\""— | ‘
\ National
Collegeof

[reland

Retail Manufacturing Analysis using
Machine Learning Techniques.

MSc Research Project
Data Analytics

Meet Sangol
Student ID: X21207526

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

National
Collegeof
[reland

National College of Ireland

Project Submission Sheet - 2022/2023

MEET DEEPEN SANGOI
Y AT T £ o L | T 3 L= TRP

X21207526
R o1 e L= 3 1 1 0 -SSR
MSc in Data Analytics 2023
Programme: Year: e
M.Sc. Research Project
o T L] =TS
=T ot o o= - TP
Submission Due 14-08-2023
[- 1 =SOSR

o ol) =T ot S I =TSR

LTV LoY o Il 101 o |«

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at the rear of the project.

ALL internet material must be referenced in the references section. Students are
encouraged to use the Harvard Referencing Standard supplied by the library. To
use other author's written or electronic work is illegal (plagiarism) and may
result in disciplinary action. Students may be required to undergo a viva (oral
examination) if there is suspicion about the validity of their submitted work.

Y Te Lo T 1 U] =TT SR PSPV

[T) <

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple
copies).

2. Projects should be submitted to your Programme Coordinator.

3 You must ensure that you retain a HARD COPY of ALL projects, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically

requested.
4. You must ensure that all projects are submitted to your Programme Coordinator on
or before the required submission date. Late submissions will incur penalties.
5. All projects must be submitted and passed to successfully complete the year. Any

project/assignment not submitted will be marked as a failure.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual: Retail Manufacturing Analysis using
Machine Learning Techniques.

Meet Sangoi
x21207526

1 Introduction

| have prepared a manual configuration that delivers a survey of the ‘hardware devices’,
‘software’, and ‘programming skills’ mandatory to carry out the “master’s research project”
'Retail Manufacturing Analytics Using Machine Learning'. It also provides details on the
required libraries. The final part of this document contains the code and main output of all runs,
results, and evaluation steps.

2 Hardware requirements for research work

A “Lenovo laptop with a 64-bit operating system” is used for the environment setup.

Find a setting Q @ Device specifications Copy A
i Device name
Processor
B Bluetooth & devices Installed RAM
) Device ID
@ Network & internet Product ID
/ Personalisation System type 64-bit op based processor
Penandtouch No pen or touch input is available for this display
B Apps
g Related links Domai ki Syst tecti Ad d syst tti
; Accounts omain or workgroup System protection vanced system settings

P Time & language

== Windows specifications Copy A
9 Gaming
K Accessibility Edition Windows 11 Home
Version 22H2
W Privacy & security Installed on 09/10/2022
0S build

@ Windows Update .
Serial number

Experience Windows Feature Experience Pack 1000.22659.1000.0
5 a Qs Ak D - t o 0O w G ﬁ H @ {:} ~a ROB 12/08/1260:22

Fig.1. Monitor and Window Description.

The above configuration device "LAPTOP-0DU359D9" is powered by the "12th Gen Intel
Core i7-1260P processor™ and offers a base clock speed of 2.10 GHz. It has "16.0 GB" of
RAM, of which 15.7 GB is available for system operation. | have observed some limitations
that need to be checked. Limitations include high execution time in the process train each.

model and the various errors encountered while doing super-tweaking of project settings
using super-like libraries.

3 Software required for preparing the analysis.

These scripts were inputted into and executed from a Jupyter book. An integrated development
environment (IDE) for writing Python scripts is called Jupyter Book. The data was recorded in a
CSV file and retained inside the framework because Jupyter Book may access the dataset
directly and run the application within the framework. Open a program in the same registry to
pre-install all Python libraries as well as more sophisticated learning systems like TensorFlow,
Keras, and sklearn before you can start Jupyter Book.

@ New N Sort = View
S v 3 “\Users\sango\Downloads\Retail Gift Manufacture C Search Retail Gift Manufacture »
£ Home Name

Data_Mining Approach for_Customer_Segment.. 04

@ OneDrive - Persc
Customer_Segmentation_in_XYZ Bank Using K-.. 04/08/2023 08:43

& Customer_Segmentation_using_K-means_Cluste... 04/08/2023 08:40
il Desktop -
Customer_Segmentation_in_Retailing_using Ma... 04
+ Downloads #
Machine_Leamning_Based Customer_ Chumn _Pred.. 04/08

= Documents #
B An_empirical_comparison_of_customer_behavio... 04/08/2023 08:33

PN Pictures <
From_Anticipation_to_Action_Data Reveal Mobi.. 04/08/2
& Music
Understanding_customer-oriented_organization.. 04/08
i Videos N
=| Retail Manufacturing_Analysis Full (Algorithm) ... PYN
DMML2 < 3 P
Retail Manufacturing_Analysis half 1
Retail Gift Ma # . o x e
& Customer Behaviour Prediction Using recomme... 31/07/2023 22:35
Screenshots

Customer Behavior_Prediction_using Deep Lear.. 31/07,

Data Governano s 3 s et
B Post _Print_Customer_Purchase Behavior Predicti.. 31 16:1

& Prediction_of Consumer Behaviour_using Rand.. 31/07/2023 14:49 Microsoft Edge PDF

@ OneDrive - Natic v Last month
v Ml This PC &) ECommerceData.csv
48 items =0

5 ﬂ Q search /i [g E @ ﬂ G w G g @ {:} 2 EGNAG s 12/08/127(;‘2)(3]'

Fig.2. Path in Laptop.

The below fig.3 manifests the important python programming libraries which have been
executed in the code.

In [2]: import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import datetime, nltk, warnings
import matplotlib.cm as cm
import itertools
from pathlib impert Path

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn import preprocessing, model selection, metrics, feature_selection
from sklearn.model_selection import GridSearchCV, learning_curve

from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix

from sklearn import neighbors, linear_model, svm, tree, ensemble

from wordcloud import WordCloud, STOPWORDS

from sklearn.ensemble import AdaBoostClassifier

from sklearn.decomposition import PCA

from IPython.display import display, HTML
import plotly.graph_objs as go

from plotly.offline import init_notebook mode,iplot

init_notebook_mode(connected=True)
warnings.filterwarnings("ignore")
plt.rcParams["patch.force_edgecolor"] = True
plt.style.use('fivethirtyeight')

mpl.rc('patch’, edgecolor = 'dimgray', linewidth=1)

%matplotlib inline

Fig.3. Installed libraries.

Now here, | will obtain the data which is visible in fig.4.

In [3]:

In [4]:

Jut[4]:

In [5]:

#Step 1:- Data Preparation

df_products = pd.read_csv('ECommerceData.csv',encoding="IS0-8859-1")

df_products.head() # Display first 5 rows

InvoiceNo StockCode

Description Quantity

InvoiceDate UnitPrice CustomeriD

Country

0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER
1 536365 71053 WHITE METAL LANTERN
536365 844068 CREAM CUPID HEARTS COAT HANGER
536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE
536365 84029E RED WOOLLY HOTTIE WHITE HEART.

BN

o o 0 O

12/1/2010 8:26
12/1/2010 8:26
12/1/2010 8:26
12/1/2010 8:26
12/1/2010 8:26

255
3.39
275
3.39
339

17850.0
17850.0
17850.0
17850.0
17850.0

United Kingdom
United Kingdom
United Kingdom
United Kingdom
United Kingdom

print('Dataframe dimensions:', df products.shape) #Determines the rows and columns of the dataframe

Dataframe dimensions: (541909, 8)

Fig.4. Obtaining the data.

Data Preprocessing
Checking Null values.

In [7]: |#Checking for null values
columns_info = pd.DataFrame(df_products.dtypes).T.rename(index={0:'Columns datatype:-'})
columns_info = columns_info.append(pd.DataFrame(df _products.isnull().sum()).T.rename(index={@: 'Null values (Count):-'}))
columns_info = columns_info.append(pd.DataFrame(df_products.isnull().sum()/df_products.shape[8]#100).T.
rename(index={0: 'Null values (Percentage):-'}))
display(columns_info)

InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerlD Country

Columns datatype:- object object object int64 datetime64[ns] float64 floaté4 object
Null values (Count):- 0 0 1454 0 0 0 135080 0
Null values (Percentage).- 00 00 0268311 00 0.0 00 24926694 0.0

In [8]: |#Removed the rows where CustomerID has Nulls
df_products.dropna(axis = @, subset = ['CustomerID'], inplace = True)
print('Dataframe dimensions:-', df_products.shape)

Dataframe dimensions:- (406829, 8)

Dropping Duplicate values.

In [18]: | print(f'Checking for duplicate records:- {df_products.duplicated().sum()}")

Checking for duplicate records:- 5225

In [11]: | #Dropping duplicate values
df_products.drop_duplicates(inplace = True)

In [12]: | print('Dataframe dimensions:-', df products.shape)

Dataframe dimensions:- (481664, 8)

Orders Per country

In [14]:

Totaln

In [18]:

In [19]:

In [20]:

#From below map we came to that most customers are from UK

product_data = dict(type="choropleth",

locations = countries.index,

locationmode = ‘country names', z = countries,

text = countries.index, colorbar = {'title':‘Order number'},

colorscale=[[@, 'rgb(224,255,255)'],
[@.01, 'rgb(166,206,227)'], [0.02, 'rgb(31,120,180)'],
[@.03, ‘rgb(178,223,138)'], [@.05, 'rgb(51,160,44)'],
[@.10, 'rgb(251,154,153)'], [@©.20, 'rgb(255,255,8)'],
[1, 'rgb(227,26,28)'1],

reversescale = False)

layout = dict(title='Number of orders per country®,
geo = dict(showframe = True, projection={'type':'mercator'}))

choromap = go.Figure(data = [product_data], layout = layout)
iplot(choromap, validate=False)

Number of orders per country

£

el o]

Fig.5. Country wise individual order.

umber of orders that got cancelled.

Order number

15k

10k

S5k

products_per_transaction['Orders_Canceled’'] = products_per_transaction['InvoiceNo'].apply(lambda x:int('C’ in x))

display(products_per_transaction.head())

Ci riD InvoiceNo Number of prod Orders_Canceled
0 12346.0 541431 1 0
1 123460 C541433 1 3
2 12347.0 537626 31 0
3 12347.0 542237 29 0
4 12347.0 549222 24 0

products_per_transaction_total['Orders_Canceled’'] = products_per_transaction_total['InvoiceNo'].apply(lambda x:int('C" in x))

display(products_per_transaction_total.head())

CustomerlD InvoiceNo Number of products Orders_Canceled

6810 14096.0 576339 542 0
6812 14096.0 579196 533 0
6813 14096.0 580727 529 0
6811 14096.0 578270 442 0
6808 14096.0 573576 435 0

#Total orders that got canceled

nl = products_per_transaction_total['Orders_Canceled’].sum()
n2 = products_per_transaction_total.shape[@]
print(f'Number of orders canceled: {n1}/{n2} ({nl1/n2*100}%)')

#Number of cancellations is quite large (16% of the total number of transactions)

Number of orders canceled: 3654/22190 (16.466876971608833%)

Fig.6. Total number of cancelled orders.

4 Model Buildings
1. Support Vector Machine Model:

In [94]: X_train, X_test, Y train, Y_test = model_selection.train_test_split(X, Y, train_size = 0.8)

In [95]: |#Support Vector Machine
svc = Class_Fit(clf = svm.LinearSVC)
svc.grid_search(parameters = [{'C':np.logspace(-2,2,10)}], Kfold = 5)

In [96]: svc.grid fit(X = X _train, Y = Y_train)

In [97]: svc.grid predict(X test, Y_test)

Precision: 76.45 %

Fig.7. SVM Model

In [99]: class_names = [i for i in range(11)]
cnf_matrix = confusion_matrix(Y_test, svc.predictions)
np.set_printoptions(precision=2)
plt.figure(figsize = (8,8))
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize = False, title='Confusion matrix')

Confusion matrix, without normalization

Confusion matrix 250
oo 2% 0 @ 0 0 0 2 9 1 9

, 0 W2€® 0 0 O 0 0 1% 0 0 0

E 150

g s 0 '3 0 0 0 0 0 S5 0 0 0
=

F g0 1 0 0 0 0 0 0 0 0 0

; 0 0 0 0 0O O 0 ®® 0 0 0 100
g0 2 0 © 0 0 0o 31 0 @ o0
o0 26 0 0 0 0 0 0 0 NS 0

50
o0 "3 0 0 0 0 0 € a0 0 0
0 1 2 3 4 5 6 7 8 9 10

Predicted label
0

Fig.8. Confusion matrix for SVM

2. K-Nearest Neighbors:

In [104]: |#k-Nearest Neighbors

knn = Class_Fit(clf = neighbors.KNeighborsClassifier)

knn.grid_search(parameters = [{'n_neighbors': np.arange(1,50,1)}], Kfold = 5)
knn.grid fit(X = X_train, Y = Y_train)
knn.grid_predict(X_test, Y_test)

Precision: 81.72 %

Fig.9. KNN model

3. Decision tree:

In [106]: #Decision Tree

tr = Class_Fit(clf = tree.DecisionTreeClassifier)

tr.grid_search(parameters = [{'criterion' : ['entropy', 'gini'], 'max_features' :['sqrt', 'log2']}], Kfold = 5)
tr.grid fit(X = X_train, Y = Y_train)

tr.grid predict(X test, Y test)

Precision: 83.66 %

Fig.10. Decision tree model

4. Random Forest:

In [108]: |#Random Forest
rf = Class_Fit(clf = ensemble.RandomForestClassifier)
param_grid = {'criterion’ : ['entropy', 'gini'], 'n_estimators' : [20, 40, 60, 80, 100],
'max_features' :['sqrt’, 'log2']}
rf.grid search(parameters = param grid, Kfold = 5)
rf.grid fit(X = X_train, Y = Y_train)
rf.grid predict(X_test, Y_test)

Precision: 90.30 %

Fig.11. Random forest model

5. Logistic regression:

In [102]: |#Logistic Regression
1r = Class_Fit(clf = linear_model.LogisticRegression)

1r.grid_search(parameters = [{'C':np.logspace(-2,2,20)}], Kfold = 5)
1r.grid_fit(X = X_train, Y = Y_train)

1r.grid_predict(X_test, Y_test)

Precision: 89.61 %

Fig.12. Logistic regression model

6. Gradient Boosting:

In [112]: #Gradient Boosting Classifier
gb = Class Fit(clf = ensemble.GradientBoostingClassifier)
param grid = {'n_estimators' : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}
gb.grid search(parameters = param grid, Kfold = 5)
gb.grid fit(X = X_train, Y = Y_train)
gh.grid predict(X test, Y test)

Precision: 89.75 %

Fig.13. Gradient boosting model

Voting classifier

In [114]: rf_best = ensemble.RandomForestClassifier(**rf.grid.best params_)
gb _best = ensemble.GradientBoostingClassifier(**gb.grid.best params_)
svc_best = svm.LinearSVC(**svc.grid.best params)

tr_best = tree.DecisionTreeClassifier(**tr.grid.best params_)
knn_best = neighbors.KNeighborsClassifier(**knn.grid.best params)
1r best = linear model.logisticRegression(**1lr.grid.best params)

In [115]: votingC = ensemble.VotingClassifier(estimators=[('rf', rf_best),('gbh", gb best),
("knn", knn_best)], voting='soft")

In [116]: votingC = votingC.fit(X_train, Y_train)

In [117]: predictions = votingC.predict(X_test)
print("Precision: {:.2f} ¥ ".format(1@@*metrics.accuracy score(Y_test, predictions)))

Precision: 90.03 %

Fig.14. Voting classifier models

Testing Prediction

In [124]: | classifiers = [(svc, 'Support Vector Machine'),
(1r, 'Logistic Regression'),
(knn, 'k-Nearest Neighbors'),
(tr, 'Decision Tree'),
(rf, 'Random Forest'),
(gb, 'Gradient Boosting')]

for clf, label in classifiers:
print(25*'_', '\n{}'.format(label))
result = clf.grid_predict_precision(X, Y)
df_result.loc[len(df_result.index)] = [label, result]

Support Vector Machine
Precision: 62.68 %

Logistic Regression
Precision: 75.11 %

k-Nearest Neighbors
Precision: 67.19 %

Decision Tree
Precision: 71.23 %

Random Forest
Precision: 74.87 %

Gradient Boosting
Precision: 74.48 %

Fig.15. Final Testing Prediction

In [127]: import matplotlib.pyplot as plt

def addlabels(x,y):
for i in range(len(x)):
plt.text(i,y[i],y[i])

plt.figure(figsize=(20, 7))

plt.bar(df_result.Algorithms, df_result.Precision, color='green', width=0.4, align='center')
addlabels(df_result.Algorithms, df_result.Precision)

plt.title('Precision for different alogirthms')

plt.xlabel('Algorithms")

plt.ylabel('Precision")

plt.show()

Precision for different alogirthms

22 1078008624069 59898079185 159584476677

~ 981575852
3751470011
80
0
c
<]
a0
8
a
kY
20
10
Support Vector Machine Logistic Regression K-Nearest Neighbors Decision Tree Random Forest Gradient Boosting
Algorithms

Fig.16. Bar plot for all model’s accuracy.

Therefore, by seeing all models here and by visualizing the accuracies and graph, 1 will forecast
the customer’s needs through Logistic regression model.

