  training, 
 the  models  are  evaluated  using  a  separate  portion  of  the  dataset  that  was  set  aside  specifically 
 for  this  purpose.  This  evaluation  helps  assess  how  well  the  models  generalize  to  new,  unseen 
 data and how accurately they make predictions or classifications. 

 Reports  and  Visualization:  After  training  and  evaluating  the  models,  it's  important  to  gain 
 insights  into  their  performance  and  behaviour.  This  is  where  reports  and  visualization  come 
 into  play.  The  'Matplotlib'  library  is  used  to  generate  various  types  of  visualizations  that  allow 
 researchers  and  analysts  to  understand  the  model's  performance  visually.  These  visualizations 
 include  graphs  showing  the  model's  predictions  compared  to  the  actual  values,  histograms  of 
 errors,  and  other  relevant  plots.  Reports  might  summarize  the  key  findings  from  the  analysis, 
 including  the  performance  metrics  like  Root  Mean  Square  Error  (RMSE)  and  Mean  Absolute 
 Error  (MAE)  for  different  scenarios.  These  insights  provide  a  deeper  understanding  of  how 
 well the models are performing and what areas might need improvement. 

 5  Implementation 

 5.1  Implementation Tools 
 To  implement  the  project  Python  language  with  ‘Jupyter  Notebooks’  has  been  used  due  to  the 
 flexibility  of  running  the  block  of  codes  individually.  AWS  EC2  instance  r5.4xlarge  which  is 
 designed  to  provide  high  memory  capacity  suitable  for  memory-intensive  workloads  has  been 
 used  to  perform  deep  learning  model  training  with  Ubuntu  OS,  16  vCPU  and  128  GB  RAM. 
 This service is provided by the National College of Ireland  6  . 

 6  https://cloud.ncirl.ie/ 
 5  https://www.tensorflow.org/guide/keras/functional_api 
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 5.2  Model Building 
 Convolutional  Neural  Network  (CNN)  :  CNNs  can  automatically  learn  meaningful  features 
 from  raw  input  data  without  the  need  for  manual  feature  engineering.  In  the  case  of  PPG 
 signals,  which  contain  complex  temporal  patterns  and  variations,  CNNs  can  automatically 
 extract  relevant  features  that  are  useful  for  predicting  ECG  and  ABP.  The  below  figure  shows 
 the architecture for CNN model layers and the number of training parameters. 

 Figure-6 CNN Architecture 

 It  begins  with  input  sequences  of  length  1000,  each  containing  one  piece  of  information. 
 These  sequences  are  then  processed  through  a  series  of  convolutional  layers  (conv1d),  where 
 each  layer  transforms  the  data  to  capture  relevant  features.  After  each  convolutional  layer,  a 
 max  pooling  layer  (max_pooling1d)  reduces  the  dimensions  of  the  data  to  focus  on  the  most 
 important  information.  This  process  is  repeated  with  multiple  convolutional  and  max  pooling 
 layers  to  progressively  extract  finer  details.  The  last  step  involves  flattening  the  data,  which 
 means  reshaping  it  into  a  one-dimensional  form.  This  flattened  data  is  then  fed  into  two 
 separate  dense  layers  named  "bp_out"  and  "ecg_out".  The  "bp_out"  layer  predicts  blood 
 pressure,  while  the  "ecg_out"  layer  predicts  electrocardiogram  values.  Each  dense  layer 
 generates a sequence of 1000 values based on the flattened data. 

 Long  Short-Term  Memory  Model  (LSTM):  LSTM  networks  are  a  type  of  recurrent  neural 
 network  (RNN)  that  have  become  popular  for  sequence  prediction  tasks,  especially  when 
 dealing  with  time  series  data.  PPG  signals  are  inherently  sequential  data,  representing 
 changes  in  blood  volume  over  time.  LSTMs  are  well-suited  for  handling  time  series  data  and 
 can  effectively  model  the  temporal  dependencies  and  patterns  present  in  PPG  signals.  The 
 below figure shows the LSTM Model architecture. 
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 Figure-7 LSTM Architecture 

 This  model  is  designed  to  work  with  physiological  signals,  like  predicting  blood  pressure  and 
 electrocardiogram  signals.  It  starts  with  input  sequences  of  1000  time  steps,  each  containing 
 one  piece  of  information.  These  sequences  go  through  a  main  layer  called  LSTM,  which 
 creates  a  sequence  of  64  hidden  units  for  each  time  step.  To  prevent  overfitting,  a  dropout 
 layer  is  used  to  deactivate  some  of  these  units  during  training.  After  that,  a  second  LSTM 
 layer  comes  after  the  dropout  layer,  refining  the  output  to  a  sequence  of  32  hidden  units.  This 
 refined  sequence  is  then  sent  to  two  different  layers  called  "bp_out"  and  "ecg_out".  The 
 "bp_out"  layer  predicts  blood  pressure,  while  "ecg_out"  predicts  electrocardiogram  values. 
 Each  of  these  layers  generates  a  sequence  of  1000  values  per  batch  sample,  based  on  the  data 
 processed  by  the  second  LSTM  layer.  In  simple  terms,  this  model  aims  to  predict 
 physiological  readings  using  a  step-by-step  process  involving  special  LSTM  layers  and  dense 
 layers. 

 Hybrid  CNN-LSTM  Model:  As  discussed  in  section-2.1  by  Baker,  Xiang  and  Atkinson, 
 2022,  CNNs  are  excellent  at  capturing  spatial  features  within  data,  making  them  well-suited 
 for  tasks  involving  images,  and  time-series  data  and  LSTM  on  the  other  hand  excel  at 
 capturing  temporal  dependencies  and  long-range  patterns  in  sequential  data.  The  below  figure 
 shows the implementation of the Hybrid CNN-LSTM model. 

 13 



 Figure-8 Hybrid CNN-LSTM Architecture 

 The  input  consists  of  sequences  with  a  length  of  1000,  each  containing  a  single  feature.  These 
 sequences  go  through  a  series  of  convolutional  layers  (conv1d),  which  capture  relevant 
 patterns  within  the  data.  Subsequent  max  pooling  layers  (max_pooling1d)  then  reduce  the 
 dimensions,  focusing  on  key  information.  Multiple  convolutional  and  max  pooling  layers  are 
 utilized  to  progressively  uncover  more  detailed  patterns.  Afterwards,  the  data  is  reshaped  to 
 prepare  it  for  an  LSTM  layer,  a  type  of  recurrent  neural  network  that  captures  temporal 
 dependencies.  The  LSTM  layer  processes  the  reshaped  data  and  produces  an  output  sequence 
 of  100  units,  capturing  complex  temporal  relationships.  This  output  is  used  for  predicting 
 both  blood  pressure  (bp_out)  and  electrocardiogram  (ecg_out)  values  using  separate  dense 
 layers. 

 5.3  Data Augmentation 
 TensorFlow  provides  a  function  called  “Sequence”  which  is  used  to  implement  data 
 augmentation.  It  is  also  designed  to  handle  the  process  of  data  loading  and  batching  and 
 perform  data  augmentation  for  machine  learning  models,  particularly  when  dealing  with  large 
 datasets  that  may  not  fit  entirely  in  memory.  It's  particularly  useful  when  you  need  to  train 
 deep  learning  models  on  large  datasets  while  efficiently  managing  memory  usage.  This 
 function  helps  in  generating  the  augmented  data  on  the  fly  without  necessarily  loading  the 
 whole dataset into the memory. 

 6  Evaluation 
 The  models  are  evaluated  using  Mean  Absolute  Error  (MAE)  and  Root  Mean  Square  Error 
 (RMSE)  which  can  be  observed  in  the  Results  in  Table-1.  MAE  measures  the  average 
 absolute  difference  between  predicted  values  and  actual  values.  It  provides  a  straightforward 
 understanding  of  the  average  magnitude  of  errors  in  the  predictions.  MAE  is  robust  to  outliers 
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 and  treats  all  errors  equally,  making  it  suitable  to  understand  the  average  accuracy  of  the 
 model.  RMSE  also  quantifies  the  errors  between  predicted  and  actual  values,  but  it  considers 
 the  squared  differences  between  these  errors.  By  squaring  the  errors,  RMSE  penalizes  larger 
 errors  more  heavily  than  MAE.  This  makes  RMSE  more  sensitive  to  outliers  and  helps 
 emphasize  the  impact  of  larger  errors  on  the  overall  performance  of  the  model.  The  combined 
 consideration  of  both  MAE  and  RMSE  provides  a  more  comprehensive  evaluation. 
 Moreover,  the  models  are  evaluated  based  on  Normalized,  Non-Normalized  and  Data 
 Augmented signal values to infer the model's performance with different experiments. 
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 Table-1 RMSE and MAE scores for different deep learning models 
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 Predicted Signal  Experiment  Root Mean Square 
 Error (RMSE) 

 Mean Absolute Error 
 (MAE) 

 LSTM Model results 

 Arterial Blood Pressure 
 (ABP) 

 Non-Normalized  80.44  75.31 
 Normalized  0.2173  0.1816 

 Data Augmentation  0.2207  0.1691 

 Electrocardiogram 
 (ECG) 

 Non-Normalized  0.6169  0.4689 
 Normalized  0.1933  0.1460 

 Data Augmentation  0.2076  0.1391 
 CNN Model results 

 Arterial Blood Pressure 
 (ABP) 

 Non-Normalized  18.339  14.0131 
 Normalized  0.1138  0.0844 

 Data Augmentation  0.1087  0.0808 

 Electrocardiogram 
 (ECG) 

 Non-Normalized  1.2179  0.9459 
 Normalized  0.1781  0.1332 

 Data Augmentation  0.1721  0.1293 
 Hybrid CNN-LSTM Model results 

 Arterial Blood Pressure 
 (ABP) 

 Non-Normalized  56.7733  49.1812 
 Normalized  0.2853  0.2452 

 Data Augmentation  0.4469  0.3705 

 Electrocardiogram 
 (ECG) 

 Non-Normalized  0.5903  0.4720 
 Normalized  0.3105  0.2793 

 Data Augmentation  0.2194  0.1762 



 6.1  Prediction Graphs of LSTM Model 

 Figure-9 Non-Normalized Predicted & Actual ABP and ECG Values for LSTM 

 Figure-10 Normalized Predicted & Actual ABP and ECG Values for LSTM 

 Figure-11 Augmented Predicted & Actual ABP and ECG Values for LSTM 
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 6.2  Prediction Graphs of CNN Model 

 Figure-12 Non-Normalized Predicted & Actual ABP and ECG Values for CNN 

 Figure-13 Normalized Predicted & Actual ABP and ECG Values for CNN 

 Figure-14   Augmented Predicted & Actual ABP and ECG Values for CNN 

 17 



 6.3  Prediction Graphs of Hybrid CNN-LSTM Model 

 Figure-15    Non-Normalized ABP and ECG Values for Hybrid CNN-LSTM 

 Figure-16    Normalized ABP and ECG Values for Hybrid CNN-LSTM 

 Figure-17    Augmented ABP and ECG Values for Hybrid CNN-LSTM 
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 6.4  Discussion 
 The  above  table  (Table-1)  presents  the  results  of  an  experiment  that  evaluates  the 
 performance  of  different  models  in  predicting  physiological  signals,  specifically  Arterial 
 Blood  Pressure  (ABP)  and  Electrocardiogram  (ECG)  signals.  The  evaluation  metrics  used  are 
 Root  Mean  Square  Error  (RMSE)  and  Mean  Absolute  Error  (MAE),  which  are  standard 
 measures  of  how  well  a  model's  predictions  match  the  actual  data.  In  the  conducted  research, 
 an  LSTM  model,  a  CNN  model,  and  a  Hybrid  CNN-LSTM  model  are  being  compared  and 
 each  model  is  tested  under  different  conditions  (Non-Normalized,  Normalized,  and  with  Data 
 Augmentation). 

 In  section  6.1  the  graphs  demonstrate  the  result  of  the  long  short-term  memory  (LSTM) 
 model,  Figure-9  it  can  be  observed  that  the  LSTM  model  with  non-normalized  signal  values 
 has  very  little  fluctuation  in  predicting  both  ABP  and  ECG  signals.  This  shows  that  the 
 LSTM  model  with  non-normalized  signal  values  is  under-fitted  and  is  unable  to  capture  any 
 pattern.  Figure-10,  shows  a  graph  of  normalized  signal  values  where  it  can  be  observed  that 
 the  LSTM  model  is  trying  to  capture  a  few  patterns  both  for  ABP  and  ECG  signals  because 
 of  the  finite  range  of  the  signal  values.  In  Figure-11,  the  model  is  able  to  capture  more 
 complex  patterns  because  of  the  diversity  added  by  the  data  augmentation.  From  these  three 
 graphs,  it  can  be  concluded  that  LSTM  does  not  perform  well  using  the  smaller  number  of 
 data points. 

 In  section  6.2,  the  graphs  demonstrate  the  capability  of  the  convolutional  neural  network 
 (CNN)  model  to  predict  the  ABP  and  ECG  signal,  Figure-12  shows  the  predicted  and  the 
 actual  value  for  the  CNN  model  it  can  be  observed  that  even  though  the  signals  were  not 
 normalized,  the  CNN  is  able  to  capture  the  patterns  as  in  the  wave  height  and  width  of  the 
 ABP  signal  and  for  ECG  we  can  observe  a  lot  of  fluctuations  due  to  the  varying  range  of  the 
 signals.  In  Figure-13  by  normalizing  the  signals  we  can  observe  that  the  predictions  have 
 been  improved  and  CNN  is  able  to  capture  the  complex  patterns  of  ABP  signals,  however,  for 
 ECG  signals  some  variations  can  be  observed  but  the  patterns  are  not  aligned  with  the  actual 
 values.  In  Figure-14  with  augmented  data,  we  can  observe  that  the  variations  and  patterns  are 
 mostly  aligned  with  the  actual  values  of  both  ABP  and  ECG  signals  which  shows  the  ability 
 of the CNN to learn and generalize the predictions using the data augmentation. 

 In  section  6.3,  the  graphs  show  the  performance  of  the  hybrid  CNN-LSTM  model.  Figure-15 
 shows  the  result  of  the  hybrid  CNN-LSTM  model  when  the  signals  are  not  normalized  and  it 
 can  be  observed  that  the  model  is  unable  to  learn  the  patterns  present  in  the  signal.  However, 
 when  the  signals  are  normalized  we  can  observe  the  variations  in  the  prediction  of  the  hybrid 
 CNN-LSTM  model  but  still,  there  are  a  lot  of  errors.  Similar  errors  and  trends  can  be 
 observed in Figure-17 with augmented data. 
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 7  Conclusion and Future Work 
 Owing  to  the  first  research  question  mentioned  in  Section-1.2  “How  effectively  two 
 physiological  parameters  (ABP  and  ECG)  can  be  predicted  using  only  one  physiological 
 parameter  (PPG)  using  deep  learning?”,  it  is  evident  that  CNN  with  augmented  data  points 
 can  capture  ABP  and  most  segments  of  ECG  signals  from  PPG  signal.  When  comparing 
 CNN  with  the  other  two  models  (LSTM  and  Hybrid  CNN-LSTM)  the  former  model 
 outperformed  the  latter  models  showing  RMSE  of  0.1087  and  MAE  of  0.0808  for  predicting 
 ABP and RMSE of 0.1721 and MAE of 0.1293 for predicting ECG with data augmentation. 

 For  the  second  research  question  mentioned  in  Section-1.2  “Using  minimum  patients'  data,  is 
 it  possible  to  achieve  stable  accuracy?”,  Data  Augmentation  is  a  fair  approach  to  add 
 diversity  to  the  small  segment  of  the  training  data  as  seen  in  the  evaluation  tables  in 
 section-6.1, 6.2 and 6.3. 

 The  publicly  available  Kaggle  dataset  was  split  into  train  and  test  datasets.  Additionally,  only 
 feature  extraction,  scaling,  and  data  augmentation  were  performed  on  the  recovered  data.  The 
 test  dataset's  relevance  to  real-world  scenarios  contributes  to  the  acceptable  performance  of 
 the  research’s  approach.  We  might  achieve  better  outcomes,  with  more  effort  put  into 
 cleaning  and  preparing  the  datasets.  As  real-world  data  is  often  messy  and  noisy,  making  it 
 hard  to  work  with,  the  dataset  was  used  without  much  cleaning  for  this  project.  In  the 
 upcoming effort, the aim would be to make these models better. 

 The  future  task  at  hand  will  be  to  determine  whether  it  is  feasible  to  extract  and  predict  the 
 electrocardiogram  and  arterial  blood  pressure  signals  from  the  photoplethysmography  signal 
 using  the  transformer.  Finding  out  and  analysing  how  the  Photoplethysmography  (PPG) 
 signal  can  be  represented  contextually  and  combined  with  a  sequence-to-sequence  model 
 (transformer)  to  obtain  Arterial  Blood  Pressure  and  Electrocardiogram  data  will  be 
 interesting. 

 The  upcoming  effort  will  be  a  small  portion  of  broader  research  that  will  assess  how  much 
 Sequence-to-Sequence  modelling,  which  is  utilized  in  Natural  Language  Processing,  may  be 
 applied to Non-Language Sequence data. 
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