~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Daeun Sim
Student ID: x21209162

School of Computing
National College of Ireland

Supervisor: Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Daeun Sim
Student ID: x21209162
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Hicham Rifai
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 1097
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Daeun Sim

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Daeun Sim
x21209162

1 Introduction

This manual is for building the personal protective equipment (PPE) detection model
which is trained with the YOLOv8x model. The configuration steps include a dataset
collection, labelling, build the model, and evaluate the model using a specific python
library.

2 System Configuration

2.1 Software Requirements

The two cloud Integrated Development Environment (IDE), which are Kaggle Notebook,
and Google Collaboratory were used to build the object detection model. Both platforms
are a form of website, so they can be used without installation. And the two platforms
allow use free GPU. This research project was run on the GPU to accelerate training
speed. As a programming language, python was adopted, and Google Chrome browser
was used as shown in Figure [I} All libraries that are used to train the model are based
on Python module.

Language Python

Browser Google Chrome

Cloud Platform Kaggle Kemels Google Colaboratory
GPU Specification NVIDIA Tesla T4 GPUS NVIDIA Tesla T4 GPU

Figure 1: Software specifications

2.2 Configuration setup

e Kaggle Notebook

On the Kaggle Notebook, one environment setup and two libraries installation
needed to download dataset and train the model. Before installing libraries, the
Internet usage option setting must be enabled. Figure [2| shows the step to activate
the Internet usage setting: (1) Verify the phone number. This is set on the Account
Settings and can be accessed by click on the profile. (2) Activate the Internet usage.
This is set on the Notebook Settings. By clicking the right-side arrow icon, the
setting menu is displayed. The Internet option is in the Notebook options.

1

model | Kaggle

i@ kaggle.com
| I model Draft seved — .
| = &, Share (& Save Version
File Edit Wiew FRun Add-ons Help
- + IE 3(|D m B BbE Runan Code ~ @ Draft Session off [ren a cell to start) :
| B
| @ 'pip install roboflow
|
| ? + Code + Markdown
. s o)
| !pip install ultralytics
S
|
N
[
E from roboflow import Roboflow

rf = Roboflow(api_key="GjXhEE7hzeGz4KYNJnBZ")
© project = rf.workspace('research-project-iBwzf") .project(ppe-detection-2e71
dataset = preject.version(&).download("yolovE")

' pip uninstall -y clearml E

Notebook options ~
ACCELERATOR
MNone -
LAMGUAGE
Python -

PERSISTEMCE

Mo persistence -

EMVIRONMENT
Pin to original environment -
You won't get new packages, but your code is less

likely to break. What is a notebook environment?

@

INTERMET

@@ internet on

TAGS

Figure 2: Enable the Internet usage setting in Kaggle Notebook

e Activate GPU accelerator in the Kaggle Notebook
The three-dot icon on the right-side in the Notebook give access the environment
configuration, as shown in Figure[3] In the sixth menu, in the Accelerator sub-menu,
the GPU T4 x2 type is selected.

model | Kaggle

@ kaggle.com

j— mOdeI Draft saved B
= 2, Share (© Save Version | 1
File Edit View Run Add-ons Help
+ E x |D m B PP Runal Code ~ @ Draft Session off (run a cell to start E
P L') Start session
® !pip install roboflow
? + Code + Markdown
ﬁ @ Restart & Clear Cell Ogr';guls
Ipip install ultralytics
p. @ View SessmnMeI.H'(':s
<> | [44 Upgrade tol(b}c'-)'ogle Cloud Al Notebooks
from roboflow import Roboflow
@ {8} Accelerator »
rf = Roboflow(api_key="Gjxk
= project = rf.workspace("res ./ None: “ppe-detection-2e71
dataset = project.version(€
e TEEEEEEEsssssse————— GPU T4 x2 EE—
GPU P100
pip uninstall -y clearml
TPU VM v3-8
4
pip uninstall -y wandb
T g

Figure 3: Enable GPU accelerator in Kaggle Notebook

e Google Colab Notebook

On the Google Colab Notebook, two configuration is needed: Activate GPU usage
and mount Google Drive. The prediction phase was executed using the GPU, and
the test dataset and the result for the prediction were stored in Google Drive. This
can keep the files even if the notebook is closed. Figure [shows the Hardware
Accelerator settings in the Colab Notebook: (1) Click Runtime menu and Change
runtime type. (2) Select Python3 and T4 GPU. To access the Google Drive can
be executed the code in the Figure [5| This must be run whenever the notebook is
opened.

2 result.ipynb - Colaboratory

colab.research.google.com

]

<3

L result.ipynb

File Edit View Insert Tools Help

+ Code + Text

° from google.col
drive.mount(’/c

Mounted at /con

[] %cd /content/dr

fcontent/drive/

Run all-"'-__

Run be[c..i[_e

Run the f&pused cell
Run select‘ilizn

Run after

Disconnect and d'lele runtime

B comment &% Share £ o

Last edited

nn Aunnet 3

#/Cri+F9 Connect ~ ~
3 /Ctri+F8
veo B QR W
38/Ctrl+Enter

3#/Ctri+Shift+Enter
#/Ctrl+F10

[] %pwd

Change runtime type

' fecontent/drive

[] !pip install fl

Collecting qfl.tr

Downloadi:ﬁg ultralytics-8.0.134-py3-none-any.whl (629 kB3

Manage sessions

View resources

629.1/629.1 kB 9.7 MB/s eta 0:00:00

Requiremeq‘i':
Requiremeft
Requ i.remg'ﬁt
Requiremént
Requiregient
Requirement
Requirgment
Requirement

already satisfied:

already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

matplotlib>=3.2.2 in .-’usrfloé._alflib!python}.lofdist.-
opencv-python>=4.6.0 in /usr/local/lib/python3.10/d:
Pillow>=7.1.2 in a’usrllocalfli.k_afpythanlcfdiat—pacl
PyYAML>=5.3.1 in fusr.-’].ocal.-"lib"{python}.lofdist-pac]
requests>=2.23.0 in fusrflocalfi-,i.bfpythnnllofd.i.st—|
scipy>=1.4.1 in fusr/local/lib/pgthon3.1l0/dist-pack:
torch>=1.7.0 in fusr!localflib!py"qhons‘lOIdist-packz
torchvision>=0.8.1 in fusrflocal!l"i:bfpythonl.10;’di31

Requirement already satisfied:
Pommtf mmimnt ATammdes mabia£iad.

tqdm>=4.64.0 in /fusr/local/lib/python3.10/dist-pack:

Change runtime type

Runtime type

Python 3 v

Hardware accelerator (7)

O cru @ T4GPU
O TrU

Want access to premium GPUs? Purchase additional compute units

O O

Cancel Save

Figure 4: Enable GPU accelerator in Google Colab Notebook

from google.colab import drive
drive.mount('/content/drive’', force_remount=True)

Mounted at /content/drive

Figure 5: Setup access to Google Drive in Google Colab Notebook

3 Data collection

The dataset was obtained from an open-source platformEl There are various topics of
image datasets for research project. By using a keyword “PPE detection”, the dataset
was found in the platform. It was downloaded in the local file system to labelling task.
The platform is a website that provides graphic interface. So, the download step was
executed to click “Download the Dataset” button.

4 Data pre-processing

4.1 Data labelling

The dataset was downloaded contained 13 classes. This study needed the four items of
safety equipment. Therefore, the new classes were named to have only four items using
an annotation toolEl The new names of the items are “helmet”, “vest”, “glove”, and
“boots”. The step to capture bounding boxes of the four objects consists of the two
steps. Firstly, the dataset is needed to upload the annotation platform. Lastly, dragging
boxes is where the objects are in the images and then entering class’s name as shown in

Figure [6]

ppe_1071_jpg

No Tags Applied

Figure 6: Example of labelling for helmet, vest, and boots

thttps:/ /universe.roboflow.com
Zhttps://roboflow.com/annotate

4.2 Data augmentation

After labelling task, the dataset is 1,490 images. Three data augmentation techniques
were applied to increase and improve the detection performance. This can be applied in
the same platform where the labelling task was performed 2 When the labelling step was
completed, the new dataset was deployed to the platform where the dataset was collected.
As the tool feature, the augmentation techniques are applied after splitting dataset into
the three sub-datasets, which are the training, validation, and test dataset. The dataset
was divided according to the percentage set in the tool.

5 Implementation

5.1 Install Python Packages and Import Dataset

Two libraries were installed for downloading dataset and pre-trained model in Figure [7]
and [§l The dataset that was completed pre-processing phase was stored in the same
platform where it is acquired. The platform provide Application Programming Interface
(API) key to download the dataset in the Notebook. Figure [9] shows the download code
using API. The dataset was stored in Output folder in Kaggle Notebook.

'pip install roboflow

Collecting roboflow
Downloading roboflow-1.1.8-py3-none-any.whl (57 kB)
57.8/57.9 kB 2.1 MB/s eta

Collecting certifi==20822.12.7 (from roboflow)
Downloading certifi-2822.12.7-py3-none-any.whl (155 kB)
155.3/155.3 kB 7.7 MB/s eta

Collecting chardet==4.0.8 (from roboflow)
Downloading chardet-4.8.8-py2.py3-none-any.whl (178 kB)
178.7/178.7 kB 14.06 MB/s eta

Collecting cycler==0.10.8 (from roboflow)
Downloading cycler-0.10.8-py2.py3-none-any.whl (6.5 kB)
Collecting idna==2.18 (from roboflow)
Downloading idna-2.18-py2.py3-none-any.whl (58 kB)
58.8/58.8 kB 5.5 MB/s eta

Figure 7: Install roboflow library

!pip install ultralytics

Collecting ultralytics
Downloading ultralytics-8.8.131-py3-none-any.whl (626 kB)
626.9/626.9 kB 11.8 MB/s eta a

Figure 8: Install ultraytics library

from roboflow import Roboflow

rf = Roboflow(api_key="GjXhEB7hz0Gz4KYWJn82")
project = rf.workspace("research-project-i8wzf").project("ppe-detection-2e71f")
dataset = project.version(6).download("yolov8")

loading Roboflow workspace. ..
loading Roboflow project...
Dependency ultralytics<=8.8.20 is required but found version=8.8.131, to fix: "pip install ultralytics<=8.0.20

Downloading Dataset Version Zip in PPE-Detection-6 to yolov8: 180% [348193514 / 348193514] bytes

Extracting Dataset Version Zip to PPE-Detection-6 in yolov8:: 100% || 7212/7212 [80:82<00:00, 3327.39
it/s]

Figure 9: Download dataset to Kaggle Notebook

5.2 Build the YOLOv8x Model

from ultralytics import YOLO

path = "/kaggle/working/PPE-Detection-6/data.yaml”

Load a model

model = YOLO('yolovB8x.pt') # load a pretrained model (recommended for training)

Train the model
train_result = model.train(data=path, batch=8, epochs=108, imgsz=64@, save_period=18)
print(train_result)

from n params module arguments
2] -1 1 2328 wultralytics.nn.modules.conv.Conv [3, 88, 3, 2]
1 -1 1 115520 ultralytics.nn.modules.conv.Conv [ge, 168, 3, 2]
2 -1 3 436880 ultralytics.nn.modules.block.C2f [168, 168, 3, True]
3 -1 1 461448 ultralytics.nn.modules.conv.Conv [1608, 328, 3, 2]
4 -1 6 3281928 wultralytics.nn.modules.block.C2f [320, 320, 6, True]
5 -1 1 1844480 wultralytics.nn.modules.conv.Conv [320, 640, 3, 2]
6 -1 6 13117448 ultralytics.nn.modules.block.C2f [640, 648, 6, True]
7 -1 1 3687688 ultralytics.nn.modules.conv.Conv [648, 640, 3, 2]
8 -1 3 6969608 ultralytics.nn.modules.block.C2f (640, 648, 3, True]
9 =1 1 1825928 ultralytics.nn.modules.block.SPPF [648, 640, 5]
18 -1 1 8 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest’]
11 [-1, 6] 1 @ ultralytics.nn.modules.conv.Concat [1]
12 -1 3 7379288 wultralytics.nn.modules.block.C2f [1288, 648, 3]
13 -1 1 8 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest’]
14 [-1, 4] 1 @ ultralytics.nn.modules.conv.Concat [1]
15 -1 3 1948880 wultralytics.nn.modules.block.C2f [968, 320, 3]
16 -1 1 922248 ultralytics.nn.modules.conv.Conv [328, 328, 3, 2]
17 [-1, 12] 1 8 ultralytics.nn.modules.conv.Concat [1]
18 -1 3 7174488 ultralytics.nn.modules.block.C2f [968, 648, 3]
19 -1 1 3687688 ultralytics.nn.modules.conv.Conv (640, 646, 3, 2]
20 [-1, 9] 1 ® ultralytics.nn.modules.conv.Concat [1]
21 -1 3 7379200 ultralytics.nn.modules.block.C2f [1280, 640, 3]
22 [15, 18, 21] 1 8721828 ultralytics.nn.modules.head.Detect [4, [3208, 648, 640]]

Model summary: 365 layers, 68156468 parameters, 68156444 gradients

Figure 10: The summary of the YOLOv8x model

The above code is for importing the pre-trained model, YOLOv8x model and setup the
hyperparameters to train the model with the dataset. ‘path’ variable is to indicate where
the training, validation, and test dataset is located in. When the above code is executed,
the outline of the model’s architecture is provided.

188 epochs completed in 6.667 hours.
Optimizer stripped from runs/detect/train/weights/last.pt, 136.7MB
Optimizer stripped from runs/detect/train/weights/best.pt, 136.7MB

Validating runs/detect/train/weights/best.pt...
Ultralytics YOLOv8.8.131 & Python-3.18.18 torch-2.08.8 CUDA:® (Tesla T4, 15110MiB)
Model summary (fused): 268 layers, 68127420 parameters, 0 gradients

Class Images Instances Box(P R mAP5@ mAP58-95): 100% || 10/10 [00:06<00:00,
1.62it/s]
all 152 670 0.956 0.945 0.965 0.695
boots 152 146 0.892 0.846 0.9 0.652
glove 152 216 9.981 0.965 0.986 0.652
helmet 152 152 0.972 1 0.989 0.74
vest 152 156 0.978 0.968 0.982 8.738

Speed: 1.6ms preprocess, 24.8ms inference, ©.6ms loss, 2.6ms postprocess per image

Results saved to runs/detect/train

Figure 11: Training result and validation of the YOLOv8x model

Figure [11]is given when the training is completed. The trained model is saved the form
of a ‘best.pt’ file. The trained model is examined with the validation dataset. In addition
to the time spent on learning, the number of images for each class is displayed and the
accuracy is calculated.

6 Assessment the trained model

The test dataset is used to evaluate the trained model. The test dataset and the ‘best.pt’
file are needed to assess the model. This step can be executed in the Google Colab
Notebook to use GPU. Mounting Google Drive, installing libraries, and downloading
dataset is consistent with the code in Figures 5] [7, [§] and [9]

6.1 Prediction with the trained model

The trained model is loaded as shown in Figure And then the prediction is made of
what class each object is. Figure[l13|shows the codes for the prediction and for displaying
the prediction result.

from ultralytics import YOLO
model = YOLO('/content/drive/MyDrive/best.pt')

WARNING /. /content/drive/MyDrive/best.pt appears to require 'dill', which is not in ultralytics requirements.
AutoInstall will run now for 'dill' but this feature will be removed in the future.
Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model,
requirements: Ultralytics requirement ['dill'] not found, attempting AutoUpdate...
Collecting dill
Downloading dill-0.3.6-py3-none-any.whl (110 kB)
110.5/110.5 kB 4.7 MB/s eta 0:00:00

Installing collected packages: dill
Successfully installed dill-0.3.6

requirements: AutoUpdate success 5.0s, installed 1 package: ['dill']
requirements: ! Restart runtime or rerun command for updates to take effect

Figure 12: Load the trained model

path = '/content/PPE-Detection-6/test/images’
pred_results = model.predict(source=path, conf=0.5, iou=0.5, save=True, save_conf=True, save_txt=True)

print(pred_results)

Results saved to runs/detect/predict
279 labels saved to runs/detect/predict/labels
[ultralytics.yolo.engine.results.Results object with attributes:

image 284/29%% /content/PPE-Detection-6/test/images/ppe_0596_jpg.rf.b04B6elelafabez?7fdldf0dfBded76L. jpg: 640x640 2 helmets, 1 vest, 39%7.6ms

image 285/29% /content/PPE-Detection-6/test/images/ppe_0597_jpg.rf.1d526e931£9591224£4b798blekbifdc. jpg: 640x640 2 bootss, 1 glove, 2 helmets, 5860.4ms
image 286/298 /fcontent/PPE-Detection-6/test/images./ppe 05%98_jpg.rf.1908819d100e25440c807eb2bBf72764. jpg: 640x640 2 helmets, 2 vests, 4043.1ms

image 2B7/298 /content/PPE-Detection-6/test/images/ppe 0601 jpg.rf.b33f4fba3f6d4adb6la64de5£9b830e9.pg: 640x640 1 boots, 2 helmets, 2 vests, 4064.Bms
image 2B8/29% /content/PPE-Detection-6/test/images/ppe_0612_jpg.rf.04c715e31ad79c6c0bBf083elcBIblde. jpg: 640x640 2 helmets, 1 vest, 5982.4ms

image 289/298 /content/PPE-Detection-6/test/images./ppe 0620_jpg.rf.057d2219a4fb338a230£ffedd5da3f0d0. jpg: 640x640 6 helmets, 4023.0ms

image 290/29% /content/PPE-Detection-6/test/images/ppe 0628 jpg.rf.8031lcffbffac0d545%eeddlbd5biloed. jpg: 640x640 3 helmets, 3379.5ms

image 291/298 /content/PPE-Detection-6/test/images/ppe 0636_jpg.rf.lel68bIbE262aa092d4£35d73828cf3e. jpg: 640%640 3 bootss, 4 gloves, 2 helmets, 2 vests
image 292/298 /fcontent/PPE-Detection-6/test/images./ppe 0637_jpg.rf.bb5%9ad23cb2f258cB85c96e2aa6b76405. jpg: 640x640 2 helmets, 4145.3ms

image 293/29% fcontent/PPE-Detection-6/test/images/ppe_0638_jpg.rf.l3bd4476Zadbaflfaz656b786all6318e. jpg: 640x640 2 helmets, 1 vest, 4014.3ms

image 294/298 /content/PPE-Detection-6/test/images/ppe 0640_jpg.rf.67660eaTdbleld7fafedblblaceeldee. jpg: 640x640 2 helmets, 3 vests, 5432.2ms

image 295/298 /fcontent/PPE-Detection-6/test/images/ppe 0648_jpg.rf.efbdé3d94eShbfléffdaf9eteBd7a883d. jpg: 640x640 5 helmets, 5 vests, 4505.7ms

image 296/298 /content/PPE-Detection-6/test/images/ppe 0661 jpg.rf. 7146219447 1Zcab36.jpg: 640x640 3 helmets, 4008.5ms

image 297/298 /content/PPE-Detection-6/test/images/ppe 0668_Jjpg.rf.3693d£d25d4dB457ed0ead742d38d61E. jpg: 640x640 1 glove, 2 helmets, 2 vests, 5141.ims
image 298/298 /content/PPE-Detection-6/test/images /ppe_0676_jpg.rf.051facl3bbh7leadd3496c2b0343d4bf. jpg: 640x640 2 helmets, 2 vests, 4956.2ms

Speed: 3.2ms preprocess, 476l.1ms inference, 1.5ms postprocess per image at shape (1, 3, 640, 640)

import os,
from IPython.display import Image, clear_output, display

glob

path = "/content/drive/MyDrive/runs/detect/predict"
os.chdir(path)

for £ in glob.glob{"*.jipg"):
img = Image(filename=f"{path}/{f}", width=600)
display(img)

helmet 0.89
helmet 0.94

2

helmet 0.93

!\helmet 0.9
‘ ,:

Figure 13: The prediction process and the prediction result

6.2 FEvaluation the trained model

The evaluation library is required to evaluate the prediction result. mAP and F1 score
are calculated using Object-Detection-Metrics libraryEl For using the library, the two re-
quirements are needed. Converting the text file which is the YOLO format to the xml file,

which has PASCAL VOC format and the library’s source codesf| The python files can
be copied to Google Drive. The converting code is obtained from Kaggle and is modified

3https://github.com/eypros/Object-Detection-Metrics
4https://github.com/ultralytics /ultralytics /issues/2042

for this project’s datasetﬂ ‘Ipython” command can be used to run the evaluation library
in the Colab Notebook as shown in Figure The F1 score is calculated from the results
generated from the code in Figure The F'1 score calculation code is shown in Figure

!python /content/drive/MyDrive/Object-Detection-Metrics/pascalvoc.py -g /content/drive/MyDrive/gt/ -d /content/drive/MyDrive/pt/ -t 0.5

/content/drive/MyDrive/Object-Detection-Metrics/pascalvoc.py:432: SyntaxWarning: "is not" with a literal. Did you mean "!="?
if len(errors) is not 0:

Figure(640x480)

AP: 0.50760 (0)
Figure(640x480)

AP: 0.54074 (1)
Figure(640x480)

AP: 0.93327 (2)
Figure(640x480)

AP: 0.92215 (3)

mAP: 0.72594

Figure 14: Code for calculating mAP

def GetMetricsValues(content):
content = content.replace(']’', '")
content = content.replace('[', ''")
str_line = content.split(':")
str_list = str_line[l].split(',")
num_list = [eval(i) for i in str_list]
#print (len(num_list))
return num_list

with open('/content/drive/MyDrive/Object-Detection-Metrics/results/results.txt') as f:
lines = f.readlines()
content = [line.strip() for line in lines]
f.close()

pre_list il
rec_list [1
for i in range(0, len(content)):
if "Precision:" in content[i]:
pre_list.append(GetMetricsValues(content[i]))
elif "Recall:" in content[i]:
rec_list.append(GetMetricsValues (content[i]))

for i in range(0, len(pre_ list)):
img_score = 0
total = len(pre_list([i])
for j in range(0, total):
precision = float(pre list[i][]])
recall = float(rec_list[i][3]])
score = (2*precision*recall)/(precision+trecall)
img_score = img_score + score
print(f'class {i}"')
print(f'sum: {img_score}, total: {total}')
print(f'f-1 score: {img_score / total}')
print('\n')

Figure 15: Code for calculating F1 score

Shttps:/ /www.kaggle.com /code/siddharthkumarsah /convert-yolo-annotations-to-coco-pascal-voc

10

	Introduction
	System Configuration
	Software Requirements
	Configuration setup

	Data collection
	Data pre-processing
	Data labelling
	Data augmentation

	Implementation
	Install Python Packages and Import Dataset
	Build the YOLOv8x Model

	Assessment the trained model
	Prediction with the trained model
	Evaluation the trained model

