
Emulating Simulation Models with Neural
Networks

M.Sc. Research Project

Data Analytics

Aryan Singh
Student ID: 21205523

School of Computing

National College of Ireland

Supervisor: Prof. Dr. Hicham Rifai

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aryan Singh

Student ID: 21205523

Programme: Data Analytics

Year: 2023

Module: M.Sc. Research Project

Supervisor: Prof. Dr. Hicham Rifai

Submission Due Date: 14/08/2023

Project Title: Emulating Simulation Models with Neural Networks

Word Count: 4995

Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL Internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use another
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Emulating Simulation Models with Neural Networks

Aryan Singh
21205523

Abstract

Deep Learning (DL) algorithms have innovated and repurposed a myriad of
fields and even improved methodologies previously thought to be optimal. Mod-
eling, especially Simulation Models (SM) is one such field. In this paper, a novel
methodology is proposed to improve the performance and computation time of
SMs through the application of DL models as surrogate models. An SM of traffic
behavior in an inter-connected road network was created as the data source for
this project. This model was run iteratively with varying parameters to generate
data points. The I/O data of the SM was stored and curated to be used as the
training data for the DL models. The relationships between the features in the
data points generated by the SM were studied to model a Graph. Two NNs were
trained on the raw simulation data and the transformed graph data, respectively.
The NNs were evaluated on their accuracy and R-squared values against the output
of the SM. The NNs provided high accuracy and were able to map the relationships
between the features of the SM. The primary goal of this research was to identify
and quantify the performance benefits of using an NN to emulate an SM. The pro-
cessing speeds of both the models were compared and the Neural Networks proved
to be exponentially faster than the Simulation model.

1 Introduction

1.1 Motivation and Background

Simulation Models (SMs) have been used by researchers and scientists for decades, with
documented cases going back to World War 2 when researchers in the Manhattan Project
used a Monte-Carlo algorithm to simulate a nuclear detonation(Gillier and Lenfle (2019)).
These models allow researchers to imitate a system and its natural advancement through
time much faster than real time. They allow researchers to peek into the behavior and
different states of systems to predict possible outcomes and prepare accordingly. The
complexity of an SM is directly related to the complexity of the system it is trying to
simulate. Important systems with any degree of interest worthy of simulation are seldom
simple. This results in the SM being rather complex and complicated, requiring large
amounts of resources and human input to become reliable(Zhang et al. (2023)). This has
led researchers to look for alternatives elsewhere.

The purpose of the research in this paper is not to speed up the simulation modeling
process or even to look at prospective alternatives, it has already been done successfully
in multiple studies(Thomas et al. (2017), Kwak et al. (2021)). The primary objective of
this study is to investigate whether SMs that have already been created and operated

1

could possibly be replaced by a DL model. The differentiating factor of this study will be
that the DL model would not be trained on the data used for the Simulation Modeling, or
any external data source for that matter. The study’s primary focus will be training the
DL model on the structure and output of the simulation model itself. This, in essence,
will create a Deep Learning emulation of our SM. In simple words, the DL model would
emulate the SM and act as a surrogate model. The motivation for this research is to
find out whether this is possible and if it is, to evaluate the computational performance
benefits of using the DL model. Since SMs transition through each state of the system
they are trying to simulate and try to imitate the system as closely as possible, they
require a lot of resources and time to provide results. The DL model on the other hand
could learn the underlying relationships between the features and could derive the results
directly without transitioning through the intermediate states. The research expects
there to be a performance bump due to this reason.

1.2 Research Question

To what extent does the implementation of neural networks in emulating simulation mod-
els affect computational speed in comparison to conventional simulation techniques?

1.3 Research Objective

The objective of this research is to evaluate the computation time improvement of using
a DL model instead of an SM. An SM of traffic behavior in an inter-connected road
network is created and subsequently run through multiple iterations with varying para-
meters while logging its input and output parameters. These parameters are stored and
help in the curation of a dataset. The dataset is then converted into a graph through
vector embedding to better represent the relationships among the different features in the
dataset. A feed-forward Neural Network(NN) is trained on the graph and then evaluated
on its accuracy and R-squared value compared to the SM. The final objective of this
paper is to establish an improvement of the computation time required by NN over SM
to predict scenarios.

1.4 Document Structure

1. Introduction: The Introduction section eases into the research area and the topic,
and provides the background and the motivation for the research topic while ex-
plaining the rationale behind it.

2. Related Work: The paper goes over the current state of the art in related techno-
logies. It goes into the previous work that has been done on simulation models and
deep learning and covers an in-depth literature review of the amalgamation of both
of these technologies.

3. Methodology: The Methodology section covers the methodology used in the paper
and an explanation of the different steps involved in the process.

4. Design Specification: This section explains the design choices and structure of the
methodology used. It covers the frameworks used and the reasoning behind them.
and the steps involved

2

5. Implementation: This section covers the implementation process and explanation
of how the programming was carried out.

6. Evaluation: The evaluation section critically evaluates the performance of the meth-
odology used in the paper, using relevant metrics and sound rationale to reach a
verdict.

7. Conclusion and Future Work: The conclusion section discusses what was right or
wrong in the application of the paper, and what things could have been different.
It also discusses future prospects for this research.

2 Related Work

2.1 Current State-of-the-Art Simulation Modeling and DL In-
corporation

Similar to a lot of fields, Simulation Modeling has also seen the adoption of ML and DL
systems on a large scale(Tolk (2015), Yeo and Melnyk (2019), Hu et al. (2018)). Simu-
lation of Urban Mobility (SUMO) or traffic simulation has been attempted and revised
countless times. The authors in the study Bi et al. (2019) simulated intersectional traffic
in tandem with a deep learning network, with the focus being on more of a physics-based
modeling compared to a statistical-modeling. The authors employed a combination of a
Convolutional Neural Network (CNN) and a Recurrent Neural Network(RNN) to learn
the path trajectory of vehicles and set rules on which a visual-graphic simulation was
run. The results critically compared the performance of this approach versus the tradi-
tional SUMO architecture. The primary evaluation metrics, ADE (average displacement
error) and the Final Displacement Error (FDE) of the DL approach were significantly
better than the SUMO approach, demonstrating a decrement of 87% and 89.3% in the
errors respectively. Another study Hu et al. (2018), saw a similar bump in performance
where the authors employed a Long Short-Term Memory (LSTM) network to predict the
rainfall-runoff demonstrating that the LSTM network had a significantly higher accur-
acy and an r-squared value of 0.95, implying that it understood the underlying variance
correctly with a degree of 95%.

2.2 Previous Work on Similar Surrogate Models

Although a lot of work has been done on incorporating DL networks with simulations
but not much could be found on training a deep learning network on simulation data
except in Wang et al. (2019). The authors of this study developed a one-step end-to-
end NN trained on simulation data to reconstruct Computational Ghost Imaging (CGI)
data. ‘Ghost imaging is often understood as imaging using light that has never phys-
ically interacted with the object to be imaged. Instead, one light field interacts with
the object and a separate light field falls onto the imaging detector.’, Padgett and Boyd
(2017). Data scarcity is one of the driving factors cited by the authors of Wang et al.
(2019) to warrant the use of simulation data as opposed to a curated dataset. A visual
comparison of the reconstructed image results shows the superiority of the Deep Learn-
ing Computational Ghost Imaging (DLCGI) model over the two simulation models i.e.
CGI and Compressive Ghost Imaging(CSGI). The DLCGI is not all perfect and scores

3

lesser in r-squared values compared to the simulation models. The authors of this paper
and all other previously mentioned papers, however, failed to measure the differences in
computational time between the SM and DL models. Another relevant paper Liang et al.
(2022), however, did critically compare the computation time differences. Importantly,
they did not use the data obtained from the SM as the input data for the DL network,
which was externally sourced from NOAA-20. The methodology however did make use
of the data generated by the Community Radiative Transfer Model (CRTM) simulation
as labels for the input data. The authors employed a deep neural network algorithm to
emulate the Community Cadiative Transfer Model (FCDN-CRTM), which simulates the
brightness temperatures (BTs) of clear skies over ocean surfaces. The authors briefly
noted that the computation time decreased from 900s for the simulation model to just 8s
for the DL model, indicating a 112-fold speed increase.

2.3 Simple NNs and Graph-Vector Embedded Neural Networks
on Tabular Data

While DL mode has shown exceptional premise on non-structured data such as images,
videos, objects etc., there is strong and compelling work showing that they are still out-
performed by simple tree-based structures such as Xg-Boost (XGB) and Random Forest
(RF) (Shwartz-Ziv and Armon (2022), Grinsztajn et al. (2022), Fayaz et al. (2022)). This
hasn’t stopped developments in the application of DL frameworks on tabular data show-
ing promising and exceptional results, arik2021tabnet, katzir2020net, joseph2021pytorch,
popov2019neural, zhu2021converting).

The paper “Well-tuned Simple Nets Excel on Tabular Datasets” by Kadra et al.
(2021) Using a combination of 13 regularization techniques, regularizing plain Multilayer
Perceptron (MLP) networks. Results indicate that well-regularized MLPs outperform
both state-of-the-art neural networks and traditional methods like XGB across 40 tabu-
lar datasets. In Villaizán-Vallelado et al. (2023), an Interaction Network (IN) is employed
within the Graph Neural Network (GNN) framework to model interactions between tab-
ular features. The model outperforms DL benchmarks from a recent survey and is com-
petitive against boosted-tree solutions. T2G-Former (Yan et al. (2023)) introduces a
Graph Estimator, estimating relationships between tabular features and organizing them
into relation graphs. Using this, the Transformer network processes tabular data based
on interaction patterns from relation graphs. Experiments reveal superior performance
amongst DNNs, competitive with Gradient Boosted Decision Tree models.

Promising progress has been made in using data transformations on tabular data to
extract deep relationships between features that could then be exploited by a DL frame-
work, Liao and Li (2023), Rao et al. (2023)). TabGNN, a novel methodology introduced
in the paper Guo et al. (2021) leverages a multiplex graph to model multifaceted sample
relationships in tabular data prediction (TDP). By merging learned and original em-
beddings, it outperforms the standard tabular solution, AutoFE in 4Paradigm, across
multiple TDP datasets. Another study Khan et al. (2023), transforms tabular patient
data into a knowledge graph to improve Low Birth Weight (LBW) predictions. By ex-
tracting node-related features, including embeddings using the node2vec algorithm, the
method achieves over a 6% performance boost in a real-world dataset from the UAE when
compared to traditional risk factors. Li et al. (2023) introduces a systematic approach
to applying GNNs to Tabular Data Learning (TDL). The emphasis is on creating graph
structures from input tabular data and employing GNNs for enhanced performance. The

4

guide encompasses a taxonomy of graph structure construction and GNN application
in various TDL scenarios. Node2Vec and other node embedding methods have been
successfully applied on graphs to extract relevant information and have provided good
results compared to previous studies, Palumbo et al. (2018), Xu (2021). An analysis of
popular and promising node embedding methods(n=7) is conducted by Panayotov et al.
(2022), where the Node2Vec(both default and optimized) model outperforms all other
node embedding methods significantly.

Deep Learning (DL) has been progressively integrated into Simulation Modeling with
notable advancements using combined neural network architectures. While there’s an
acknowledgment of the computational advantages of DL models, a comparison of compu-
tational times across models remains an area of exploration. Even though deep learning
has shown promise, it often competes with traditional tree-based methods in the context
of tabular data. However, the application of Graph Neural Networks and data transform-
ations for tabular data prediction has seen a significant trend with multiple methodologies
emerging to harness deep relationships within such data structures.

3 Methodology

The methodology used in this paper could be broken into 4 broad sections. A brief outline
of the methodology flow is shown in Figure 1

Figure 1: Methodology Used for Research.

3.1 Data Collection

Modeling the real-world behavior of traffic as closely as possible, the data for this project
was generated in-house. A simulation model of traffic behavior in an interconnected Road
network was designed. This SM would later give us the data needed for training our

5

deep-learning models. The design of the simulation presented here is straightforward and
rudimentary. While there are more intricate models available, the objective of this study
is not to construct a complicated model. Instead, the aim of this research is to evaluate
how a deep learning model could substitute a simulation model. The SM created here
is a discrete-event-based simulation model that aims to simulate the behavior of vehicles
transiting on a road network. The SM created here has a number of parameters on which
it runs. The road network could be represented as a vector space where the nodes are
traffic intersections and the edges are the roads. The SM also takes into account traffic
signals and delays caused due to them. The method used to add a delay to account for
accidents that happen on the road and can affect travel time and take into account. The
wait time is then calculated by the simulation model by running through the different
states of the system. The wait time is the culmination of different factors affecting the
simulation models including a lot of parameters such as speed factor which represents
different speeds of vehicles of different sizes. The simulation is run for a number of
iterations with changing parameters. The simulation model is run for 1000<n>5000
iterations to curate a dataset of sufficient size. This process is repeated multiple times
with varying values of n to understand the DL model’s training of different kinds of data.
The data collected at this step had 4 features:

• Inter-Arrival time is the mean arrival time between each generated vehicle. The
generation of vehicles is exponentially distributed following a Poisson Process(PP).

• Max Cars is the number of cars that the road network can handle at a time.

• Duration is the length of the duration of the simulation in unit time.

• Average Wait Time Is the average wait time for a car in one iteration of a
simulation.

3.2 Data Transformation

The data was obtained from the Multiple iterations of simulation with varying and unique
parameters. The data is copied and one set of the data set is set aside to train our feed-
forward Neural Network. The second data set is processed through network x and is
converted into a graph. Each row of the data set is set as a note and the Euclidean
distance between the values of these rows is set as the edge. A threshold of 5 units is
implemented and the notes are only connected to each other if their distance is lower
than this threshold. Node2Vec module is then used to perform vector embedding in this
graph’s structure.

3.3 Model Building

Two models are used in this project to predict the average wait times of a simulation
given its parameters. in Model 1 a feed-forward neural network (FFNN) is trained upon
the tabular data set obtained from the simulation runs. Model 2 is the Graph and
Vector Embedded Neural Network (GVENN) model trained on the transformed data.
While Model 1 aims to model the relationship between the features of each simulation
run, Model 2 tries to grasp at the relationship between each pair of simulation runs and
doesn’t look inside the model but rather at the connection between runs.

6

3.4 Evaluation

The models are evaluated in two areas. How accurately are these models able to cap-
ture the relationship and predict the target variable? And how efficient are the models
computationally and their running Times compared to the simulation model. For ac-
curacy, we are using Root Mean Squared Error (RMSE), Mean Absolute Error, (MAE),
and r-squared values. To calculate the difference in the processing speed, the simulation
model and both the deep learning models are given previously and seen data on a single
machine To calculate the difference in their running Times.

4 Design Specification

4.1 Simulation Model

The simulation modeled here is a discrete-event model of traffic behavior. The movement
logistics of vehicles are simulated to gauge the average time spent by each vehicle(agent)
in each state. The states, not necessarily in any order are: i) arrived ii) queued iii) transit-
ing(on road) iv) finished(exited the road network). SimPy, a process-based discrete-event
simulation framework, was used to create the simulation. Figure 2 shows the exponen-
tial distribution of the IAT times, which is a Poisson process. The Poisson process is a
stochastic model used in queuing theory to model random events such as the arrival of a
car on a road.

Figure 2: Inter-arrival Times of consecutive vehicles as a Poisson Process.

4.2 Graph Representation

The NetworkX framework is used to create a graph representation of the simulation data.
NetworkX is a Python library used for creating, manipulating, and studying the structure

7

of complex networks Hagberg and Conway (2020). It provides tools to work with both
undirected and directed graphs.

The advantage of using graph representation here is that it looks at the relationship
between each data point(row) of the simulation data rather than the relationships between
the features of the dataset(column). Each node in this graph is a data point and the
edges are the Euclidean distances between them. This graphical representation allows
the NN model to extract and train on the relationships between different instances of
the simulation in contrast to learning the relationships between features, which would be
limited to just each particular simulation run.

4.3 Vector Embedding

Node2Vec is a technique to embed nodes from a graph into a low-dimensional space and
operates by performing random walks on the graph to find optimal embeddings, Grover
and Leskovec (2016). It produces continuous feature representations for nodes in networks
which can capture complex patterns of node neighborhoods.

4.4 Deep Learning Models

Two Neural Network architectures are used here. Both the NNs used in this paper are
simple Feed-Forward-Neural-Network (FFNN). Other flavors and more advanced muta-
tions of these simple FFNNs such as CNN, LSTM, RNN were considered for the research
but the literature review and further probing demonstrated that these simple NNs are the
best application for structured tabular data. Both the NN models were implemented us-
ing the TensorFlow Keras framework which provides a straightforward way to implement
these networks.

4.5 Machine Learning Models

It has been observed by many studies that although DL models have performed extremely
well on unstructured data, they still lag behind simple ML models. Two ML models; i)
XGB and ii) RF are used as control models to compare the results obtained from the
DL models. Both these models were trained on the same raw simulation data and were
optimized for performance.

4.6 Hyper-parameter Optimization and Evaluation

Hyper-parameter Optimization and Tuning (HOT) was carried out for all the models
including Graph with Vector Embedded Neural Network(GVENN) model to ascertain a
proper and just application of these models. The techniques used vary from model to
model but it was an iterative process using established standard practices. For instance,
Walk Sampling (WS) was used to determine the number of walks needed in vector em-
bedding.

Evaluation metrics(RMSE, MAE, r-Squared) were documented and stored for each
run of all the models used. Additional loss function graphs, residual plots, etc. were also
plotted at each run for evaluation. The computing speed of each model’s run was also
stored for evaluation and comparison.

8

5 Implementation

5.1 Simulation Modeling

The Simulation Modeling process is described in the following sections. Figure 3 shows
the wait time distribution and the relation between arrival vs. wait time in a stable run.
The wait time too is exponentially distributed due to the exponential distribution of the
IAT times.

Figure 3: i) Wait time distribution and ii) Relation between Arrival and wait times.

Input Parameters of the SM:

• mean interarrival time: Average time between two consecutive vehicle arrivals.

• max cars: Maximum number of vehicles that could occupy the road network at
any moment.

• until: Duration of the simulation run in unit time.

Implementation Process:

• A Simpy Environment is instantiated with a resource object ‘road’ with the capacity
set to max cars.

• Cars are generated at intervals based on an exponential distribution with a mean
value of mean interarrival time.

• Cars are categorized as either ’fast’ or ’slow’ which is assigned randomly. Fast
cars have a base speed of 12 units and slow cars have a base speed of 6 units.
Occasionally, a car’s base speed is halved with a 10% probability.

• A feedback mechanism reduces car speeds by 20% when road occupancy is at or
above 80%.

• As cars arrive, they are queued and wait for road space if the road is at full capacity.

• The time a car spends on the road is dependent on its speed and road capacity.

• Upon a car’s exit, relevant data such as Car ID, speed, times of arrival, entry, and
exit, as well as wait time, are recorded.

9

• The mean wait time is recorded for each simulation run. This is the target variable
for the models used in this paper.

The mean interarrival time, max cars, until, and the calculated average wait time for
each simulation run are recorded and stored for training. The simulation is run for 5,000
iterations with different parameters to obtain substantial training data.

5.2 Graph representation and Vector Embedding

Data Loading: The simulation data.csv file stores the recorded simulation data. Euc-
lidean Distance Computation: Pairwise Euclidean distances between each data point(row)
are evaluated based on the attributes: Mean Interarrival Time, Max Cars, and Duration.

NetworkX Graph Implementation:

• Using the NetworkX framework, a graph G is initialized with each data point as a
node.

• The Euclidean distance between each node pair is calculated. A threshold value =
2.5 is provided to the NetworkX framework at the time of Graph creation. This
means that only distances in the lowest 2.5 percentile of all computed distances
will be created as edges.

• Edges are systematically added to the graph if the distance between respective data
points is less than this threshold. This ensures that edges in the graph are only
created if both nodes are close and relevant to each other.

Node Embedding with Node2Vec:

5.2.1 Node2Vec initialization parameters:

• dimensions=64: The number of dimensions indicates the size of the vector repres-
entation for each node. Each node will be represented as a 64-dimensional vector.

• walk length=10: Random walks are paths that start at a particular node and
move to its neighbors (and neighbors’ neighbors and so on) in a random manner.
Every random walk spans 10 steps.

• num walks=100: The number of walks dictates how many different random walks
should be started from each node. Initiates 100 random walks per node.

• workers=4: Number of processor threads assigned. 4 threads are used here

5.2.2 Node2Vec model Parameters:

• window=10: This denotes the maximum span between the current and predicted
node within a walk influencing the context size.

• min count=1: Ensures all nodes find representation regardless of their frequency
in walks.

10

5.3 Neural Networks

Two NNs are trained on the raw simulation data and the transformed data, respectively.
Both datasets are split into train and test sets with 80/20 sizes. The datasets are scaled
using the Standard Scaler which normalizes the data points from their distance to the
mean and unit variance.

The NN trained on raw simulation data has:

• Three layers with one input layer = 64 neurons, one hidden layer = 32 neurons,
and one output layer = 1 neuron.

• The input and the hidden layers use the Rectified Linear(ReLu) activation function
while the output layer uses a Linear activation function since there is just one target
variable.

The GVENN trained on transformed data has:

• Three layers with one input layer = 128 neurons, two hidden layers = 64, 32 neurons
respectively, and one output layer = 1 neuron.

• The activation functions used here are identical to the previous model.

The loss function used for both models is the RMSE. It punishes deviations from the
actual values harshly and is a good loss function to measure the models’ performances. R-
squared, Mean Square Error(MSE), and MAE errors are also recorded here for evaluation.

5.4 ML Models

Standard RF and XGB models were applied with default parameters.

6 Evaluation

The models were rigorously tested on the selected evaluation metrics. The experiment was
run >30 times to understand the behavior and the output of the model. While the NN on
raw simulation data and both ML models provided consistent results, the GVENN model
trained on the transformed significant fluctuations in performance. Significant changes to
the inter-relation of the different simulation runs elicited a new behavior in the GVENN
model.

Any new significantly different data set required adjustments and changes in the
parameters of the Graph construction and Node embedding process. Most significant
changes in the GVENN model’s performance were observed by changing the edge-cutoff
threshold parameter. This parameter is provided to the NetworkX module at the time
of graph creation. Number of walks and the walk length parameters also affected the
GVENN’s performance but to a much lesser degree.

Both the ML models performed well against each dataset, as expected. The NN model
proved to be marginally better than the RF, XGB models in all the cases.

The metrics considered:
1. MAE: is the absolute difference between the actual and predicted values.

D∑
i=1

|xi − yi|

11

2. RMSE: is the root of the square of the differences between the actual and predicted
values. √

1

n
Σn

i=1

(di − fi
σi

)2

3. r-squared value: is the measure of how closely the predictions fit the actual regres-
sion line.

R2 = 1− sum of squared regression(SSR)

total sum of squares(SST

6.1 n = 5148. GVENN threshold = 1.9

Table 1 shows the performance of all the models with 5148 runs of the SM for training
data. NN outperforms all the models. GVENN had to be tuned with the threshold = 1.9
to give a good result. RF and XGB models perform really well and fit the data correctly.

Table 1: Evaluation scores. n=5148

Metric NN GVENN RF XGB
RMSE 19.73 69.90 22.09 22.63
MAE 8.35 40.57 8.89 9.83

R2̂ 99.16% 89.52% 98.95% 98.90%

The Figure 4 shows the fit and residual distribution of the NN and GVENN models
respectively. The NN does a good job of minimizing the residuals and performs well.

Figure 4: Fit and Residuals for the DL models. n = 5148

6.2 n = 3300, GVENN threshold = 2.5.

The Table 2 shows the performance of all the models with 3300 runs of the SM for training
data. The threshold value of edge construction for the graph is 2.5.

6.3 n = 900. GVENN threshold = 5

The Table 3 shows performance with 900 iterations and a threshold value of 5.

12

Table 2: Evaluation scores. n=3300

Metric NN GVENN RF XGB
RMSE 37.18 49.01 41.04 42.32
MAE 29.49 37.69 31.89 32.42
R2 98.71% 97.76% 98.43% 98.33%

Table 3: Evaluation scores. n=900

Metric NN GVENN RF XGB
RMSE 25.13 41.69 29.65 31.93
MAE 19.90 32.84 23.39 25.80

R2̂ 98.70% 96.42% 98.19% 97.90%

6.4 Comparing Required Computation Times

The Table 4 displays and critically contrasts the difference in the running speeds of
Simulation vs all other models. All 4 models are exponentially faster than the SM. The
SM as well as the 4 ML and DL models were run on the same machine for the comparison.
The relationship between the increase in the computation time of the SM vs the other
models doesn’t seem linear.

Table 4: Running times in seconds.

Iterations SM NN GVENN RF XGB
2100 190 0.18 0.17 0.029 0.0056
3300 230 0.23 0.33 0.042 0.0080
5481 130 0.37 0.40 0.058 0.015
10962 340 0.61 1.4 0.10 0.022

6.5 Discussion

The results clearly demonstrate the superiority of the simple NN model for this task.
The GVENN model fails to reach the standards of either the NN or both the ML models
but nonetheless, it scores well against the simulation data and has a high accuracy.
The GVENN model does require extra attention as the data transformation step heavily
depends on the simulation data and any change to the structure of the raw simulation
data should be accommodated in the Graph construction and Vector embedding steps
first. The GVENN architecture follows a totally different approach from the other 3
models and could actually outperform the other models given the right set of data. It
doesn’t take into account the relation between the features of the simulation but the
connection and the distance between each simulation run.

The models are much faster than the SM. The calculation of the n=2100 iteration
between the GVENN and SM shows that the GVENN model is 1̃000 faster than the SM
model.

13

7 Conclusion and Future Work

The research conducted in this paper focuses on the adoption of DL methodologies as an
alternative to SMs. DL models have already started replacing SM given there is ample
external data. The key findings in this research revealed that Deep Learning models,
particularly the simple Neural Network can significantly outpace traditional Simulation
Models in computational speed. The GVENN model also shows promise but with some
sensitivity to data structures. These results carry implications suggesting a paradigm shift
in how simulations might be approached in the future using the efficiency of Deep Learning
for faster more agile decision-making processes. The efficacy of the research is evident
in the clear computational advantages demonstrated by the DL models over traditional
SMs. However, it’s essential to acknowledge the study’s limitations. Particularly the
GVENN model’s dependency on data structure and re-training with different parameters
with changes in the dataset. A more detailed study could not be conducted due to the
limited computational resources and the high resource demand of Graph construction
and Node embedding process.

Building on the findings of this research, there are several options for future explor-
ation. One promising direction is to delve deeper into the GVENN model’s sensitivity
to data structure changes. Understanding the nuances of this model’s behavior across
various data structures could lead to more robust and adaptable DL models. The ap-
plication of more advanced neural network architectures might offer further performance
improvements over traditional SMs. This DL emulation approach could be extended to
other domains where SMs are prevalent, such as meteorological forecasting or financial
modeling where time is of utmost importance and the speeds of SMs is proving to be a
bottleneck.

8 Acknowledgements

This research wouldn’t have been possible without the continuous support of my research
supervisor, Prof. Dr. Hicham Rifai. His guidance and help proved to be really helpful
for the implementation of the project.

The traffic SM used in this research paper was modeled after the teachings and course
content provided by Prof. Dr. Christian Horn without whom this research might not
have been possible. I express my deep gratitude towards Prof. Dr. Christian Horn for
providing guidance and course content for my research.

References

Bi, H., Mao, T., Wang, Z. and Deng, Z. (2019). A deep learning-based framework for
intersectional traffic simulation and editing, IEEE Transactions on Visualization and
Computer Graphics 26(7): 2335–2348.

Fayaz, S. A., Zaman, M., Kaul, S. and Butt, M. A. (2022). Is deep learning on tabular
data enough? an assessment, International Journal of Advanced Computer Science and
Applications 13(4): 466–473.

Gillier, T. and Lenfle, S. (2019). Experimenting in the unknown: lessons from the man-
hattan project, European Management Review 16(2): 449–469.

14

Grinsztajn, L., Oyallon, E. and Varoquaux, G. (2022). Why do tree-based models still
outperform deep learning on typical tabular data?, Advances in Neural Information
Processing Systems 35: 507–520.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks, Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 855–864.

Guo, X., Quan, Y., Zhao, H., Yao, Q., Li, Y. and Tu, W. (2021). Tabgnn: Multiplex
graph neural network for tabular data prediction, arXiv preprint arXiv:2108.09127 .

Hagberg, A. and Conway, D. (2020). Networkx: Network analysis with python, URL:
https://networkx. github. io .

Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). Deep learning with a long short-
term memory networks approach for rainfall-runoff simulation, Water 10(11): 1543.

Kadra, A., Lindauer, M., Hutter, F. and Grabocka, J. (2021). Well-tuned simple nets excel
on tabular datasets, Advances in neural information processing systems 34: 23928–
23941.

Khan, W., Zaki, N., Ahmad, A., Bian, J., Ali, L., Mehedy Masud, M., Ghenimi, N. and
Ahmed, L. A. (2023). Infant low birth weight prediction using graph embedding fea-
tures, International Journal of Environmental Research and Public Health 20(2): 1317.

Kwak, J., Han, H., Kim, S. and Kim, H. S. (2021). Is the deep-learning technique a
completely alternative for the hydrological model?: A case study on hyeongsan river
basin, korea, Stochastic Environmental Research and Risk Assessment pp. 1–15.

Li, C.-T., Tsai, Y.-C. and Liao, J. C. (2023). Graph neural networks for tabular data
learning, 2023 IEEE 39th International Conference on Data Engineering (ICDE),
IEEE, pp. 3589–3592.

Liang, X., Garrett, K., Liu, Q., Maddy, E. S., Ide, K. and Boukabara, S. (2022). A
deep-learning-based microwave radiative transfer emulator for data assimilation and
remote sensing, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 15: 8819–8833.

Liao, J. C. and Li, C.-T. (2023). Tabgsl: Graph structure learning for tabular data
prediction, arXiv preprint arXiv:2305.15843 .

Padgett, M. J. and Boyd, R. W. (2017). An introduction to ghost imaging: quantum and
classical, Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 375(2099): 20160233.

Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M. and Ferro, E. (2018). Know-
ledge graph embeddings with node2vec for item recommendation, The Semantic Web:
ESWC 2018 Satellite Events: ESWC 2018 Satellite Events, Heraklion, Crete, Greece,
June 3-7, 2018, Revised Selected Papers 15, Springer, pp. 117–120.

Panayotov, P., Shukla, U., Sencar, H. T., Nabeel, M. and Nakov, P. (2022). Greener:
Graph neural networks for news media profiling, arXiv preprint arXiv:2211.05533 .

15

Rao, P. K., Chatterjee, S., Nagaraju, K., Khan, S. B., Almusharraf, A. and Alharbi, A. I.
(2023). Fusion of graph and tabular deep learning models for predicting chronic kidney
disease, Diagnostics 13(12): 1981.

Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep learning is not all you need,
Information Fusion 81: 84–90.

Thomas, J., Thomas, S. and Sael, L. (2017). Feature versus raw sequence: Deep learning
comparative study on predicting pre-mirna, arXiv preprint arXiv:1710.06798 .

Tolk, A. (2015). The next generation of modeling & simulation: integrating big data and
deep learning, Proceedings of the conference on summer computer simulation, pp. 1–8.

Villaizán-Vallelado, M., Salvatori, M., Martinez, B. C. and Esguevillas, A. J. S. (2023).
Graph neural network contextual embedding for deep learning on tabular data, arXiv
preprint arXiv:2303.06455 .

Wang, F., Wang, H., Wang, H., Li, G. and Situ, G. (2019). Learning from simulation:
An end-to-end deep-learning approach for computational ghost imaging, Optics express
27(18): 25560–25572.

Xu, M. (2021). Understanding graph embedding methods and their applications, SIAM
Review 63(4): 825–853.

Yan, J., Chen, J., Wu, Y., Chen, D. Z. and Wu, J. (2023). T2g-former: Organizing tabular
features into relation graphs promotes heterogeneous feature interaction, Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 37, pp. 10720–10728.

Yeo, K. and Melnyk, I. (2019). Deep learning algorithm for data-driven simulation of
noisy dynamical system, Journal of Computational Physics 376: 1212–1231.

Zhang, Y., Schlueter, A. and Waibel, C. (2023). Solargan: Synthetic annual solar irradi-
ance time series on urban building facades via deep generative networks, Energy and
AI 12: 100223.

16

	Introduction
	Motivation and Background
	Research Question
	Research Objective
	Document Structure

	Related Work
	Current State-of-the-Art Simulation Modeling and DL Incorporation
	Previous Work on Similar Surrogate Models
	Simple NNs and Graph-Vector Embedded Neural Networks on Tabular Data

	Methodology
	Data Collection
	Data Transformation
	Model Building
	Evaluation

	Design Specification
	Simulation Model
	Graph Representation
	Vector Embedding
	Deep Learning Models
	Machine Learning Models
	Hyper-parameter Optimization and Evaluation

	Implementation
	Simulation Modeling
	Graph representation and Vector Embedding
	Node2Vec initialization parameters:
	Node2Vec model Parameters:

	Neural Networks
	ML Models

	Evaluation
	n = 5148. GVENN threshold = 1.9
	n = 3300, GVENN threshold = 2.5.
	n = 900. GVENN threshold = 5
	Comparing Required Computation Times
	Discussion

	Conclusion and Future Work
	Acknowledgements

