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Configuration Manual

Rohit Salvi
x21208832

1 Overview

The configuration manual is the step-by-step guide for setting up the environment, pre-
requisites and execution of the research project “Lightweight Deep Learning Framework
for Brain Tumour Classification”.

2 Hardware/Software Requirements

2.1 Hardware Requirements

The research project was executed on the system with the following hardware configura-
tions.

e Operating System: Windows 10 Home Single Language(Version: 22H2).
e Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz.

Storage: 2TB.

RAM: 8GB(Extendable 20.4GB Virtual Memory).
Graphical Processing Unit: NVIDIA GeForce MX150.

2.2 Software Requirements

The software that aided the designing, implementation and execution of the research
project are as follows.

e Development Environment: Jupyter Notebook(Version: 6.4.12).
e Programming Language: Python(Version: 3.10.7).

e Tools: Lucidchart and Overleaf.

3 Set Up

3.1 Python
3.1.1 Installing Python
Following are the steps to install Python in the system.
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1. Go to offical website of Python[l| and download python source code and installer
with version 3.10.7.

2. On the python source code and installer with version 3.10.7 is downloaded. Install
Python by running the installer as shown in Figure

5 Python 3.114 [64-bit) Setup — ®

J Install Python 3.11.4 (64-bit)

Jf Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

—> Install Now

C\Users\Lenove\AppData\Local\Programs)\Python'\Pythan311

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Cheose location and features

Use admin privileges when installing py.exe
[ Add python.exe to PATH Cancel

pgthi()rn

windows

Figure 1: Installing Python

3.1.2 Starting and Verifying Python

The following steps will help to verify the availability of Python and Python version in
the system.

1. Open the command prompt by searching “Command Prompt” in the Windows
search bar.

2. Once the command prompt is opened type python and execute it. The version of
Python is also displayed on execution of it as shown in Figure

Figure 2: Python and its Version

'https://wuw.python.org/


https://www.python.org/

3.2 Jupyter Notebook
3.2.1 Imstalling and Running Jupyter Notebook

Following are the steps to install and run Jupyter Notebook in the system.

1. Go to offical website of Jupytelﬂ Scroll down to the section of Jupyter Notebook
and click on “Install the Notebook” as shown in Figure

Jupyter Notebook: The Classic Notebook Interface

The Jupyter Notebook is the original web application for creating and sharing computational
documents. It offers a simple, streamlined, document-centric experience.

JUPYter wecometop

Try it in your browser Install the Notebook

Jupyter

Welcome to the

Figure 3: Install Jupyter Notebook

2. After clicking on “Install the Notebook”, several ways to install Jupyter will be
displayed. Open the command prompt and execute the command as shown in the
Figure [4 to install Jupyter Notebook.

Jupyter Notebook

Install the classic Jupyter Notebook with:
pip install notebook
To run the notebook:

jupyter notebook

Figure 4: Command to Install and Running Jupyter Notebook

3. On executing the commands mentioned in the above step, a web interface will be
popped up in the default browser. Click on “New” and then “Python3” to open the
new Jupyter Notebook as shown in Figure[5] Then try executing the simple Python
command to ensure the integration and execution of Python in Jupyter Notebook
as shown in Figure [6]

Zhttps://jupyter.org/


https://jupyter.org/

~ Home Page - See

C 0 © localhost

~ Jupyter | | Logot

TextFile

Figure 6: Execution of Python Code in Jupyter Notebook

3.3 Data
3.3.1 Data Selection

The data used in the research project is accessible on Kaggle(Nickparvar; |2021). The
dataset consists of 7023 ‘.jpg’ images of MRIs of 4 different classes of brain tumours.

3.3.2 Importing Data

To import the dataset into the system, navigate to the Brain Tumour MRI Datasetﬂ on
Kaggle. Hit the download button as shown in Figure [7] Post that select the repository
created for the implementation of the research project in the system. Click on download,
then download will begin and data will be imported into the system as .zip’ file. Extract
the data from °.zip’ file.

= kaggle Q s S -
,
b Greate o
L) mAsouD NicKPARVAR - UPDATED 2 YEARS AGO - 262 New Notebook & Download (156 MB)

® Home

Competitions. H
@ Competition Brain Tumor MRI Dataset
@@ Datasets | A dataset for classify brain tumors
A Models
o coe

DataCard  Code (12)  Discussion (4)

B Discussions

& Leam About Dataset satitty ©
v More
What is a brain tumor? License
©C0: Public Domain

Expected update frequency
Never

. . Tags
The importance of the subject
Health | Cancer | Image
Early detection and classification of brain tumors is an important research domain n the field of medical imaging and accordingly helps in
selecting the most convenlent treatment method to save patients lfe therefore: Deep Learming

Multiciass Classification

Methods

Figure 7: Importing Data from Kaggle

3https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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3.4 Libraries

Following is the list of the packages and libraries required for pre-processing of data,
implementation of the model and evaluation of it.

e PyTorch

e Torchvision
e NumPy

e Collections
e Matplotlib
e Pillow

e Scikit-learn
e Seaborn

e Scikit-optimize

3.4.1 Installing Libraries

Install the necessary libraries required for the execution of the research project using the
following command.

pip install torch

pip install torchvision
pip install matplotlib

pip install Pillow

pip install scikit-learn
pip install scikit-optimize

3.4.2 Importing Libraries

Once the required libraries are installed, those libraries are imported, as shown in the
Figure |8 for implementation and execution of the research framework.

4 Project Development

4.1 Seed SetUp

For the purpose of reproducibility of research results, set the seed of the environment as
shown in the Figure [9]

4.2 Directories SetUp

Directories in which the data is present are set as shown in the Figure
Note: The research data and Jupyter Notebook file are in the same directory.



import os

impart torch

import torchwision.transforms as transforns
from torchvision.datasets import ImageFolder
from torch.utils.data impert Dataloader

import numpy as np
from collections import Counter
from torch. utils. data import Subset

epcuiad in B EZs, Snished 163749 2023-08-13
For Data Visualization

impart matplotlib.pyplot as plt
from PIL isport Image

soinubad in 1.51%, Snished 163750 2023-05-13

For Model

isport torch.nn as an
import torch.optim as optin

eoimuhad in 11 mes, finished 16:37250 2023-08-13

For Evaluation

from sklearn.metrics import accuracy score, confusion matrix
impart seaborn as sns
exculad in 5345, fAnished 163755 2023-08-13

For Cptimization

from skopt.space import Real
from skopl import gp minimize

faoutad in S8TmS, finshod 16:37.66 20230813
For Results

from sklearn.metrics import classification_report

eipouted i 12ms, Snished 163766 2023-08-13
For K-Fold Validation

from sklearn.model_selection impoert KFold

Enoutad i 11ms, finishad 16:37256 2023-08-13

Figure 8: Importing Libraries

seed = 12

torch.manual_seed(seed)

torch. cuda. manual seed(seed)
torch.backerds . cudmn. deterninistic = True
torch. backends . cudnn . benchnark = False
fip.random . seed { Seed)

U iR Z9me, Snshed 10014:58 20230213

Figure 9: Setting Seed

currentDirectory = os.getcwd()
executed in 11ms, finished 10:14:54 2023-08-13

baseDirectory = os.path.join(currentDirectory, ‘brainTumour')
executed in 12ms, finished 10:14:54 2023-08-13

trainingDirectory = os.path.join(baseDirectory, ‘Training').replace("\\", "/")
testingDirectory = os.path.join(baseDirectory, 'Testing').replace("\\", "/")
executed in 14ms, finished 10'14:54 2023-08-13

Figure 10: Directories SetUp



4.3 Data Loading and Pre-Processing

After setting up the data directories, the data is loaded and pre-processed. The snippet
of code for data loading and pr-processing can be seen in the Figure |11}

Data augmentations of Training data

trainDataTransform = transforms.Compose ([

.RandomResizedCrop(imagesize),

.RandomHorizontalFlip(),

.RandomVerticalfFlip(),

.ToTensor(),

.Normalize(mean = [©.485, ©.456, ©.406], std = [0.229, ©.224, 0.225])

transforms
transforms
transforms
transforms
transforms

1))

executed in 13ms, finished 10:14:54 2023-08-13

Normalizing Testing Data

testDataTransform = transforms.Compose([
transforms.Resize(imageSize),
transforms.ToTensor(),
transforms.Normalize(mean = [@.485, ©.456, ©.406], std = [0.229, ©.224, ©.225])

D

executed in 14ms, finished 10:14:54 2023-08-13

Loading Data

trainData = ImageFolder(trainingDirectory, transform=trainDataTransform)
testData = ImageFolder(testingDirectory, transform=testDataTransform)

executed in 3.72s, finished 10:14:58 2023-08-13

Figure 11: Code for Data Loading and Pre-Processing

4.4 CNN Model

The CNN model of the research project has similar architecture of the model by
(2022)). The architecture and code for the implementation of CNN can be seen in

the Figure [12]

class CNNModel(nn.Module):
def __init_ (self, num_classes):
super (CNNModel, self)._  init ()

self.
self.
self.
self.
self.

self

o
n
£

x
X
x
x
X
x

retu

convl

conv2
conv3
fcl =
fc2 =

= nn.Conv2d(3, 16, kernel_size=3, padding=1)

pool = nn.MaxPool2d(2, 2)

= nn.Conv2d(16, 32, kernel_size=3, padding=1)
= nn.Conv2d(32, 16, kernel_size=3, padding=1)
nn.Linear(16 * 32 * 32, 2586)
nn.Linear(256, num_classes)

forward(self, x):

self.pool(torch.relu(self.convl(x)))
self.pool(torch.relu(self.conv2(x)))
self.pool(torch.relu(self.conv3(x)))
x.view(-1, 16 * 32 * 32)
torch.relu(self.fcl(x))

self.fc2(x)

rn x

executed in 13ms, finished 10:14:59 2023-08-13

Create the model instance

model = CNNModel(num_classes=len(categories))

madel . to(dev

ice)

executed in 75ms, finished 10:14:59 2023-08-13

CHNModel(

(convl): Conv2d(3, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

(pool): MaxPool2d(kernel_size=2, stride=2, padding=6, dilation=1, ceil_mode=False)
(conv2): Conv2d(16, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(fcl): Linear(in_features=16384, out_features=256, bias=True)

(fc2): Linear(in_features=256, out_features=4, bias=True)

Figure 12: CNN Model



CNN model is trained with the training data as shown in the Figure

Define the loss function and optimizer

criterion = nn.CrossEntropylLoss()
optimizer = optim.Adam(model.parameters(), lr=0.801)

executed in 13ms, finished 10:14:59 2023-08-13
Training CNN Model

lossValuesOfBaseChN = []
accuracyValuesOfBaseCNN = []
- for epach in range(epochs):
model.train()
runningloss = 6.@
correctPredictions = @
totalPredictions = @
for inputs, labels in trainDataloader:
inputs, labels = inputs.to(device), labels.to(device
optimizer.zera_grad()
outputs = model(inputs)
loss = criterion{outputs, labels)
loss.backward()
optimizer.step()
runningloss +- loss.item()
_, predicted = torch.max(outputs, 1)
totalPredictions += labels.size(8)
correctPredictions += (predicted == labels).sum().item()

# Calculate average Loss for the epach
averagelLossOfBaseCNN = runninglLoss / len(trainDataloader)
lossValuesOfBaseClN. append(averagelossOfBaseChN)

# caleculate accuracy for the epoch

accuracy = correctPredictions / totalPredictions
accuracyValuesOfBaseCHN. append (accuracy)

# Print training Loss after each epoch
print(f"CHN Model - Epoch {epoch+1}/{epochs}, Loss: {averagelossOfBaseCNN}, Accuracy: {accuracy}")
executed in 1h 54m 41s, finished 12:09:40 2023-08-13

Figure 13: Training CNN

4.5 Pruning CNN Model

CNN Model is pruned using a magnitude-based weight training technique. The function
for pruning the CNN model can be seen in the Figure

Function to prune CNN Model

+ def pruneModel (model, pruningRatic):
allParameters = []
for paramiame, param in model.named_parameters():
if 'weight' in paramName: # Only prune weig not biases
allParameters.append((paramiame, param.data.view(-1)))

# Flatten and concatenate all weights

allWeights = torch.cat([param for _, param in allParameters])
# Calculate the threshold value for pruning

numParamsToPrune = int(pruningRatio * len(allWeights))

threshold - torch.topk(torch.abs(allieights), numParamsToPrune).values.min()

# Apply pruning mask to each parameter tensor
for paramiiame, param in allParameters
mask = torch.abs(param) > threshold
param.data - mask.float()

print(f"Pruning {pruningRatio*1ee:.2f}% of model parameters.")

return model
executed in 23ms. finished 121023 2023-08-13
- def getPrunediodel(originalModel, pruningRatioc):
# Create a new model instance
prunedModel = CNNModel(num_classes=len(categories))
prunedModel. to{device)

# Load the state_dict from the original model to the new model
prunedodel . load_state_dict(originalModel.state_dict())

# Apply pruning to the new model
prunedModel = pruneModel(prunediodel, pruningRatio)

return prunediodel

executed in 26ms, finished 12:10:23 2023-08-13

Figure 14: Pruning Function

Later the pruned model is re-trained on the training data.



4.6 Optimal Pruning Ratio

The optimal pruning ratio is identified using the objective function as shown in Figure

Define the objective function to be minimized

def objectiveFunction{params):
pruningRatic = params[@] # Extroct the pruni
prunedModel = getPrunedModel(model, pruningRatio)

io from the List of paraoms

# Define the loss function and optimizer for the pruned model
criterion = nn.CrossEntropyloss()
optimizer = optim.Adam(prunedModel.parameters{), 1r=8.881)

# Training loop for the pruned model
for epoch in range(epochs):
prunedtodel . train(}
runningloss = 8.8
for inputs, labels in trainDataloader:
inputs, labels = inputs.to{device), labels.to(device)
optimizer.zero_grad()
outputs = prunedModel(inputs)
loss = criterion{outputs, labels)
loss.backward()
optimizer.step()
runningloss += loss.item()
# Print troining loss after edach epoch
print(f"Model - Epoch {epoch+1}/{epochs}, Loss: {runningloss/len(trainDataloader)}"}

prunedModel.eval()

correct = @

total = @

with torch.no_grad():

for inputs, labels in testDataloader:

inputs, labels = inputs.to{device), labels.to(device)
outputs = prunedModel(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(®)
correct += (predicted == labels).sum().item{)

accuracy = 10@ * correct / total
return -accuracy

executed in 25ms, finished 08:30:33 2023-08-10

Define the search space for pruning ratic

searchSpace = Real{low = 8.81, high = 8.5, prior = 'log-uniform')
executed in 25ms, finished 05:30:33 2023-02-10

Performing Optimization

result = gp_minimize({cbjectiveFunction, dimensions = [searchSpace], n_calls = 18, random_state = seed)
executed in 17h 31m 56s, finished 00:02:20 2023-08-11

Figure 15: Objective Function for identifying Optimal Pruning Ratio

Then lightweight deep learning framework is built using the CNN model, pruning

functional and optimal pruning ratio.

5 Project Testing

The developed framework is validated with the help of testing data. The code for the

testing of the framework is in the Figure

optimisedPrunedModel.eval()
correct = @
total = @
predictedLabels0OfOptimisedPrunedModel = []
truelabelsOfOptimisedPrunedModel = []
with torch.no_grad():
for inputs, labels im testDataloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = optimisedPrunedModel{inputs)
_» predicted = torch.max(outputs.data, 1)
total += labels.size(8)
correct += (predicted == labels).sum().item()

# Save predicted and true Labels for g
predictedLabelsOfOptimisedPrunediodel.extend{predicted.cpu().numpy())
truelabelsOfOptimisedPrunedModel .extend(labels. cpu() . numpy())

executed in 38.7s, finished 01:43:01 2023-08-11

Figure 16: Validating the Framework



To validate the robustness of the model, k-fold cross-validation technique is applied
as shown in the Figure [I7]

kFolds = 5
exacuted in 10ms, finished 08:52:16 2023-D8-11

f = KFold(n_splits = kFolds, shuffle = True, random_state = seed)
executed in 16ms, finished 00:52:17 2023-08-11

foldAccuracies = []

executed in 20ms, finished 09:52:18 2023-08-11

» for fold, (train_index, val_index) in enumerate(kf.split(trainData)):
print(f"Fold {fold+1}/{k_folds}")

# Create data loaders for current fold
trainSubset = Subset(trainData, train_index)
valSubset = Subset(trainData, val_index)

trainLoader = Dataleoader({trainSubset, batch_size=32, shuffle=True, num_workers=4)
valloader = Dataloader{valSubset, batch_size=32, shuffle=False, num_workers=4}

# Train the optimised pruned model on the current fold
v for epoch in range(epochs):
optimisedPrunedModelForkFold.train()
runningloss = @.@
v for inputs, labels in trainlLoader:
inputs, labels = inputs.to{device), labels.to(device)
optimizer.zero_grad()
outputs = optimisedPrunedModelForkFold(inputs)
loss = criterion{outputs, labels)
loss.backward()
optimizer.step()
runningloss += loss.item()

# Print trai

print(f"Optis

ng Less after each epoch

ed Pruned Model - Fold {fold+1} - Epoch {epoch+1}/{epochs}, Loss: {runningloss/len(trainLoader)}")
# Evaluate the optimised pruned model on the
optimisedPrunedModelForkFold.eval()

correct = @

validation dota for the current fold

total = @
v with torch.no_grad():
v for inputs, labels in vallLoader:

inputs, labels = inputs.to{device), labels.to(device)
outputs = optimizedPrunedModelForkFold(inputs)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(@)

correct += (predicted == labels).sum().item{)

accuracy = 188 * correct / total
foldAccuracies.append(accuracy)

executad in 5h 42m 18s, finished 15:43:07 2023-08-11

Figure 17: K-Fold Cross Validation

The performance metrics of the framework are calculated as shown in the Figure
and

accuracyOfOptimisedPrunediodel = accuracy_score(truelabelsOfOptimisedPrunediodel, predictedlLabelsOofOptimisedPrunedModel)
print(f*Accuracy of Optimised Pruned CNN: {accuracyOfOptimisedPrunediodel*108}")

executed in 36ms. finished 01:43:01 2023-08-11

Figure 18: Computing Accuracy

confusionlatrix0foptimisedPrunediodel = confusion_matrix(truelabelsOfOptimisedPrunediiodel, predictediabels0fOptimisedPrunediode

3
executed in 39ms, finished 01:43:01 2023-08-11
plt.figure(figsize = (8, 6))
sns.heatmap(confusionMatrix0fOptimisedPrunediodel, annot = True, fmt = "d", cmap = "Blues”, xticklabels = categories, yticklabe
plt.xlabel(’ Predicted’)
plt.ylabel( True')
plt.title( Confusion Matrix')
plt.show()
3

executed in 2 525 finished 01:43-04 2023-08-11

Figure 19: Computing Confusion Matrix
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for idx, category in enumerate(categories):

s
TP - confusionMatrixOfOptimisedPrunediodel[idx, idx]

FN = np.sum(confusionMatrixOfOptimisedPrunedModel[idx, :]) - TP
FP = np.sum(confusionMatrixOfOptimisedPrunediodel]:, idx]) - TP

TN = np.sum{confusionMatrixOfOoptimisedPrunedModel) - TP - FN - FP

sensitivity = TP / (TP + FN)
specificity = TN / (TN + FP)

print{f"Class: {category}")
print{f"Sensitivity: {sensitiwvity * 1e@:.2f}%"
print(f"specificity: {specificity * 100:.2f}¥"
print()

executed in 27ms, finished 01:43-04 2023-08-11

Figure 20: Computing Sensitivity and Specificity

plt.plot(range{l, epochs + 1), lossValuesOfOptimisedPrunedModel, label = ‘Loss')
plt.plot(rangs(1, epochs + 1), accuracyValuesOfOptimisedPrunediodel, label = 'Accuracy')
plt.xlabel( Epoch’)

plt.ylabel('value')

plt.title( Loss and Accuracy per Epoch’)

plt.legend()

plt.show()

executed in 296ms_finished 01°43-04 2023-08-11

Figure 21: Plotting Loss and Accuracy per Epoch
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