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1 Introduction 
 
This configuration manual provides detailed instructions for setting up and configuring the 
clothing classification and object detection model based on the YOLOv5 and Mask R-CNN 
architectures. This manual includes step-by-step guidelines for preparing the environment, 
installing necessary dependencies, and executing the model for image classification and 
object detection tasks. 
 
2 System Requirements 
 

2.1. Hardware Requirements 
 
- Operating System: Linux (Ubuntu) 

 
- Python Version: 3.10 
 
- NVIDIA GPU (for optimal performance) 
 
2.2 Software Requirements 
 
- Deep Learning AMI GPU TensorFlow 2.12.0 (Ubuntu 20.04) 20230529 
 
- Internet Browser (Google Chrome preferred) 
 
- AWS Jupyter Notebook 
 

3 AWS Cloud Setup 
 

Setting Up an EC2 Instance in AWS Cloud 
 
Introduction 
 
This report provides a step-by-step guide on setting up an Amazon Elastic Compute 
Cloud (EC2) instance in the Amazon Web Services (AWS) cloud environment. An EC2 
instance is a virtual server that can be used to deploy applications, run workloads, and 
perform various computing tasks. 
 
Table of Contents 
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1. Prerequisites 
2. Launching an EC2 Instance 
3. Connecting to the EC2 Instance 
4. Configuring Security Groups 
5. Conclusion 
 
1. Prerequisites 
 
Before proceeding with the EC2 instance setup, we had to ensure that we had the 
following: 
 
- An AWS account: Login to the cloud AWS account. 
- AWS Management Console: Access to the AWS Management Console to perform 
actions and manage resources. 
- Key Pair: Create a key pair to securely connect to the instance. 
 
2. Launching an EC2 Instance 
 
1. Sign in to AWS Management Console: Log in to the student AWS account and 
navigate to the AWS Management Console. 
 
2. Navigate to EC2 Dashboard: From the console dashboard, select "EC2" under the 
"Compute" section. 
 
3. Launch Instance: Click on the "Launch Instance" button to start the instance creation 
process. 
 
4. Choose an Amazon Machine Image (AMI): Select an appropriate AMI. The selected 
AMI was Linux(Ubuntu). Deep Learning AMI GPU TensorFlow 2.12.0 (Ubuntu 20.04) 
20230529 
 
5. Review and Launch: Review the instance configuration and click "Launch" to 
proceed. 
 
6. Select Key Pair: Create a new one to securely connect to the instance. 
 
7. Launch Instance: Click "Launch Instances" to create the EC2 instance. 
 
3. Connecting to the EC2 Instance 
 
1. Wait for Instance Startup. Wait for the instance to launch. Once it's running, note 
down the Public IP. The public IP was “ec2-54-77-173-84.eu-west-
1.compute.amazonaws.com”. 
 
2. Open Terminal or Command Prompt: Use the terminal or command prompt to connect 
to the instance. Go to the required folder. The keys folder where the pem file is stored is 
in Downloads/keys/. Navigate to this folder. 
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3. Change Key Pair Permissions: This is a one time step. If required, change the 
permissions of the key pair file using `chmod 400 your-key-pair.pem`. This means it is 
giving the permission for the user to access the pem file. 
 
4. SSH Connection: Use the following command to connect to the instance: 
 
   ssh -i anunayak.pem -L 8000:localhost:8888 ubuntu@ec2-54-77-173-84.eu-west-
1.compute.amazonaws.com 
   

 
 
 4. Configuring Security Groups 
 
1. Access Security Groups: From the EC2 dashboard, select "Security Groups" from the 
left menu. 
 
2. Create a New Security Group: Create a new security group. 
 
3. Edit Inbound Rules: Configure inbound rules to control incoming traffic. We have 
allowed SSH access from all the IP addresses. 
 

 
 
5. Conclusion 
 
Setting up an EC2 instance in the AWS cloud provides you with a scalable and 
customizable environment to run applications and perform computing tasks. By 
following the steps outlined in this report, you can easily create and configure an EC2 
instance and connect to it securely for various workloads. 

 
 

 
4 Code 
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Figure 1: Importing datasets into the jupyter notebook environment 
The code imports necessary libraries like matplotlib for visualization, numpy, os, cv2 for 
image processing, random for unpredictability, PIL for image handling, and torch for deep 
learning. Additionally, it imports “Torchvision” components for image models plus 
transformations. Additionally, it incorporates “scikit-learn” measures such as precision, 
accuracy, recall, and F1-score. Using a mix of these various libraries, the code's primary 
function is probably to carry out image-related tasks, maybe incorporating deep learning 
model assessment and visualisation. 

 
Figure 2: Loading the image data from the data folder 
 
Iterates over all of the files located within the folder and its subdirectories. To navigate the 
folder hierarchy, it makes use of the os.walk() method. The paths of files with the ".jpg" or 
".png" extension are found and added into the image_files list. This function might help with 
additional processing or analysis by gathering image file paths using a given directory.  
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Figure 3: Cropping, flipping and rotating the images 
 
The preprocess_image(image_path) function is defined in the provided code. It modifies the 
input picture using the OpenCV library. The colour format of the image is initially 
transformed from BGR to RGB after it has been read. After that, the values of pixels are 
adjusted to lie between [0, 1]. If the image's dimensions are greater than 224x224 pixels, it 
may then be cropped. Within acceptable limits, a random process determines the cropping 
position. There exists a 50% possibility that the picture will be horizontally inverted as a 
result. 
Furthermore, the picture is rotated with a chance angle between -15 and 15 degrees. 
Employing a transformation matrix, the picture is rotated about its centre. This code sample 
illustrates a collection of widely used data augmentation methods that are applied to improve 
training data to feed machine learning models, especially those employed by computer vision 
applications. 
 

 
 
Figure 4: Preprocessing the images 
 
Python is used in the offered code sample to do picture preparation and visualisation. It then 
loops over a set of "image_files" after initialising an empty list named 
"preprocessed_images". The code uses the "preprocess_image()" method to conduct a certain 
kind of image processing on every image_path in the collection. The final preprocessed 
picture is after that put to the "preprocessed_images" list. 
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It then starts a further loop to use the Matplotlib package to visualise the previously 
processed pictures. For better visual presentation, "plt.axis('off')" serves to turn off the axes 
meanwhile "plt.imshow()" is used to display each picture in "preprocessed_images" inside 
this loop. The last step is to call "plt.show()" to show every preprocessed image one at a time. 

 
 
Figure 5: Result after preprocessing 
 
In the above figure the previously declared method was used to preprocess the images form 
the dataset, all the images get visualised subsequently after getting preprocessed wherein they 
are cropped, rotated and flipped randomly 

 
Figure 6: Importing the pretrained YOLOv5 model 
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The code implements "YOLO (You Only Look Once)" object recognition using the 
"ultralytics" package. It uses the "torch.hub.load()" function to load the YOLOv5s model and 
imports it from the library. The 'pretrained=True' option loads the YOLOv5s model, a well-
liked variation of the YOLO model, into its pre-trained state. By utilising the YOLOv5s 
model, the above code fragment makes it simple to do real-time object identification in 
photos or videos with little coding complexity. 

 
 
Figure 7: Detecting objects using the YOLOv5 model 
 
This code does a loop over an array of 'image_files', which stand for directories to image 
files. It uses the PIL library's "Image.open()" method to display each picture and resizes it to 
"640x640" for every single one. On the enlarged image, object recognition is then carried out 
using the preloaded YOLOv5s model. The'model(image)' method provides detection results, 
which frequently contain class names, bounding box coordinates,and confidence ratings for 
recognised items.The detection results are finally shown using'results.show()'. In order to 
better understand the performance of the model, this code analyses a batch of photographs, 
finds objects via YOLOv5s, followed by shows the annotated images including bounding 
boxes surrounding found items. 
After detecting the objects using yolov5, we go into the intricate task of retraining a model 
tailored for clothing recognition and categorization. This entailed an iterative procedure 
wherein we optimized the model's internal parameters using a curated dataset containing a 
diverse array of clothing-related images. Capitalizing on the YOLOv5 architecture, we fine-
tuned the model by adjusting its internal parameters through backpropagation and gradient 
descent, with the objective of enhancing its efficacy in precisely localizing clothing objects 
within images and discerning intricate attributes like style and color. Through meticulous 
tuning of hyperparameters and optimization strategies, we observed substantial enhancements 
in both the model's object detection precision and its capacity to accurately classify clothing 
items. This meticulous retraining process underscored the importance of continual model 
refinement, culminating in an advanced system tailored to the nuanced challenges of the 
fashion industry's visual recognition tasks. 
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Figure 8: Retraining the model 
 

 
 
 
Figure 9: Loading the Mask RCNN model 
 
A pre-trained segmentation of instances model named Mask R-CNN is loaded using the 
given code. The function'models.detection.maskrcnn_resnet50_fpn()' of PyTorch'storchvision 
module is used to import the Mask R-CNN model architecture along with a ResNet-50 
backbone that has already been trained on a sizable dataset. 
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The model is loaded with weights which were previously pre-trained on a sizable dataset 
using the 'pretrained=True' option, enabling the model to have acquired characteristics 
helpful for identifying objects and each of their pixels. By switching the model into 
evaluation mode with the'model.eval()' function, some layers or behaviours, such as batch 
normalisation and dropout, are disabled, ensuring consistent and trustworthy inference. The 
Mask R-CNN model is ready to make predictions using fresh data courtesy to this code. 
 

 
 
Figure 10: Object detection using Mask RCNN model 
 
The given code used the already imported Mask R-CNN model to process a set of pictures. It 
prints the name for the presently being processed picture after iterating over every 
'image_path' within the list of 'image_files'. The code opens each picture and uses the PIL 
package to scale it to 64x64 pixels. The picture is then transformed using a combination of 
operations to get it ready for the model's input, mostly by transforming it into a tensor. 
'input_tensor.unsqueeze(0)' adds a new dimension onto the converted image tensor, turning it 
into a batch. The function feeds the input from the batch into the Mask R-CNN model in a 
'torch.no_grad()' setting to produce a prediction. The forecast contains a variety of details, 
notably masks, about the discovered objects. 'prediction['masks'].detach().cpu().numpy()' is 
used to retrieve the masks off the prediction tensor. When there are zero masks, no items are 
found, and a message to that effect is printed. If otherwise, the function outputs the number of 
items that were discovered in the picture. 
 
 
 
This is the code for displaying the original image with the segmented image: 
 
import os 
import torch 
import torchvision.transforms as T 
import torchvision.models as models 
import matplotlib.pyplot as plt 
from PIL import Image 
from torch.utils.data import Dataset, DataLoader 
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# Define your CustomDataset class here 
class CustomDataset(Dataset): 
    def __init__(self, data_folder, transform=None): 
        self.data_folder = data_folder 
        self.image_files = [] 
        for root, dirs, files in os.walk(data_folder): 
            for file in files: 
                if file.endswith(".jpg") or file.endswith(".png"): 
                    self.image_files.append(os.path.join(root, file)) 
        self.transform = transform 
 
    def __len__(self): 
        return len(self.image_files) 
 
    def __getitem__(self, idx): 
        image_path = self.image_files[idx] 
        image = Image.open(image_path).convert("RGB") 
 
        if self.transform: 
            image = self.transform(image) 
 
        return image 
   
# Specify the path to your custom dataset 
dataset_path = "/home/ubuntu/bharadwaj_project/Dataset/deepfashion2dataset/clothes" 
 
# Define the transformation to apply to each image in the dataset 
transform = T.Compose([ 
    T.Resize((640, 640)), 
    T.ToTensor(), 
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), 
]) 
 
# Create the custom dataset and data loader 
custom_dataset = CustomDataset(dataset_path, transform=transform) 
data_loader = DataLoader(custom_dataset, batch_size=1, shuffle=True) 
 
# Load your pre-trained Mask R-CNN model 
model = models.detection.maskrcnn_resnet50_fpn(pretrained=True) 
model.eval() 
 
# Iterate through the data loader to access batches of images 
for batch in data_loader: 
    # Process the batch (e.g., perform inference using your model) 
    image = batch[0]  # Extract the image tensor from the batch 
 
    with torch.no_grad(): 
        predictions = model([image]) 
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    # Display the original image 
    original_image = image.permute(1, 2, 0).numpy() 
    plt.imshow(original_image) 
    plt.axis('off') 
    plt.show() 
 
    # Display each segmented region 
    masks = predictions[0]['masks'].squeeze().detach().cpu().numpy() 
    masks = (masks > 0.5).astype(int) 
 
    num_masks = masks.shape[0] 
    fig, axs = plt.subplots(1, num_masks + 1, figsize=(15, 5)) 
 
    # Display the original image 
    axs[0].imshow(original_image) 
    axs[0].axis('off') 
 
    for i in range(num_masks): 
        masked_image = original_image.copy() 
        masked_image[masks[i] == 0] = 0 
        axs[i+1].imshow(masked_image) 
        axs[i+1].axis('off') 
 
    plt.show() 
 
 
 

 
 
Figure 11. Displaying Original image with the segmented image 
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Figure 12: Printing number of objects detected using Mask RCNN 
 
In the above figure the previously imported Mask RCNN model has been used to detect the 
objects present in the image dataset, here the name of every image which gets preprocessed 
gets printed along with the number of objects that have been detected in the image. 
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