"‘"‘- ‘
\ National
Collegeof

Ireland

Abstractive Summarization of Multi-
Documents using Fairseq

MSc Research Project
Data Analytics

Akash Senthil Kumar
Student ID: x21175641

School of Computing
National College of Ireland

Supervisor: Mr. Hicham Rifali

‘——
National College of Ireland \ National

_ o Collegeof
MSc Project Submission Sheet Ireland
School of Computing
Student Name: IAkash Senthil Kumar
Student ID: X21175641
Programme: MSc Data Analytics Year: [2022-23
Module: MSc Research Project
Lecturer: Mr. Hicham Rifai
Submission Due Date:
14/08/2023
Project Title: Abstractive Summarization of Muti Documents using Fairseq
\Word Count: 632
Page Count: 7

I hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature: Akash Senthil Kumar

Date: 14/08/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project m]
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own m]
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Abstractive Summarization of Multi Documents using
Fairseq

Akash Senthil Kumar
x21175641

1 Introduction

This configuration manual is about how to perform ‘Multi Document summarization using
fairseq’ and this document will provide step by step method to implement from data
combining to evaluation of the model.

@ Device specifications

Device name AkashS

Processor 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz
Installed RAM 16.0 GB (15.7 GB usable)

Device ID FD1105DE-28E5-4E05-B884-17405B305805
Product ID 00342-20931-01034-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection ~ Advanced system settings

== Windows specifications

Edition Windows 11 Home

Figure 1 System Specification
The above are system specifications in which this project has been built from scratch.

Software Used:
e Python
e Jupyter Notebook
e Microsoft Excel

These are software that has been used in this research. Python Language has been used to

create the deep learning model and to generate the summary. To execute the code Jupyter

Notebook has been used from the Anaconda package. Any python version above 7 will be
able to execute the code without any issues.

The above is the necessary packages that has to be imported before starting the project.

import os

import matplotlib.pyplot as plt

import pandas as pd

from fairseq.data import Dictionary

from fairseq import options, tasks, utils, checkpoint_utils
from fairseq.trainer import Trainer

import torch

import torch.nn as nn

from torch.optim import Adam

from torch.utils.data import Dataset, Dataloader

import pandas as pd

import torch

import torch.nn as nn

from torch.optim import Adam

from torch.utils.data import Dataset, Dataloader

from transformers import BartTokenizer, BartForConditionalGeneration

Figure 2 Necessary Packages

import pandas as pd

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
Ipip install annoy

from annoy import AnnoyIndex

from datasketch import MinHash, MinHashLSHEnsemble
from sklearn.cluster import KMeans

Figure 3 Necessary Packages 2

2 Data Combining

The first

step of this project is merge the data of src content which is document and tgt
content which is target i.e summaries. The data has been combined for training data where
two dataframe ‘src_content’ and ‘tgt_content’ are combined into one dataframe by creating a
dummy column in both dataframes and further joining them based on the dummy column.
There are about four jupyter notebook files they are train data claning, test data cleaning,
model building and also one failed experiment for which a separate jupyter notebook has

been attached.

Ipip install jsonlines
import pandas as pd

lequirement already satisfied: jsonlines in c:\users\senth\anaconda3\lib\site-packages (3.1.9)

lequirement already satisfied: attrs>=19.2.@ in c:\users\senth\anaconda3\lib\site-packages (from jsonlines) (21.4.8)

with open('train.src’, 'r', encoding="utf') as src_file:

data

= src_file.readlines()

df = pd.DataFrame(data, columns=['src_content'])

df.head()

Figure 4 Data Reading

with open('train.tgt', 'r', encoding='utf') as tgt_file:
datatgt = tgt_file.readlines()

dfl = pd.DataFrame(datatgt, columns=['tgt_content'])

dfl

Figure 5 Target Data Reading

Combine summaries and sources into a single DataFrame
combined_df = pd.concat([df, dfl], axis=1)

Figure 6 Combining

combined_df.to_csv('train.csv', index=False)
Figure 7 Saving into CSV

In the same way test dataset is also formed and the whole data has been downloaded from
(Fabbri et al., 2019) dataset paper.

3 Text Cleaning
In this section all codes executed related to text cleaning will be pasted step by step.

#stop words removal

stop_words = stopwords.words('english')
df['src_content'] = df['src_content'].apply(lambda x: ' '.join([word for word in x.split() if word net in (stop_words)]))

Figure 8 Stop words removal

The above code is to remove the stop words from the dataset.
#Stemming

Initialize the stemmer
stemmer = PorterStemmer()

Apply stemming to the 'text' column
df['src_content'] = df['src_content'].apply(lambda x: stemmer.stem(x))

Figure 9 Stemming
The above code is to pass the stemming function and this removes different tenses of a word.

#Removal of unwanted email ids and websites

import re
def remove_emails_websites(text):
Remove email addresses

text = re.sub(r'\S+@\S+', '', text)

Remove website Links starting with http:// or https://
text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|['*\\(\\), 1| (2:%[@-9a-fA-F][@-9a-fA-F]))+', ', text)

return text

df['src_content'] = df['src_content'].apply(remove_emails_websites)

Figure 10 Removing email id and websites
The above code is to remove unwanted email id’s and websites present in the dataset.

#Removing Paranthesis and Hyphens

df['src_content'] = df['src_content'].str.replace(r'[\(\)\-]1"', "', regex=True)

Figure 11 Removing Paranthesis

Above is the regex function to remove the paranthesis and hyphens and hyphens which is
applied on the data frame.

#function to remove newline_char

def remove_word(df, src_content, word):
df[src_content] = df[src_content].str.replace(word, "''")
return df

word_to_remove = ‘newline_char’

column_name = 'src_content’

df = remove_word(df,column_name,word_to_remove) ¢

Figure 12 Removing Repeated word

A word has been found repetitive in the dataset that convey no meaning so a regex function is
created to remove that particular word from the dataset.

4 Handling Redundancy

Below code is to handle the redundancy present in the data where cosine similarity matrix is
is constructed and text are removed based on the similarity scores.

#Removing the redunduncy present in the text

def remove_redundancy(Truncated_data, src_content):

5

Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer()

Fit and transform the text data
tfidf_matrix = tfidf_vectorizer.fit_transform(Truncated_data[src_content])

Compute pairwise cosine similarity
similarity_matrix = cosine_similarity(tfidf_matrix)
print(similarity_matrix)

Create a mask to track redundant sentences
mask = []

for i in range(len(similarity_matrix)):
Check if the sentence is similar to any previous sentences
if not any(similarity matrix[i, j] > ©.9 for j in range(i)):
mask.append(True)
else:
mask.append(False)

Filter out redundant sentences
Truncated_data_filtered = Truncated_data[mask]

return Truncated_data_filtered

Figure 13 Handling Redundancy

Model Building

Custom Dataset and Dataloader

class CustomDataset(Dataset):
def _ init_ (self, df, tokenizer, max_length):
self.df = df
self.tokenizer = tokenizer
self.max_length = max_length

def _ len_ (self):
return len(self.df)

def _ getitem_ (self, idx)
src_text = self.df.loc[idx, 'src_content'].strip()
tgt_text = self.df.loc[idx, 'tgt_content'].strip()

Encode the inputs as tensors
encoding = self.tokenizer.encode_plus(src_text, tgt_text, max_length=self.max_length, padding='max_length', return_t
input_ids = encoding['input_ids'].squeeze() # Remove extra batch dimension

attention_mask = encoding['attention_mask'].squeeze()

return input_ids, attention_mask

Figure 14 Data Loader

A custom function is created where the input are tokenized and they are encoded further
converted into tensors.

Train the model

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

model.train()

num_epochs = 1 # Set the number of training epochs
learning_rate = le-4 # Set the learning rate
optimizer = Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropylLoss()

Figure 15 Model Training

With number of epochs is equal to 1 the model has been trained with the cross entropy loss as
the measure of training loss. Fairseq based Bart has been used to build the model.

5

]: 1 for epoch in range(num_epochs):
2 total_loss = 0.0
3 for input_ids, attention_mask in dataloader:
4 input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
5 labels = input_ids.clone() # Clone input_ids to use as labels for summarization
6
7 # Forward pass
8 outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
9 loss = outputs.loss
16 loss.backward()
11 optimizer.step()
12 optimizer.zero_grad()
13 total_loss += loss.item()
14
15 print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(dataloader)}')
16
17 # Save the trained model
18 model.save_pretrained('bartModel")
19
20 # Optionally, you can also save the tokenizer
21 tokenizer.save pretrained('Barttokenizer')

Figure 16 Model Training-2
Actual training code where the model is trained.

6 Evaluation

from rouge_score import rouge_scorer

Function to generate summaries using the trained model

def generate_summary(model, tokenizer, src_text):
input_ids = tokenizer.encode(src_text, return_tensors='pt', max_length=512, truncation=True)
input_ids = input_ids.to(device)
summary_ids = model.generate(input_ids, num_beams=4, max_length=150, early_stopping=True)
summary = tokenizer.decode(summary_ids[@], skip_special_tokens=True)
return summary

Example function to calculate ROUGE scores
def calculate_rouge_scores(model, tokenizer, data_df):
scorer = rouge_scorer.RougeScorer(['rougel', 'rouge2', 'rougelL'], use_stemmer=True)

rougel_scores
rouge2_scores
rougel_scores

(]
(]
(1

for idx, row in data_df.iterrows():
src_text = row['src_content']
tgt_text = row['tgt_content']

generated_summary = generate_summary(model, tokenizer, src_text)
print(generated_summary)

scores = scorer.score(generated_summary, tgt_text)
rougel_scores.append(scores['rougel’].fmeasure)
rouge2_scores.append(scores['rouge2'].fmeasure)
rougel_scores.append(scores['rougel'].fmeasure)
avg_rougel = sum(rougel_scores) / len(rougel_scores)
avg_rouge2 = sum(rouge2_scores) / len(rouge2_scores)
avg_rougel = sum(rougel_scores) / len(rougel_scores)
return avg_rougel, avg_rouge2, avg_rougel
Assuming you have a test DataFrame named ‘test_df' with columns 'src_content' and 'tgt_content’
Call the function to calculate the ROUGE scores
avg_rougel, avg_rouge2, avg_rougel = calculate_rouge_scores(model, tokenizer, test_df)
Print the average ROUGE scores
print(f"Average ROUGE-1: {avg_rougel}")

print(f"Average ROUGE-2: {avg_rouge2}")
print(f"Average ROUGE-L: {avg_rougelL}")

Figure 17 Evaluation code
The above evaluation code is to evaluate the model performance based on Rouge Metrics.

6

custom_row_idx = 1 # Change this t; the index of the desired row in the test_df
custom_src_text = test_df.loc[custom_row_idx, 'src_content']

Generate summary for the custom input

summary = generate_summary_customInput(model, tokenizer, custom_src_text)
print("Custom Input:")

print(custom_src_text)

print("\nGenerated Summary:")

print(summary)

Figure 18 Custom Input

The above code is to take custom input from the test dataset from which the model has never
seen or trained on them.

The model has been built in the PC so a cpu based bart has been trained and then used to
predict the sequence. It does not require any cuda graphics core or won’t ask any dedicated
graphics installed already.

References

Fabbri, R.A. et al. (2019) ‘Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive
Hierarchical Model’, ARXIV [Preprint]. Available at: https://doi.org/arXiv:1906.01749v3.

