
Configuration Manual

MSc Research Project

Data Analytics

Hashir Sayeed
Student ID: X21214611

School of Computing

National College of Ireland

Supervisor: Paul Stynes, Eugene McLaughlin, William Clifford

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Hashir Sayeed

Student ID: X21214611

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Paul Stynes, Eugene McLaughlin, William Clifford

Submission Due Date: 14/08/2023

Project Title: Configuration Manual

Word Count: 1675

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Hashir Sayeed
X21214611

1 Introduction

This configuration manual gives a brief guide on how to execute the code/module used for
the following research project. The process includes the specification of the desktop the
code was executed, the installation of the required software to execute the code seamlessly
and all the procedure of how the code was executed which includes data gathering, model
building and model training and evaluation. To make the instruction more user friendly,
the manual also consists of several code snippets.

2 System Configuration

2.1 Software Requirements

The code was executed on an open source environment IDE known as the ”Jupyter Note-
book” which is available on the ”Anaconda Software”. The environments can be created
with respect to any programming languages. For the current research the environment
runs on a python module.
Tensorflow was the package used to build and implement the machine learning models.
The package can be installed using the python module. For ”Tensorflow” to detect and
use the graphic card of the device, several software are to be installed accordingly. One
is the CuDNN and other one is CUDA which are available on NVIDIA website. Detailed
description of installation are give further in the manual.

2.2 Hardware Specification

• Processor: 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz 2.69 GHz

• Graphic Card: NVIDIA GeForce RTX 3050 Laptop GPU

• RAM: 16.0 GB (15.7 GB usable)

• System type: 64-bit operating system, x64-based processor

• Storage: 500 GB SSD

• Operating System: Windows 11(64 bit)

1



3 Installation and Environment Setup

• Python: Python programming language was used to build the research project.
There are many advantages of using this languages as it supports Deep learning
and Machine Learning models with its built-in modules. To install the python
package, based on your operating system the installer packages can be downloaded
through their website 1 through any type of browser. The figure 1 shows the snippet
of the website. After installing the python, one can check whether the python

Figure 1: Python Website

was installed properly by either typing python in the start menu which will show
some results related to the python or by typing ”python -version” in the command
prompt which will show the version of python currently installed in the system or
by typing ”python” in command prompt which will open a python environment
which is shown in the figure 2 below.

Figure 2: Command Prompt

• Anaconda: Anaconda have many modules and packages which are related to product
development, code development, IDE etc. For this research we require the ”Jupyter
Notebook” IDE which is available through anaconda. To install Anaconda, the in-
staller can be downloaded from their website 2. After installing the anaconda, one

1https://www.python.org/downloads/
2https://www.anaconda.com/products/individual

2



can see the navigator in their start menu through which one can find the ”Jupyter
Notebook” IDE which is shown in the figure 3 below.

Figure 3: Anaconda Navigator

• Jupyter Notebook: Juyter notebook can installed using Anaconda. After installing
jupyter notebook, one can access the notebook by typing ”jupyter notebook” com-
mand in the command prompt. The command open the IDE on the default browser.
Any required libraries can be installed in the environment using ”pip install package
name” command.

• Tensorflow: For the tensorflow which supports the GPU in the training can be tricky
as it requires other supporting softwares to be installed in the system beforehand.
Before installing ”Tensorflow”, download and install the ”CuDNN” and ”CUDA”
from NVIDA websites 3 and 4. The snippet of the site is shown below in the figure
4. The version have to inaccordance with the graphic card installed in the system,
thus make sure the graphic card name is known before downloading the siftwares.
Make sure the version of CuDNN and CUDA are supporting as all the version have
different support with repect to each other. As the current system, CUDA version
11.2 and CuDNN version 8.1 is used which are said to stable for tensorflow 2.10.
After installing cuda and cudnn one can verify the installation by typing ”nvidia-
smi” which will show the result similar to the result shown in the figure 5 below.
Also by typing ”nvcc -V” command one can check the version of CUDA installed
which is shown in figure 6 below. If the command doesn’t work, then the whole

3https://developer.nvidia.com/cudnn
4https://developer.nvidia.com/cuda-downloads

3



Figure 4: NVIDIA Website

Figure 5: NVIDIA-SMI command result

procedure have to be re-executed properly and by checking all the version of every
software that was listed above.

4



Figure 6: nvcc command result

4 Data Collection

The dataset used in the project is created by the organization named FIFA. These data
set can be downloaded from kaggle which is shown in the link 5 which is from 2019. This
includes the information of all the players that were registered to the FIFA with their
current statistics and several other informations for example their nationality, current
team and so on.

5 Implementation(Base Paper Model)

The first step was to import required libraries which will be used during the process. The
following figure 7 depicts the libraries that were used.

Figure 7: Imported libraries

5.1 Data Pre-Processing

For the initial pre-processing the data was splitted because there were multiple preferred
positions for a single player. A new dataframe was created to add new rows including
the single and splitted positions of the players. In the new dataframe, all the positions
were modified to follow single writing pattern such as ”RW” instead of ”RW ” and so on.
Also, the positions were narrowed down to only 9 major positions that were ”ST”, ”WN”,

5https://www.kaggle.com/datasets/javagarm/fifa-19-complete-player-dataset

5



”GK”, ”CM”, ”CB”, ”CAM”, ”MF”, ”CDM”, ”DF”, ”CF”. To implement the Random
Forest model, the final predictor was factorised and labels were created using the library
”Multi Label Binarizer” which is shown in the figure 8. below. After creating labels, the

Figure 8: Creating Labels

labels were replaced accordingly in the dataframe. The ”Value” of the player and ”Wage”
of the player column were modified by stripping the alphabets. New classes were created
for nationality of the players as well using the same library ”Multi Label Binarizer”.
The changed were applied to the dataframe. Similar thing was done to the ”Clubs”
column which represents the current club the player is playing in. Also, all the ”NaN”
were replaced by ”Na”. The statistics of the players had equation which represented
the change in their statistics with respect to their last results. Thus, these were having
values like ”65+5” or ”73-2”, in which the first number represented the previous statistic
and the later one represented how much it was changed and whether the change was
positive or negative. The column had to be changed, thus to add and subtract each row,
a function was created which is shown below in figure 9. The labels were also created
and the format was saved into another variable called ”names” for the names of the
players and the column for the names of the players was removed. This was done to later
represent the name of the player with respect to the positions that was predicted by the
model. The final predicting variable was removed from the main dataframe and added to
a new variable named ”y” which represented the final predictions. The data was splitted
into train and test using the function ”train test split” and the ratio was 80 percent train

6



Figure 9: Function

and 20 percent test. Also, to get similar results were time, the random state was set to
42 which allows the split to happen in similar fashion every single time. This makes the
results constant.

5.2 Model Building

For the Random forest, the sklearn library have a method named ”RandomForestClassi-
fier” which is shown in the figure 10 below which represents the Random Forest model
for classification. The model was created with 1000 nestimators that represent that the
depth of the random forest was for 1000 layers or trees.

Figure 10: Random Forest Classifier

5.3 Evaluation

For the evaluation of the random forest, the confusion matrix was created which is in the
”sklearn” library. Also, a classification report was created to get the accuracy, precision,

7



recall and F1 score of the model which is shown in the figure 11 below.

Figure 11: Classification Report

6 Implementation(ANN Model)

For the implementation of ANN model, several libraries have to imported which are
represented in the figure 12. below.

6.1 Data Pre-Processing

For this model, most of the pre-processing work was already done while implementing
the previous model. The only things that had to be changed was the format of the
data which was to be used for trainng the ANN model. Firstly, the final predictor was
categorised using the same library ”Label Binarizer” as shown in the figure 13 below.
These categories are in binary as shown in the figure. The category is represented by an
array of arrays. The length of one array is equal to the number of classes in the final
predictor variable which is in this case, set to be 9. Thus, the length is 9 of each array.
The 0 represent that the position was not there and 1 represents the position that was
available for that particular row. After creating the category, the data was convert into
scaler format as the ANN model can only take scaler format as the input data. The data
was then splitted intp test and train with the ratio of 80-20 where 80 percent was for train
data and 20 percent was for test data. So as to get constant result while splitting the

8



Figure 12: ANN Model

data, random state was set to 42. This makes the splitting constant where the program
is executed thus, making the results constant in every single execution.

Figure 13: Creating Categories

6.2 Model Building

For building the model, Sequential function was used from the tensorflow library which
is shown in the figure 14 below. A total of three hidden layers were added with each
having number of neuron set to be 512, 1024 and 1024 respectively. All the hidden layers
had the ”Relu” activation function and each layer was followed by a dropout layer with

9



0.1 percent of dropout rate. The model was compiled using the loss function as the

Figure 14: ANN model 1

”categorical crossentropy” and optimizer was ”ADAM”. The batch size for training was
set to 20 and the training was set for 500 epochs.

6.3 Evaluation

For the evaluation of the ANN model, the accuracy of the model was taken into consider-
ation as it was a classification problem and this can be added while compiling the model

10



by adding another parameter ”metrics=[”accuracy”]”. This will show the accuracy of
each epochs.

7 Implementation ANN Model 2

7.1 Model Building

For improving the model, another hidden layer was added to the previous model having
2048 neurons and activaiton function as ’relu’. For comilation of the model, the optimizer
was changed from ”ADAM” to ”SGD”. These changes can be seen in the figure 15 below.
The model was trained using same batch size as before and for 500 epochs.

Figure 15: ANN model 2

7.2 Evaluation

As for the evaluation, the accuracy was used similar to the previous model.

8 Implementation(ANN model 3)

For the third model, the model was used to predict the value of the players which was
the next stage of the framework. This model was different from previous model as the
problem is a regression problem as the final predictor was the value of the player.

8.1 Data Pre-Processing

The final predictor variable was changed from ”Positions” to ”Value”. Similar scaler
transform was done to the data as was done for the previous model and data was splitted
into test and train with 80-20 ration where the 80 percent was for the training and 20
percent was for testing. The random state was set as same before which was 42 to get
constant results.

11



8.2 Model Building

The model was created by making three hidden layers, having 512, 1024 and 1024 as the
neurons for respective layers. The layers had ”relu” as the activation function and the
final output layer’s activation function was changed from ”Softmax” to ”Linear” and the
neurons from 9 to 1. This is due to the dimension of the final predictor. All the changes
can be seen in the figure 16 below. The model was ran on the batch size of 20 and for
500 epochs.

Figure 16: ANN model 3

8.3 Evaluation

As for the evaluation, as the model was a regression model, MSE, MAPE and MAE was
calculated. The figure 17 shows the process for MSE. Similarly, other evaluation matrix
are defined in the module ”sklearn.metrics”.

Figure 17: Evaluation of Regression Model

12


	Introduction
	System Configuration
	Software Requirements
	Hardware Specification

	Installation and Environment Setup
	Data Collection
	Implementation(Base Paper Model)
	Data Pre-Processing
	Model Building
	Evaluation

	Implementation(ANN Model)
	Data Pre-Processing
	Model Building
	Evaluation

	Implementation ANN Model 2
	Model Building
	Evaluation

	Implementation(ANN model 3)
	Data Pre-Processing
	Model Building
	Evaluation


